Part II — Linear Analysis

Definitions

Based on lectures by J. W. Luk

Notes taken by Dexter Chua

Michaelmas 2015

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Part IB Linear Algebra, Analysis II and Metric and Topological Spaces are essential

Normed and Banach spaces. Linear mappings, continuity, boundedness, and norms. Finite-dimensional normed spaces.

The Baire category theorem. The principle of uniform boundedness, the closed graph theorem and the inversion theorem; other applications.

Inner product spaces and Hilbert spaces; examples and elementary properties. Orthonormal systems, and the orthogonalization process. Bessel’s inequality, the Parseval equation, and the Riesz-Fischer theorem. Duality; the self duality of Hilbert space.

Bounded linear operations, invariant subspaces, eigenvectors; the spectrum and resolvent set. Compact operators on Hilbert space; discreteness of spectrum. Spectral theorem for compact Hermitian operators.
Contents

0 Introduction 3

1 Normed vector spaces 4
 1.1 Bounded linear maps 4
 1.2 Dual spaces 4
 1.3 Adjoint .. 5
 1.4 The double dual 5
 1.5 Isomorphism 5
 1.6 Finite-dimensional normed vector spaces 5
 1.7 Hahn–Banach Theorem 5

2 Baire category theorem 6
 2.1 The Baire category theorem 6
 2.2 Some applications 6

3 The topology of $\mathcal{C}(K)$ 7
 3.1 Normality of compact Hausdorff spaces 7
 3.2 Tietze-Urysohn extension theorem 7
 3.3 Arzelà-Ascoli theorem 7
 3.4 Stone–Weierstrass theorem 7

4 Hilbert spaces 9
 4.1 Inner product spaces 9
 4.2 Riesz representation theorem 9
 4.3 Orthonormal systems and basis 9
 4.4 The isomorphism with ℓ_2 9
 4.5 Operators 9
 4.6 Self-adjoint operators 10
0 Introduction
1 Normed vector spaces

Definition (Normed vector space). A normed vector space is a pair \((V, \| \cdot \|)\), where \(V\) is a vector space over a field \(F\) and \(\| \cdot \| : V \mapsto \mathbb{R}\), known as the norm, satisfying

(i) \(\|v\| \geq 0\) for all \(v \in V\), with equality iff \(v = 0\).

(ii) \(\|\lambda v\| = |\lambda|\|v\|\) for all \(\lambda \in F, v \in V\).

(iii) \(\|v + w\| \leq \|v\| + \|w\|\) for all \(v, w \in V\).

Definition (Topological vector space). A topological vector space \((V, U)\) is a vector space \(V\) together with a topology \(U\) such that addition and scalar multiplication are continuous maps, and moreover singleton points \(\{v\}\) are closed sets.

Definition (Absolute convexity). Let \(V\) be a vector space. Then \(C \subseteq V\) is absolutely convex (or balanced convex) if for any \(\lambda, \mu \in F\) such that \(|\lambda| + |\mu| \leq 1\), we have \(\lambda C + \mu C \subseteq C\). In other words, if \(c_1, c_2 \in C\), we have \(\lambda c_1 + \mu c_2 \in C\).

Definition (Bounded subset). Let \(V\) be a topological vector space. Then \(B \subseteq V\) is bounded if for every open neighbourhood \(U \subseteq V\) of \(0\), there is some \(s > 0\) such that \(B \subseteq tU\) for all \(t > s\).

Definition (Banach spaces). A normed vector space is a Banach space if it is complete as a metric space, i.e. every Cauchy sequence converges.

1.1 Bounded linear maps

Definition (Bounded linear map). \(T : X \rightarrow Y\) is a bounded linear map if there is a constant \(C > 0\) such that \(\|Tx\|_Y \leq C\|x\|_X\) for all \(x \in X\). We write \(\mathcal{B}(X, Y)\) for the set of bounded linear maps from \(X\) to \(Y\).

Definition (Norm on \(\mathcal{B}(X, Y)\)). Let \(T : X \rightarrow Y\) be a bounded linear map. Define \(\|T\|_{\mathcal{B}(X, Y)}\) by

\[\|T\|_{\mathcal{B}(X, Y)} = \sup_{\|x\| \leq 1} \|Tx\|_Y.\]

1.2 Dual spaces

Definition (Dual space). Let \(V\) be a normed vector space. The dual space is

\[V^* = \mathcal{B}(V, F)\].

We call the elements of \(V^*\) functionals. The algebraic dual of \(V\) is

\[V' = \mathcal{L}(V, F)\],

where we do not require boundedness.
1.3 Adjoint

Definition (Adjoint). Let X, Y be normal vector spaces. Given $T \in \mathcal{B}(X, Y)$, we define the adjoint of T, denoted T^*, as a map $T^* \in \mathcal{B}(Y^*, X^*)$ given by

$$T^*(g)(x) = g(T(x))$$

for $x \in X$, $y \in Y^*$. Alternatively, we can write

$$T^*(g) = g \circ T.$$

1.4 The double dual

Definition (Double dual). Let V be a normed vector space. Define $V^{**} = (V^*)^*$.

1.5 Isomorphism

Definition (Isomorphism). Let X, Y be normed vector spaces. Then $T : X \to Y$ is an isomorphism if it is a bounded linear map with a bounded linear inverse (i.e. it is a homeomorphism).

We say X and Y are isomorphic if there is an isomorphism $T : X \to Y$.

We say that $T : X \to Y$ is an isometric isomorphism if T is an isomorphism and $\|Tx\|_Y = \|x\|_X$ for all $x \in X$.

X and Y are isometrically isomorphic if there is an isometric isomorphism between them.

1.6 Finite-dimensional normed vector spaces

Definition (Equivalent norms). Let V be a vector space, and $\| \cdot \|_1, \| \cdot \|_2$ be norms on V. We say that these are equivalent if there exists a constant $C > 0$ such that for any $v \in V$, we have

$$C^{-1}\|v\|_2 \leq \|v\|_1 \leq C\|v\|_2.$$

1.7 Hahn–Banach Theorem

Definition (Partial order). A relation \leq on a set X is a partial order if it satisfies

(i) $x \leq x$ (reflexivity)

(ii) $x \leq y$ and $y \leq x$ implies $x = y$ (antisymmetry)

(iii) $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitivity)

Definition (Total order). Let (S, \leq) be a partial order. $T \subseteq S$ is totally ordered if for all $x, y \in T$, either $x \leq y$ or $y \leq x$, i.e. every two things are related.

Definition (Upper bound). Let (S, \leq) be a partial order. $S' \subseteq S$ subset. We say $b \in S$ is an upper bound of this subset if $x \leq b$ for all $x \in S'$.

Definition (Maximal element). Let (S, \leq) be a partial order. Then $m \in S$ is a maximal element if $x \geq m$ implies $x = m$.

Definition (Reflexive). We say V is reflexive if $\phi(V) = V^{**}$.

2 Baire category theorem

2.1 The Baire category theorem

Definition (Nowhere dense set). Let X be a topological space. A subset $E \subseteq X$ is nowhere dense if \bar{E} has empty interior.

Definition (First/second category, meagre and residual). Let X be a topological space. We say that $Z \subseteq X$ is of first category or meagre if it is a countable union of nowhere dense sets.

A subset is of second category or non-meagre if it is not of first category.

A subset is residual if $X \setminus Z$ is meagre.

2.2 Some applications
3 The topology of \(C(K) \)

Definition (Hausdorff space). A topological space \(X \) is **Hausdorff** if for all distinct \(p, q \in X \), there are \(U_p, U_q \subseteq X \) that are open subsets of \(X \) such that \(p \in U_p, q \in U_q \) and \(U_p \cap U_q = \emptyset \).

Notation. \(C(K) \) is the set of continuous functions \(f : K \to \mathbb{R} \) with the norm \(\|f\|_{C(K)} = \sup_{x \in K} |f(x)| \).

3.1 Normality of compact Hausdorff spaces

Definition (Normal space). A topological space \(X \) is **normal** if for every disjoint pair of closed subsets \(C_1, C_2 \) of \(X \), there exists \(U_1, U_2 \subseteq X \) disjoint open such that \(C_1 \subseteq U_1, C_2 \subseteq U_2 \).

Definition (\(T_i \) space). A topological space \(X \) has the **\(T_1 \) property** if for all \(x, y \in X \), where \(x \neq y \), there exists \(U \subseteq X \) open such that \(x \in U \) and \(y \notin U \).

A topological space \(X \) has the **\(T_2 \) property** if \(X \) is Hausdorff.

A topological space \(X \) has the **\(T_3 \) property** if for any \(x \in X \), \(C \subseteq X \) closed with \(x \notin C \), then there are \(U_x, U_C \) disjoint open such that \(x \in U_x, C \subseteq U_C \). These spaces are called **regular**.

A topological space \(X \) has the **\(T_4 \) property** if \(X \) is normal.

3.2 Tietze-Urysohn extension theorem

3.3 Arzelà-Ascoli theorem

Definition (Equicontinuous). Let \(K \) be a topological space, and \(F \subseteq C(K) \).

We say \(F \) is **equicontinuous at** \(x \in K \) if for every \(\varepsilon \), there is some \(U \) which is an open neighbourhood of \(x \) such that \((\forall f \in F)(\forall y \in U) |f(y) - f(x)| < \varepsilon \).

We say \(F \) is **equicontinuous** if it is equicontinuous at \(x \) for all \(x \in K \).

Definition (\(\varepsilon \)-net). Let \(X \) be a metric space, and let \(E \subseteq X \). For \(\varepsilon > 0 \), we say that \(N \subseteq X \) is an \(\varepsilon \)-net for \(E \) if and only if \(\bigcup_{x \in E} B(x, \varepsilon) \supseteq E \).

Definition (Totally bounded subset). Let \(X \) be a metric space, and \(E \subseteq X \). We say that \(E \) is **totally bounded** for every \(\varepsilon \), there is a finite \(\varepsilon \)-net \(N_{\varepsilon} \) for \(E \).

3.4 Stone–Weierstrass theorem

Definition (Algebra). A vector space \((V, +) \) is called an **algebra** if there is an operation (called multiplication) \(: V \to V \) such that \((V, +, \) is a **rng** (i.e. ring not necessarily with multiplicative identity). Also, \(\lambda(v \cdot w) = (\lambda v) \cdot w = v \cdot (\lambda w) \) for all \(\lambda \in F, v, w \in V \).

If \(V \) is in addition a normed vector space and

\[
\|v \cdot w\|_V \leq \|v\|_V \cdot \|w\|_V
\]

for all \(v, w \in V \), then we say \(V \) is a **normed algebra**.
If V complete normed algebra, we say V is a Banach algebra.

If V is an algebra that is commutative as a rng, then we say V is a commutative algebra.

If V is an algebra with multiplicative identity, then V is a unital algebra.
4 Hilbert spaces

4.1 Inner product spaces

Definition (Inner product). Let V be a vector space over \mathbb{R} or \mathbb{C}. We say $p : V \times V \to \mathbb{R}$ or \mathbb{C} is an *inner product* on V if it satisfies

(i) \[p(v, w) = \overline{p(w, v)} \] for all $v, w \in V$. (antisymmetry)

(ii) \[p(\lambda_1 v_1 + \lambda_2 v_2, u) = \lambda_1 p(v_1, w) + \lambda_2 p(v_2, w). \] (linearity in first argument)

(iii) $p(v, v) \geq 0$ for all $v \in V$ and equality holds iff $v = 0$. (non-negativity)

We will often denote an inner product by $p(v, w) = \langle v, w \rangle$. We call $(V, \langle \cdot, \cdot \rangle)$ an *inner product space*.

Definition (Orthogonality). In an inner product space, v and w are *orthogonal* if $\langle v, w \rangle = 0$.

Definition (Euclidean space). A normed vector space $(V, \| \cdot \|)$ is a *Euclidean space* if there exists an inner product $\langle \cdot, \cdot \rangle$ such that $\|v\| = \sqrt{\langle v, v \rangle}$.

Definition (Hilbert space). A Euclidean space $(E, \| \cdot \|)$ is a *Hilbert space* if it is complete.

Definition (Orthogonal space). Let E be a Euclidean space and $S \subseteq E$ an arbitrary subset. Then the *orthogonal space* of S, denoted by S^\perp, is given by $S^\perp = \{ v \in E : \forall w \in S, \langle v, w \rangle = 0 \}$.

4.2 Riesz representation theorem

4.3 Orthonormal systems and basis

Definition (Orthonormal system). Let E be a Euclidean space. A set of unit vectors $\{e_\alpha\}_{\alpha \in A}$ is called an *orthonormal system* if $\langle e_\alpha, e_\beta \rangle = 0$ if $\alpha \neq \beta$.

Definition (Maximal orthonormal system). Let E be a Euclidean space. An orthonormal system is called *maximal* if it cannot be extended to a strictly larger orthonormal system.

Definition (Hilbert space basis). Let H be a Hilbert space. A maximal orthonormal system is called a *Hilbert space basis*.

4.4 The isomorphism with ℓ_2

4.5 Operators

Definition (Spectrum and resolvent set). Let X be a Banach space and $T \in B(X)$, we define the *spectrum* of T, denoted by $\sigma(T)$ by $\sigma(t) = \{ \lambda \in \mathbb{C} : T - \lambda I$ is not invertible $\}$. The *resolvent set*, denoted by $\rho(T)$, is $\rho(t) = \mathbb{C} \setminus \sigma(T)$.

Definition (Resolvent). Let X be a Banach space. The resolvent is the map $R : \rho(T) \to B(X)$ given by $\lambda \mapsto (T - \lambda I)^{-1}$.

Definition (Eigenvalue). We say λ is an eigenvalue of T if $\ker(T - \lambda I) \neq \{0\}$.

Definition (Point spectrum). Let X be a Banach space. The point spectrum is $\sigma_p(T) = \{ \lambda \in \mathbb{C} : \lambda$ is an eigenvalue of $T \}$.

Definition (Approximate point spectrum). Let X be a Banach space. The approximate point spectrum is defined as $\sigma_{ap}(X) = \{ \lambda \in \mathbb{C} : \exists \{x_n\} \subseteq X : \|x_n\|_X = 1$ and $(T - \lambda I)x_n \to 0 \}$.

Definition (Compact operator). Let X, Y be Banach spaces. We say $T \in B(X,Y)$ is compact if for every bounded subset E of X, $T(E)$ is totally bounded. We write $B_0(X)$ for the set of all compact operators $T \in B(X)$.

4.6 Self-adjoint operators

Definition (Self-adjoint operator). Let H be a Hilbert space, $T \in B(H)$. Then T is self-adjoint or Hermitian if for all $x, y \in H$, we have $\langle Tx, y \rangle = \langle x, Ty \rangle$.