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These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Groups, Rings and Modules is essential

Field extensions, tower law, algebraic extensions; irreducible polynomials and relation
with simple algebraic extensions. Finite multiplicative subgroups of a field are cyclic.
Existence and uniqueness of splitting fields. [6]

Existence and uniqueness of algebraic closure. [1]

Separability. Theorem of primitive element. Trace and norm. [3]

Normal and Galois extensions, automorphic groups. Fundamental theorem of Galois
theory. [3]

Galois theory of finite fields. Reduction mod p. [2]

Cyclotomic polynomials, Kummer theory, cyclic extensions. Symmetric functions.
Galois theory of cubics and quartics. [4]

Solubility by radicals. Insolubility of general quintic equations and other classical
problems. [3]

Artin’s theorem on the subfield fixed by a finite group of automorphisms. Polynomial

invariants of a finite group; examples. [2]
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0 Introduction

The most famous result of Galois theory is that there is no general solution to
polynomial equations of degree 5 or above in terms of radicals. However, this
result was, in fact, proven before Galois theory existed, and goes under the name
of the Abel–Ruffini theorem. What Galois theory does provides is a way to decide
whether a given polynomial has a solution in terms of radicals, as well as a nice
way to prove this result.

However, Galois theory is more than equation solving. In fact, the funda-
mental theorem of Galois theory, which is obviously an important theorem in
Galois theory, has completely nothing to do with equation solving. Instead, it is
about group theory.

In modern days, Galois theory is often said to be the study of field extensions.
The idea is that we have a field K, and then add more elements to get a field L.
When we want to study solutions to polynomial equations, what we add is the
roots of the polynomials. We then study the properties of this field extension,
and in some cases, show that this field extension cannot be obtained by just
adding radicals.

For certain “nice” field extensions K ⊆ L, we can assign to it the Galois group
Gal(L/K). In general, given any group G, we can find subgroups of G. On the
other hand, given a field extension K ⊆ L, we can try to find some intermediate
field F that can be fitted into K ⊆ F ⊆ L. The key idea of Galois theory is
that these two processes are closely related — we can establish a one-to-one
correspondence between the subgroups of G and the intermediate fields F .

Moreover, many properties of (intermediate) field extensions correspond to
analogous ideas in group theory. For example, we have the notion of normal
subgroups, and hence there is an analogous notion of normal extensions. Similarly,
we have soluble extensions (i.e. extensions that can be obtained by adding
radicals), and these correspond to “soluble groups”. In Galois theory, we will
study how group-theoretic notions and field-theoretic notions interact.

Nowadays, Galois theory is an important field in mathematics, and finds its
applications in number theory, algebraic geometry and even cryptography.
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1 Solving equations

Galois theory grew of the desire to solve equations. In particular, to solve
polynomial equations. To begin with, we will come up with general solutions to
polynomial equations of up to degree 4. However, this is the best we can do, as
we will later show in the course — there is no general solution to polynomial
equations of degree 5 or above.

Before we start, we will define some notations that we will frequently use.
If R is a ring, then R[t] is the polynomial ring over R in the variable t.

Usually, we take R = Q and consider polynomials f(t) ∈ Q[t]. The objective
is then to find roots to the equation f(t) = 0. Often, we want to restrict our
search domain. For example, we might ask if there is a root in Q. We will thus
use Rootf (X) to denote the set of all roots of f in X.

Linear equations

Suppose that f = t+ a ∈ Q[t] (with a ∈ Q). This is easy to solve — we have
Rootf (Q) = {−a}.

Quadratic equations

Consider a simple quadratic f = t2 + 1 ∈ Q[t]. Then Rootf (Q) = ∅ since the
square of all rationals are positive. However, in the complex plane, we have
Rootf (C) = {

√
−1,−

√
−1}.

In general, let f = t2 + at + b ∈ Q[t]. Then as we all know, the roots are
given by

Rootf (C) =

{
−a±

√
a2 − 4b

2

}

Cubic equations

Let f = t3 + c ∈ Q[t]. The roots are then

Rootf (C) = { 3
√
−c, µ 3

√
−c, µ2 3

√
−c},

where µ = −1+
√
−3

2 is the 3rd root of unity. Note that µ is defined by the
equation µ3 − 1 = 0, and satisfies µ2 + µ+ 1 = 0.

In general, let f = t3 + at2 + bt+ c ∈ Q[t], and let Rootf (C) = {α1, α2, α3},
not necessarily distinct.

Our objective is to solve f = 0. Before doing so, we have to make it explicit
what we mean by “solving” the equation. As in solving the quadratic, we want
to express the roots α1, α2 and α3 in terms of “radicals” involving a, b and c.

Unlike the quadratic case, there is no straightforward means of coming up
with a general formula. The result we currently have is the result of many
many years of hard work, and the substitutions we make seemingly come out of
nowhere. However, after a lot of magic, we will indeed come up with a general
formula for it.

We first simplify our polynomial by assuming a = 0. Given any polynomial
f = t3 + at2 + bt+ c, we know a is the negative of the sum of the roots. So we
can increase each root by a

3 so that the coefficient of t2 vanishes. So we perform
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the change of variables t 7→ t− a
3 , and get rid of the coefficient of t2. So we can

assume a = 0.
Let µ be as above. Define

β = α1 + µα2 + µ2α3

γ = α1 + µ2α2 + µα3

These are the Lagrange resolvers. We obtain

βγ = α2
1 + α2

2 + α2
3 + (µ+ µ2)(α1α2 + α2α3 + α1α3)

Since µ2 + µ+ 1 = 0, we have µ2 + µ = −1. So we can simplify to obtain

= (α1 + α2 + α3)2 − 3(α1α2 + α2α3 + α1α3)

We have α1 + α2 + α3 = −a = 0, while b = α1α2 + α2α3 + α1α3. So

= −3b

Cubing, we obtain

β3γ3 = −27b3.

On the other hand, recalling again that α1 + α2 + α3 = 0, we have

β3 + γ3 = (α1 + µα2 + µ2α3)3 + (α1 + µ2α2 + µα3)3 + (α1 + α2 + α3)3

= 3(α3
1 + α3

2 + α3
3) + 18α1α2α3

We have α1α2α3 = −c, and since α3
i + bαi + c = 0 for all i, summing gives

α3
1 + α3

2 + α3
3 + 3c = 0. So

= −27c

Hence, we obtain
(t− β3)(t− γ3) = t2 + 27ct− 27b3.

We already know how to solve this equation using the quadratic formula. We
obtain

{β3, γ3} =

{
−27c±

√
(27c)2 + 4× 27b3

2

}
We now have β3 and γ3 in terms of radicals. So we can find β and γ in terms of
radicals. Finally, we can solve for αi using

0 = α1 + α2 + α3

β = α1 + µα2 + µ2α3

γ = α1 + µ2α2 + µα3

In particular, we obtain

α1 =
1

3
(β + γ)

α2 =
1

3
(µ2β + µγ)

α3 =
1

3
(µβ + µ2γ)
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So we can solve a cubic in terms of radicals.
This was a lot of magic involved, and indeed this was discovered through a

lot of hard work throughout many many years. This is also not a very helpful
result since we have no idea where these substitutions came from and why they
intuitively work.

Quartic equations

Assume f = t4 + at3 + bt2 + ct + d ∈ Q[t]. Let Rootf (C) = {α1, α2, α3, α4}.
Can we express all these in terms of radicals? Again the answer is yes, but the
procedure is much more complicated.

We can perform a similar change of variable to assume a = 0. So α1 + α2 +
α3 + α4 = 0.

This time, define

β = α1 + α2

γ = α1 + α3

λ = α1 + α4

Doing some calculations, we see that

β2 = −(α1 + α2)(α3 + α4)

γ2 = −(α1 + α3)(α2 + α4)

λ2 = −(α1 + α4)(α2 + α3)

Now consider

g = (t− β2)(t− γ2)(t− λ2)

= t3 + 2bt2 + (b2 − 4d)t− c2

This we know how to solve, and so we are done.

Quintics and above

So far so good. But how about polynomials of higher degrees? In general, let
f ∈ Q[t]. Can we write down all the roots of f in terms of radicals? We know
that the answer is yes if deg f ≤ 4.

Unfortunately, for deg f ≥ 5, the answer is no. Of course, this “no” means
no in general. For example, f = (t− 1)(t− 2) · · · (t− 5) ∈ Q[t] has the obvious
roots in terms of radicals.

There isn’t an easy proof of this result. The general idea is to first associate
a field extension F ⊇ Q for our polynomial f . This field F will be obtained
by adding all roots of f . Then we associate a Galois group G to this field
extension. We will then prove a theorem that says f has a solution in terms
of radicals if and only if the Galois group is “soluble”, where “soluble” has a
specific algebraic definition in group theory we will explore later. Finally, we
find specific polynomials whose Galois group is not soluble.
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2 Field extensions

After all that (hopefully) fun introduction and motivation, we will now start
Galois theory in a more abstract way. The modern approach is to describe these
in terms of field extensions.

2.1 Field extensions

Definition (Field extension). A field extension is an inclusion of a field K ⊆ L,
where K inherits the algebraic operations from L. We also write this as L/K.
Alternatively, we can define this by a injective homomorphism K → L. We say
L is an extension of K, and K is a subfield of L.

Example.

(i) R/Q is a field extension.

(ii) C/Q is a field extension.

(iii) Q(
√

2) = {a+ b
√

2 : a, b ∈ Q} ⊆ R is a field extension over Q.

Given a field extension L/K, we want to quantify how much “bigger” L
is compared to K. For example, to get from Q to R, we need to add a lot of
elements (since Q is countable and R is uncountable). On the other hand, to get
from R to C, we just need to add a single element

√
−1.

To do so, we can consider L as a vector space over K. We know that L
already comes with an additive abelian group structure, and we can define scalar
multiplication by simply multiplying: if a ∈ K,α ∈ L, then a · α is defined as
multiplication in L.

Definition (Degree of field extension). The degree of L over K is [L : K] is the
dimension of L as a vector space over K. The extension is finite if the degree is
finite.

In this course, we are mostly concerned with finite extensions.

Example.

(i) Consider C/R. This is a finite extension with degree [C : R] = 2 since we
have a basis of {1, i}.

(ii) The extension Q(
√

2)/Q has degree 2 since we have a basis of {1,
√

2}.

(iii) The extension R/Q is not finite.

We are going to use the following result a lot:

Theorem (Tower Law). Let F/L/K be field extensions. Then

[F : K] = [F : L][L : K]

Proof. Assume [F : L] and [L : K] are finite. Let {α1, · · · , αm} be a basis for
L over K, and {β1, · · · , βn} be a basis for F over L. Pick γ ∈ F . Then we can
write

γ =
∑
i

biβi, bi ∈ L.
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For each bi, we can write as

bi =
∑
j

aijαj , aij ∈ K.

So we can write

γ =
∑
i

∑
j

aijαj

βi =
∑
i,j

aijαjβi.

So T = {αjβi}i,j spans F over K. To show that this is a basis, we have to show
that they are linearly independent. Consider the case where γ = 0. Then we
must have bi = 0 since {βi} is a basis of F over L. Hence each aij = 0 since
{αj} is a basis of L over K.

This implies that T is a basis of F over K. So

[F : K] = |T | = nm = [F : L][L : K].

Finally, if [F : L] = ∞ or [L : K] = ∞, then clearly [F : K] = ∞ as well. So
equality holds as well.

Recall that in IA Numbers and Sets, we defined a real number x to be
algebraic if it is a root of some polynomial in integer (or rational) coefficients.
We can do this for general field (extensions) as well.

Definition (Algebraic number). Let L/K be a field extension, α ∈ L. We define

Iα = {f ∈ K[t] : f(α) = 0} ⊆ K[t]

This is the set of polynomials for which α is a root. It is easy to show that Iα is
an ideal, since it is the kernel of the ring homomorphism K[t]→ L by g 7→ g(α).

We say α is algebraic over K if Iα 6= 0. Otherwise, α is transcendental over
K.

We say L is algebraic over K if every element of L is algebraic.

Example.

(i) 9
√

7 is algebraic over Q because f( 9
√

7) = 0, where f = t9 − 7. In general,
any number written with radicals is algebraic over Q.

(ii) π is not algebraic over Q.

These are rather simple examples, and the following lemma will provide us a
way of generating much more examples.

Lemma. Let L/K be a finite extension. Then L is algebraic over K.

Proof. Let n = [L : K], and let α ∈ L. Then 1, α, α2, · · · , αn are linearly
dependent over K (since there are n+ 1 elements). So there exists some ai ∈ K
(not all zero) such that

anα
n + an−1α

n−1 + · · ·+ a1α+ a0 = 0.

So we have a non-trivial polynomial that vanishes at α. So α is algebraic over
K.

Since α was arbitrary, L itself is algebraic.
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If L/K is a field extension and α ∈ L is algebraic, then by definition, there is
some polynomial f such that f(α) = 0. It is a natural question to ask if there is
a “smallest” polynomial that does this job. Obviously we can find a polynomial
of smallest degree (by the well-ordering principle of the natural numbers), but
we can get something even stronger.

Since K is a field, K[t] is a PID (principal ideal domain). This, by definition,
implies we can find some (monic) Pα ∈ K[t] such that Iα = 〈Pα〉. In other words,
every element of Iα is just a multiple of Pα.

Definition (Minimal polynomial). Let L/K be a field extension, α ∈ L. The
minimal polynomial of α over K is a monic polynomial Pα such that Iα = 〈Pα〉.

Example.

(i) Consider R/Q, α = 3
√

2. Then the minimal polynomial is Pα = t3 − 2.

(ii) Consider C/R, α = 3
√

2. Then the minimal polynomial is Pα = t− 3
√

2.

It should be intuitively obvious that by virtue of being “minimal”, the
minimal polynomial is irreducible.

Proposition. Let L/K be a field extension, α ∈ L algebraic over K, and Pα
the minimal polynomial. Then Pα is irreducible in K[t].

Proof. Assume that Pα = QR in K[t]. So 0 = Pα(α) = Q(α)R(α). So Q(α) = 0
or R(α) = 0. Say Q(α) = 0. So Q ∈ Iα. So Q is a multiple of Pα. However, we
also know that Pα is a multiple of Qα. This is possible only if R is a unit in
K[t], i.e. R ∈ K. So Pα is irreducible.

It should also be clear that if f is irreducible and f(α) = 0, then f is the
minimal polynomial. Often, it is the irreducibility of Pα that is important.

Apart from the minimal polynomial, we can also ask for the minimal field
containing α.

Definition (Field generated by α). Let L/K be a field extension, α ∈ L. We
define K(α) to be the smallest subfield of L containing K and α. We call K(α)
the field generated by α over K.

This definition by itself is rather abstract and not very helpful. Intuitively,
K(α) is what we get when we add α to K, plus all the extra elements needed to
make K(α) a field (i.e. closed under addition, multiplication and inverse). We
can express this idea more formally by the following result:

Theorem. Let L/K a field extension, α ∈ L algebraic. Then

(i) K(α) is the image of the (ring) homomorphism φ : K[t]→ L defined by
f 7→ f(α).

(ii) [K(α) : K] = degPα, where Pα is the minimal polynomial of α over K.

Note that the kernel of the homomorphism φ is (almost) by definition the
ideal 〈Pα〉. So this theorem tells us

K[t]

〈Pα〉
∼= K(α).
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Proof.

(i) Let F be the image of φ. The first step is to show that F is indeed a field.
Since F is the image of a ring homomorphism, we know F is a subring of
L. Given β ∈ F non-zero, we have to find an inverse.

By definition, β = f(α) for some f ∈ K[t]. The idea is to use Bézout’s
identity. Since β 6= 0, f(α) 6= 0. So f 6∈ Iα = 〈Pα〉. So Pα - f in K[t]. Since
Pα is irreducible, Pα and f are coprime. Then there exists some g, h ∈ K[t]
such that fg + hPα = 1. So f(α)g(α) = f(α)g(α) + h(α)Pα(α) = 1. So
βg(α) = 1. So β has an inverse. So F is a field.

From the definition of F , we have K ⊆ F and α ∈ F , using the constant
polynomials f = c ∈ K and the identity f = t.

Now, if K ⊆ G ⊆ L and α ∈ G, then G contains all the polynomial
expressions of α. Hence F ⊆ G. So K(α) = F .

(ii) Let n = degPα. We show that {1, α, α2, · · · , αn−1} is a basis for K(α)
over K.

First note that since degPα = n, we can write

αn =

n−1∑
i=0

aiα
i.

So any other higher powers are also linear combinations of the αis (by
induction). This means that K(α) is spanned by 1, · · · , αn−1 as a K vector
space.

It remains to show that {1, · · · , αn−1} is linearly independent. Assume
not. Then for some bi, we have

n−1∑
i=0

biα
i = 0.

Let f =
∑
bit

i. Then f(α) = 0. So f ∈ Iα = 〈Pα〉. However, deg f <
degPα. So we must have f = 0. So all bi = 0. So {1, · · · , αn−1} is a basis
for K(α) over K. So [K(α) : K] = n.

Corollary. Let L/K be a field extension, α ∈ L. Then α is algebraic over K if
and only if K(α)/K is a finite extension.

Proof. If α is algebraic, then [K(α) : K] = degPα < ∞ by above. So the
extension is finite.

If K ⊆ K(α) is a finite extension, then by previous lemma, the entire K(α)
is algebraic over K. So α is algebraic over K.

We can extend this definition to allow more elements in the generating set.

Definition (Field generated by elements). Let L/K be a field extension,
α1, · · · , αn ⊆ L. We define K(α1, · · · , αn) to be the smallest subfield of L
containing K and α1, · · · , αn.

We call K(α1, · · · , αn) the field generated by α1, · · · , αn over K.
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And we can prove some similar results.

Theorem. Suppose that L/K is a field extension.

(i) If α1, · · · , αn ∈ L are algebraic over K, then K(α1, · · · , αn)/K is a finite
extension.

(ii) If we have field extensions L/F/K and F/K is a finite extension, then
F = K(α1, · · · , αn) for some α1, · · · , αn ∈ L.

Proof.

(i) We prove this by induction. Since α1 is algebraic over K, K ⊆ K(α1) is a
finite extension.

For 1 ≤ i < n, αi+1 is algebraic over K. So αi+1 is also algebraic
over K(α1, · · · , αi). So K(α1, · · · , αi) ⊆ K(α1, · · · , αi)(αi+1) is a finite
extension. But K(α1, · · · , αi)(αi+1) = K(α1, · · · , αi+1). By the tower law,
K ⊆ K(αi, · · · , αi+1) is a finite extension.

(ii) Since F is a finite dimensional vector space over K, we can take a basis
{α1, · · · , αn} of F over K. Then it should be clear that F = K(α1, · · · , αn).

When studying polynomials, the following result from IB Groups, Rings and
Modules is often helpful:

Proposition (Eisenstein’s criterion). Let f = ant
n + · · · + a1t + a0 ∈ Z[t].

Assume that there is some prime number p such that

(i) p | ai for all i < n.

(ii) p - an

(iii) p2 - a0.

Then f is irreducible in Q[t].

Example. Consider the field extensions

Q ⊆ Q(
√

2) ⊆ Q(
√

2,
3
√

2) ⊆ R,

Q ⊆ Q(
3
√

2) ⊆ Q(
√

2,
3
√

2) ⊆ R.

We have [Q(
√

2) : Q] = 2 since {1,
√

2} is a basis of Q(
√

2) over Q.
How about [Q( 3

√
2) : Q]? By the Eisenstein criterion, we know that t3 − 2 is

irreducible in Q[t]. So the minimal polynomial of 3
√

2 over Q is t3 − 2 which has
degree 3. So [Q( 3

√
2) : Q] = 3.

These results immediately tells that 3
√

2 6∈ Q(
√

2). Otherwise, this entails
that Q( 3

√
2) ⊆ Q(

√
2). Then the tower law says that

[Q(
√

2) : Q] = [Q(
√

2) : Q(
3
√

2)][Q(
3
√

2) : Q].

In particular, plugging the numbers in entails that that 3 is a factor of 2, which
is clearly nonsense. Similarly,

√
2 6∈ Q( 3

√
2).

11



2 Field extensions II Galois Theory

How about the inclusion Q(
√

2) ⊆ Q(
√

2, 3
√

2)? We now show that the
minimal polynomial P 3√2 of 3

√
2 over Q(

√
2) is t3 − 2.

Suppose not. Then t3− 2 is reducible, with the real P 3√2 as one of its factors.

Let t3 − 2 = P 3√2 ·R for some non-unit polynomial R.

We know that P 3√2 does not have degree 3 (or else it would be t3 − 2), and
not degree 1, since a degree 1 polynomial has a root. So it has degree 2. So
R has degree 1. Then R has a root, i.e. R(β) = 0 for some β ∈ Q(

√
2). So

β3 − 2 = 0. Hence [Q(β) : Q] = 3. Again, by the tower law, we have

[Q(
√

2) : Q] = [Q(
√

2) : Q(β)][Q(β) : Q].

Again, this is nonsense since it entails that 3 is a factor of 2. So the minimal
polynomial is indeed t3 − 2. So [Q(

√
2, 3
√

2) : Q] = 6 by the tower law.
Alternatively, we can obtain this result by noting that the tower law on

Q ⊆ Q(
√

2) ⊆ Q(
√

2, 3
√

2) and Q ⊆ Q( 3
√

2) ⊆ Q(
√

2, 3
√

2) entails that 2 and 3 are
both factors of [Q(

√
2, 3
√

2) : Q]. So it is at least 6. Then since t3 − 2 ∈ Q(
√

2)[t]
has 3
√

2 as a root, the degree is at most 6. So it is indeed 6.

2.2 Ruler and compass constructions

Before we develop our theory further, we first look into a rather unexpected
application of field extensions. We are going to look at some classic problems in
geometry, and solve them using what we’ve learnt so far. In particular, we want
to show that certain things cannot be constructed using a compass and a ruler
(as usual, we assume the ruler does not have markings on it).

It is often easy to prove that certain things are constructible — just exhibit
an explicit construction of it. However, it is much more difficult to show that
things are not constructible. Two classical examples are

(i) Doubling the cube: Given a cube, can we construct the side of another
cube whose volume is double the volume of the original cube?

(ii) Trisecting an angle: Given an angle, can we divide the angle into three
equal angles?

The idea here is to associate with each possible construction a field extension,
and then prove certain results about how these field extensions should behave.
We then show that if we could, say, double the cube, then this construction
would inevitable break some of the properties it should have.

Firstly, we want to formulate our problem in a more convenient way. In
particular, we will view the plane as R2, and describe lines and circles by
equations. We also want to describe “compass and ruler” constructions in a
more solid way.

Definition (Constructible points). Let S ⊆ R2 be a set of (usually finite) points
in the plane.

A “ruler” allows us to do the following: if P,Q ∈ S, then we can draw the
line passing through P and Q.

A “compass” allows us to do the following: if P,Q,Q′ ∈ S, then we can draw
the circle with center at P and radius of length QQ′.

12
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Any point R ∈ R2 is 1-step constructible from S if R belongs to the in-
tersection of two distinct lines or circles constructed from S using rulers and
compasses.

A point R ∈ R2 is constructible from S if there is some R1, · · · , Rn = R ∈ R2

such that Ri+1 is 1-step constructible from S ∪ {R1, · · · , Ri} for each i.

Example. Let S = {(0, 0), (1, 0)}. What can we construct? It should be easy
to see that (n, 0) for all n ∈ Z are all constructible from S. In fact, we can show
that all points of the form (m,n) ∈ Z are constructible from S.

(0, 0) (1, 0)

Definition (Field of S). Let S ⊆ R2 be finite. Define the field of S by

Q(S) = Q({coordinates of points in S}) ⊆ R,

where we put in the x coordinate and y coordinate separately into the generating
set.

For example, if S = {(
√

2,
√

3)}, then Q(S) = Q(
√

2,
√

3).
The key theorem we will use to prove our results is

Theorem. Let S ⊆ R2 be finite. Then

(i) If R is 1-step constructible from S, then [Q(S ∪ {R}) : Q(S)] = 1 or 2.

(ii) If T ⊆ R2 is finite, S ⊆ T , and the points in T are constructible from S,
Then [Q(S ∪ T ) : Q(S)] = 2k for some k (where k can be 0).

Proof. By assumption, there are distinct lines or circles C,C ′ constructed from
S using ruler and compass, such that R ∈ C ∩ C ′. By elementary geometry, C
and C ′ can be given by the equations

C : a(x2 + y2) + bx+ cy + d = 0,

C ′ : a′(x2 + y2) + b′x+ c′y + d′ = 0.

where a, b, c, d, a′, b′, c′, d′ ∈ Q(S). In particular, if we have a line, then we can
take a = 0.

Let R = (r1, r2). If a = a′ = 0 (i.e. C and C ′ are lines), then solving the two
linear equations gives r1, r2 ∈ Q(S). So [Q(S ∪ {R}) : Q(S)] = 1.

So we can now assume wlog that a 6= 0. We let

p = a′b− ab′, q = a′c− ac′, ` = a′d− ad′,

which are the coefficients when we perform a′×C−a×C ′. Then by assumption,
p 6= 0 or q 6= 0. Otherwise, c and c′ would be the same curve. wlog p 6= 0. Then
since (r1, r2) satisfy both equations of C and C ′, they satisfy

px+ qy + ` = 0.

13
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In other words, pr1 + qr2 + ` = 0. This tells us that

r1 = −qr2 + `

p
. (∗)

If we put r1, r2 into the equations of C and C ′ and use (∗), we get an equation
of the form

αr2
2 + βr2 + γ = 0,

where α, β, γ ∈ Q(S). So we can find r2 (and hence r1 using linear relations)
using only a single radical of degree 2. So

[Q(S ∪ {R}) : Q(S)] = [Q(S)(r2) : Q(S)] = 1 or 2,

since the minimal polynomial of r2 over Q(S) has degree 1 or 2.
Then (ii) follows directly from induction, using the tower law.

Corollary. It is impossible to “double the cube”.

Proof. Consider the cube with unit side length, i.e. we are given the set S =
{(0, 0), (1, 0)}. Then doubling the cube would correspond to constructing a side
of length ` such that `3 = 2, i.e. ` = 3

√
2. Thus we need to construct a point

R = ( 3
√

2, 0) from S.
If we can indeed construct this R, then we need

[Q(S ∪ {R}) : Q(S)] = 2k

for some k. But we know that Q(S) = Q and Q(S ∪ {R}) = Q( 3
√

2), and that

[Q(
3
√

2) : Q] = 3.

This is a contradiction since 3 is not a power of 2.

2.3 K-homomorphisms and the Galois Group

Usually in mathematics, we not only want to study objects, but maps between
objects. Suppose we have two field extensions K ⊆ L and K ⊆ L′. What should
a map between these two objects look like? Obviously, we would like this map
to be a field homomorphisms between L and L′. Moreover, since this is a map
between the two field extensions, and not just the fields themselves, we would
like this map to preserve things in K, and is just a map between the “extended
parts” of L and L′.

Definition (K-homomorphism). Let L/K and L′/K be field extensions. A
K-homomorphism φ : L→ L′ is a ring homomorphism such that φ|K = id, i.e. it
fixes everything in K. We write HomK(L,L′) for the set of all K-homomorphisms
L→ L′.

A K-isomorphism is a K-homomorphism which is an isomorphism of rings.
A K-automorphism is a K-isomorphism L→ L. We write AutK(L) for the set
of all K-automorphism L→ L.

There are a couple of things to take note of

(i) Given any φ ∈ HomK(L,L′), we know that

14
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(a) Since φ|K = id, we know that kerφ 6= L. Since we know that kerφ is
an ideal, and a field only has two ideals, we must have kerφ = 0. So
φ is injective. It is, in fact, true that any homomorphisms of fields is
injective.

(b) φ gives an isomorphism L→ φ(L). So φ(L) is a field and we get the
field extensions K ⊆ φ(L) ⊆ L′.

(ii) If [L : K] = [L′ : K] <∞, then any homomorphism in HomK(L,L′) is in
fact an isomorphism. So

{K-homomorphisms : L→ L′} = {K-isomorphisms : L→ L′},

This is since any K-homomorphism φ : L → L′ is an injection. So
[L : K] = [φ(L) : K]. Hence we know that [L′ : K] = [φ(L) : K]. But we
know that φ(L) is a subfield of L′. This is possible only if L′ = φ(L). So
φ is a surjection, and hence an isomorphism.

In particular, AutK(L) = HomK(L,L).

Example. We want to determine AutR(C). If we pick any ψ ∈ AutR(C), then

(ψ(
√
−1))2 + 1 = ψ(

√
−1

2
+ 1) = ψ(0) = 0.

So under any automorphism ψ, the image of
√
−1 is a root of t2 + 1. Therefore

ψ(
√
−1) =

√
−1 or −

√
−1. In the first case, ψ is the identity. In the second

case, the automorphism is φ : a+ b
√
−1 7→ a− b

√
−1, i.e. the complex conjugate.

So AutR(C) = {id, φ}.
Similarly, we can show that AutQ(Q(

√
2)) = {id, φ}, where φ swaps

√
2 with

−
√

2.

Example. Let µ3 = 1 but µ 6= 1 (i.e. µ is a third root of unity). We want to
determine A = HomQ(Q( 3

√
2),C).

First define φ, ψ by

φ(
3
√

2) =
3
√

2µ

ψ(
3
√

2) =
3
√

2µ2,

We have φ, ψ ∈ A. Are there more?
Let λ ∈ A. Then we must have

(λ(
3
√

2))3 − 2 = 0.

So λ( 3
√

2) is a root of t3 − 2. So it is either 3
√

2, 3
√

2µ or 3
√

2µ2. So λ is either id,
φ or ψ. So A = {id, φ, ψ}.

Note that in general, if α is algebraic over Q, then Q(α) ∼= Q[t]/〈Pα〉. Hence
to specify a Q-homomorphism from Q(α), it suffices to specify the image of t, or
just the image of α.

We will later see that the number of automorphisms |AutK(L)| is bounded
above by the degree of the extension [L : K]. However, we need not always have
[L : K] many automorphisms. When we do have enough automorphisms, we call
it a Galois extension.

15



2 Field extensions II Galois Theory

Definition (Galois extension). Let L/K be a finite field extension. This is a
Galois extension if |AutK(L)| = [L : K].

Definition (Galois group). The Galois group of a Galois extension L/K is
defined as Gal(L/K) = AutK(L). The group operation is defined by function
composition. It is easy to see that this is indeed a group.

Example. The extension Q(
√

7)/Q is Galois. The degree [Q(
√

7) : Q] = 2, and
the automorphism group is AutQ(Q(

√
7)) = {id, φ}, where φ swaps

√
7 with

−
√

7.

Example. The extension Q( 3
√

2)/Q is not Galois. The degree is [Q( 3
√

2) : Q] = 3,
but the automorphism group is AutQ(Q( 3

√
2)) = {id}.

To show that there is no other automorphism, note that the automorphism
group can be viewed as a subset of HomQ(Q( 3

√
2),C). We have just seen that

HomQ(Q( 3
√

2),C) has three elements, but only the identity maps Q( 3
√

2) to itself,
while the others map 3

√
2 to 3

√
2µi 6∈ Q( 3

√
2). So this is the only automorphism.

The way we should think about this is that there is something missing in
Q( 3
√

2), namely µ. Without the µ, we cannot get the other automorphisms we
need. In fact, in the next example, we will show that Q ⊆ Q( 3

√
2, µ) is Galois.

Example. Q( 3
√

2, µ)/Q is a Galois extension. Firstly, we know that [Q( 3
√

2, µ) :
Q( 3
√

2)] = 2 because µ3 − 1 = 0 implies µ2 + µ + 1 = 0. So the minimal
polynomial has degree 2. This also means that µ 6∈ Q( 3

√
2). We also know that

[Q( 3
√

2) : Q] = 3. So we have

[Q(
3
√

2, µ) : Q] = 6

by the Tower law.
Now denote α = 3

√
2, β = 3

√
2µ and γ = 3

√
2µ2. Then Q( 3

√
2, µ) = Q(α, β, γ).

Now let φ ∈ AutQ(Q( 3
√

2, µ)), then φ(α), φ(β) and φ(γ) are roots of t3−2. These
roots are exactly α, β, γ. So

{φ(α), φ(β), φ(γ)} = {α, β, γ}.

Hence φ is completely determined by a permutation of the roots of t3 − 2. So
AutQ( 3

√
2, µ) ∼= S3 and |AutQ( 3

√
2, µ)| = 6.

Most of the time, we will only be interested in Galois extensions. The main
reason is that Galois extensions satisfy the fundamental theorem of Galois theory,
which roughly says: if L/K is a finite Galois extension, then there is a one-to-one
correspondence of the set of subgroups H ≤ Gal(L/K) and the intermediate
fields K ⊆ F ⊆ L. In particular, the normal subgroups corresponds to the
“normal extensions”, which is something we will define later.

However, just as we have seen, it is not straightforward to check if an extension
is Galois, even in specific cases like the examples above. Fortunately, by the
time we reach the proper statement of the fundamental theorem, we would have
developed enough machinery to decide easily whether certain extensions are
Galois.
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2.4 Splitting fields

As mentioned in the introduction, one major motivation for Galois theory is to
study the roots of polynomials. So far, we have just been talking about field
extensions. The idea here is given a field K and a polynomial f ∈ K[t], we
would like to study the field extension obtained by adding all roots of f . This is
known as the splitting field of f (over K).

Notation. Let L/K be a field extension, f ∈ K[t]. We write Rootf (L) for the
roots of f in L.

First, we establish a correspondence between the roots of a polynomial and
K-homomorphisms.

Lemma. Let L/K be a field extension, f ∈ K[t] irreducible, deg f > 0. Then
there is a 1-to-1 correspondence

Rootf (L)←→ HomK(K[t]/〈f〉, L).

Proof. Since f is irreducible, 〈f〉 is a maximal ideal. So K[t]/〈f〉 is a field. Also,
there is a natural inclusion K ↪→ K[t]/〈f〉. So it makes sense to talk about
HomK(K[t]/〈f〉, L).

To any β ∈ Rootf (L), we assign φ : K[t]/〈f〉 → L where we map t̄ 7→ β (t̄ is
the equivalence class of t). This is well defined since if t̄ = ḡ, then g = t+ hf for
some h ∈ K[t]. So φ(ḡ) = φ(t+ hf) = β + h(β)f(β) = β.

Conversely, given any K-homomorphism φ : K[t]/〈f〉 → L, we assign β =
φ(t̄). This is a root since f(β) = f(φ(t̄)) = φ(f(t̄)) = φ(0) = 0.

This assignments are inverses to each other. So we get a one-to-one corre-
spondence.

Recall that if K ⊆ F is a field extension, then for any α ∈ F with minimal
polynomial Pα, we have K[t]/〈Pα〉 ∼= K(α). Since an irreducible f is the minimal
polynomial of its roots, we can view the above lemma as telling us something
about HomK(K(α), L).

Corollary. Let L/K be a field extension, f ∈ K[t] irreducible, deg f > 0. Then

|HomK(K[t]/〈f〉, L)| ≤ deg f.

In particular, if E = K[t]/〈f〉, then

|AutK(E)| = |Rootf (E)| ≤ deg f = [E : K].

So E/K is a Galois extension iff |Rootf (E)| = deg f .

Proof. This follows directly from the following three facts:

– |Rootf (L)| ≤ deg f

– AutK(E) = HomK(E,E)

– deg f = [K(α) : K] = [E : K].
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Definition (Splitting field). Let L/K be a field extensions, f ∈ K[t]. We say f
splits over L if we can factor f as

f = a(t− α1) · · · (t− αn)

for some a ∈ K and αj ∈ L. Alternatively, this says that L contains all roots of
f .

We say L is a splitting field of f if L = K(α1, · · · , αn). This is the smallest
field where f has all its roots.

Example.

– C is the splitting field of t2 + 1 ∈ R[t].

– Q( 3
√

2, µ) is a splitting field of t3 − 2 ∈ Q[t], where µ is a third root of
unity.

– By the fundamental theorem of algebra, for any K ⊆ C and f ∈ K[t],
there is a splitting field L ⊆ C of f .

Note that the degree of the splitting field need not be (bounded by) the
degree of the polynomial. In the second example, we have [Q( 3

√
2, µ) : Q] = 6,

but t3 − 2 only has degree 3.
More generally, we can show that every polynomial has a splitting field, and

this is unique up to isomorphism. This is important, since we would like to talk
about the splitting field of a polynomial all the time.

Theorem. Let K be a field, f ∈ K[t]. Then

(i) There is a splitting field of f .

(ii) The splitting field is unique (up to K-isomorphism).

Proof.

(i) If deg f = 0, then K is a splitting field of f . Otherwise, we add the roots
of f one by one.

Pick g | f in K[t], where g is irreducible and deg g > 0. We have the field
extension K ⊆ K[t]/〈g〉. Let α1 = t̄. Then g(α1) = 0 which implies that
f(α1) = 0. Hence we can write f = (t − α1)h in K(α1)[t]. Note that
deg h < deg f . So we can repeat the process on h iteratively to get a field
extensions K ⊆ K(α1, · · · , αn). This K(α1, · · · , αn) is a splitting field of
f .

(ii) Assume L and L′ are both splitting fields of f over K. We want to find a
K-isomorphism from L to L′.

Pick largest F, F ′ such that K ⊆ F ⊆ L and K ⊆ F ′ ⊆ L′ are field
extensions and there is a K-isomorphism from ψ : F → F ′. By “largest”,
we mean we want to maximize [F : K].

We want to show that we must have F = L. Then we are done because
this means that F ′ is a splitting field, and hence F ′ = L′.

So suppose F 6= L. We will try to produce a larger F̃ with K-isomorphism
F̃ → F̃ ′ ⊆ L′.

18
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Since F 6= L, we know that there is some α ∈ Rootf (L) such that α 6∈ F .
Then there is some irreducible g ∈ K[t] with deg g > 0 such that g(α) = 0
and g | f . Say f = gh.

Now we know there is an isomorphism F [t]/〈g〉 → F (α) by t̄ 7→ α. The
isomorphism ψ : F → F ′ extends to a isomorphism µ : F [t] → F ′[t].
Then since the coefficients of f are in K, we have f = µ(f) = µ(g)µ(h).
So µ(g) | f in F ′[t]. Since g is irreducible in F [t], µ(g) is irreducible in
F ′[t]. So there is some α′ ∈ Rootµ(g)(L

′) ⊆ Rootf (L′) and isomorphism
F ′[t]/〈µ(g)〉 → F ′(α′).

Now µ induces a K-isomorphism F [t]/〈g〉 → F ′[t]/〈µ(g)〉, which in turn
induces a K-isomorphism F (α)→ F ′(α′). This contradicts the maximality
of F . So we must have had F = L.

Note that the splitting is unique just up to isomorphism. We could be
quotienting by different polynomials and still get the same splitting field.

Example. Q(
√

7) is a splitting field of t2 − 7 ∈ Q[t]. At the same time, Q(
√

7)
is also a splitting field of t2 + 3t+ 1

2 ∈ Q[t].

2.5 Algebraic closures

The splitting field gives us the field with the root of one particular polynomial.
We could be greedy and ask for the roots for all polynomials, and get the
algebraic closure. The algebraic closure will not be of much use in this course,
but is a nice thing to know about. The major theorems would be the existence
and uniqueness of algebraic closures.

Definition (Algebraically closed field). A field L is algebraically closed if for all
f ∈ L[t], we have

f = a(t− α1)(t− α2) · · · (t− αn)

for some a, αi ∈ L. In other words, L contains all roots of its polynomials.
Let L/K be a field extension. We say L is an algebraic closure of K if

– L is algebraic over K

– L is algebraically closed.

Example. L is an algebraically closed field iff (L ⊆ E is a finite extension
implies E = L).

This is since if L ⊆ E is finite, then E is algebraic over L, and hence must
be L.

Example. C is algebraically closed by the fundamental theorem of algebra, and
is the algebraic closure of R (but not Q).

Before we prove our next theorem, we need the following technical lemma:

Lemma. If R is a commutative ring, then it has a maximal ideal. In particular,
if I is an ideal of R, then there is a maximal ideal that contains I.
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Proof. Let
P = {I : I is an ideal of R, I 6= R}.

If I1 ⊆ I2 ⊆ · · · is any chain of Ii ∈ P , then I =
⋃
Ii ∈ P. By Zorn’s lemma,

there is a maximal element of P (containing I). So R has at least one maximal
ideal (containing I).

Theorem (Existence of algebraic closure). Any field K has an algebraic closure.

Proof. Let

A = {λ = (f, j) : f ∈ K[t] irreducible monic, 1 ≤ j ≤ deg f}.

We can think of j as labelling which root of f we want. For each λ ∈ A, we
assign a variable tλ. We take

R = K[tλ : λ ∈ A]

to be the polynomial ring over K with variables tλ. This R contains all the
“roots” of the polynomials in K. However, we’ve got a bit too much. For example,
(if K = Q), in R,

√
3 and

√
3 + 1 would be put down as separate, unrelated

variables. So we want to quotient this R by something.
For every monic and irreducible f ∈ K[t], we define

f̃ = f −
deg f∏
j=1

(t− t(f,j)) ∈ R[t].

If we want the t(f,j) to be roots of f , then f̃ should vanish for all f . Denote the

coefficient of t` in f̃ by b(f,`). Then we want b(f,`) = 0 for all f, `.
To do so, let I ⊆ R be the ideal generated by all such coefficients. We now

want to quotient R by I. We first have to check that I 6= R.
Suppose not. So there are b(f1,`1), · · · , b(fr,`r) with g1, · · · , gr ∈ R such that

g1b(f1,`1) + · · ·+ grb(fr,`r) = 1. (∗)

We will attempt to reach a contradiction by constructing a homomorphism φ
that sends each b(fi,`i) to 0.

Let E be a splitting field of f1f2 · · · fr. So in E[t], for each i, we can write

fi =

deg fi∏
j=1

(t− αi,j).

Then we define a homomorphism φ : R→ E by{
φ(t(fi,j)) = αi,j

φ(tλ) = 0 otherwise

This induces a homomorphism φ̃ : R[t]→ E[t].
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Now apply

φ̃(f̃i) = φ̃(fi)−
deg fi∏
j=1

φ̃(t− t(fi,j))

= fi −
deg fi∏
j=1

(t− αi,j)

= 0

So φ(b(fi,`i)) = 0 as b(fi,`i) is a coefficient of fi.
Now we apply φ to (∗) to obtain

φ(g1b(f1,`1) + · · ·+ grb(fr,`r)) = φ(1).

But this is a contradiction since the left had side is 0 while the right is 1. Hence
we must have I 6= R.

We would like to quotient by I, but we have to be a bit more careful, since
the quotient need not be a field. Instead, pick a maximal ideal M containing
I, and consider L = R/M . Then L is a field. Moreover, since we couldn’t
have quotiented out anything in K (any ideal containing anything in K would
automatically contain all of R), this is a field extension L/K. We want to show
that L is an algebraic closure.

Now we show that L is algebraic over K. This should all work out smoothly,
since that’s how we constructed L. First we pick α ∈ L. Since L = R/M and R
is generated by the terms tλ, there is some (f1, j1), · · · , (fr, jr) such that

α ∈ K(t̄(fi,ji), · · · , t̄(fr,jr)).

So α is algebraic over K if each t̄(fi,ji) is algebraic over K. To show this, note

that f̃i = 0, since we’ve quotiented out each of its coefficients. So by definition,

0 = fi(t)−
deg fi∏
j=1

(t− t̄(fi,j)).

So fi(t̄(fi,ji)) = 0. So done.
Finally, we have to show that L is algebraically closed. Suppose L ⊆ E is a

finite (and hence algebraic) extension. We want to show that L = E.
Consider arbitrary β ∈ E. Then β is algebraic over L, say a root of

f ∈ L[t]. Since every coefficient of f can be found in some finite extension
K(t̄(fi,ji), · · · , t̄(fr,jr)), there is a finite extension F of K that contains all coeffi-
cients of f . Since F (β) is a finite extension of F , we know F (β) is a finite and
hence algebraic extension of K. In particular, β is algebraic in K.

Let Pβ be the minimal polynomial of β over K. Since all polynomials in
K split over L by construction (f(t) =

∏
(t − t̄(f,j))), its roots must in L. In

particular, β ∈ L. So L = E.

Theorem (Uniqueness of algebraic closure). Any field K has a unique algebraic
closure up to K-isomorphism.

21



2 Field extensions II Galois Theory

This is the same proof as the proof that the splitting field is unique — given
two algebraic closures, we take the largest subfield of the algebraic closures that
biject with each other. However, since there could be infinitely many subfields,
we have to apply Zorn’s lemma to obtain the maximal such subfield.

Proof. (sketch) Suppose L,L′ are both algebraic closures of K. Let

H = {(F,ψ) : K ⊆ F ⊆ L,ψ ∈ HomK(F,L′)}.

We define a partial order on H by (F1, ψ1) ≤ (F2, ψ2) if F1 ≤ F2 and ψ1 = ψ2|F1 .
We have to show that chains have upper bounds. Given a chain {(Fα, ψα)},

we define
F =

⋃
Fα, ψ(x) = ψα(x) for x ∈ Fα.

Then (F,ψ) ∈ H. Then applying Zorn’s lemma, there is a maximal element of
H, say (F,ψ).

Finally, we have to prove that F = L, and that ψ(L) = L′. Suppose F 6= L.
Then we attempt to produce a larger F̃ and a K-isomorphism F̃ → F̃ ′ ⊆ L′.
Since F 6= L, there is some α ∈ L \ F . Since L is an algebraic extension of K,
there is some irreducible g ∈ K[t] such that deg g > 0 and g(α) = 0.

Now there is an isomorphism F [t]/〈g〉 → F (α) defined by t̄ 7→ α. The
isomorphism ψ : F → F ′ then extends to an isomorphism µ : F [t] → F ′[t]
and thus to F[t]/〈g〉 → F ′[t]/〈µ(g)〉. Then if α′ is a root of µ(g), then we have
F ′[t]//〈µ(g)〉 ∼= F ′(α′). So this gives an isomorphism F (α) → F (α′). This
contradicts the maximality of φ.

By doing the argument the other way round, we must have ψ(L) = L′. So
done.

2.6 Separable extensions

Here we will define what it means for an extension to be separable. This is
done via defining separable polynomials, and then an extension is separable if
all minimal polynomials are separable.

At first, the definition of separability might seem absurd — surely every
polynomial should be separable. Indeed, polynomials that are not separable
tend to be weird, and our theories often break without separability. Hence it is
important to figure out when polynomials are separable, and when they are not.
Fortunately, we will end up with a result that tells us exactly when a polynomial
is not separable, and this is just a very small, specific class. In particular, in
fields of characteristic zero, all polynomials are separable.

Definition (Separable polynomial). Let K be a field, f ∈ K[t] non-zero, and
L a splitting field of f . For an irreducible f , we say it is separable if f has no
repeated roots, i.e. |Rootf (L)| = deg f . For a general polynomial f , we say it is
separable if all its irreducible factors in K[t] are separable.

It should be obvious from definition that if P is separable and Q | P , then Q
is also separable.

Note that some people instead define a separable polynomial to be one with
no repeated roots, so (x−2)2 over Q would not be separable under this definition.

Example. Any linear polynomial t− a (with a ∈ K) is separable.
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This is, however, not a very interesting example. To get to more interesting
examples, we need even more preparation.

Definition (Formal derivative). Let K be a field, f ∈ K[t]. (Formal) differenti-
ation the K-linear map K[t]→ K[t] defined by tn 7→ ntn−1.

The image of a polynomial f is the derivative of f , written f ′.

This is similar to how we differentiate real or complex polynomials (in case
that isn’t obvious).

The following lemma summarizes the properties of the derivative we need.

Lemma. Let K be a field, f, g ∈ K[t]. Then

(i) (f + g)′ = f ′ + g′, (fg)′ = fg′ + f ′g.

(ii) Assume f 6= 0 and L is a splitting field of f . Then f has a repeated root in
L if and only if f and f ′ have a common (non-constant) irreducible factor
in K[t] (if and only if f and f ′ have a common root in L).

This will allow us to show when irreducible polynomials are separable.

Proof.

(i) (f + g)′ = f ′ + g′ is true by linearity.

To show that (fg)′ = fg′ + f ′g, we use linearity to reduce to the case
where f = tn, g = tm. Then both sides are (n+m)tn+m−1. So this holds.

(ii) First assume that f has a repeated root. So let f = (t−α)2h ∈ L[t] where
α ∈ L. Then f ′ = 2(t − α)h + (t − α)2h′ = (t − α)(2h + (t − α)h′). So
f(α) = f ′(α) = 0. So f and f ′ have common roots. However, we want a
common irreducible factor in K[t], not L[t]. So we let Pα be the minimal
polynomial of α over K. Then Pα | f and Pα | f ′. So done.

Conversely, suppose e is a common irreducible factor of f and f ′ in K[t],
with deg e > 0. Pick α ∈ Roote(L). Then α ∈ Rootf (L) ∩ Rootf ′(L).

Since α is a root of f , we can write f = (t− α)q ∈ L[t] for some q. Then

f ′ = (t− α)q′ + q.

Since (t− α) | f ′, we must have (t− α) | q. So (t− α)2 | f .

Recall that the characteristic of a field charK is the minimum p such that
p · 1K = 0. If no such p exists, we say charK = 0. For example, Q has
characteristic 0 while Zp has characteristic p.

Corollary. Let K be a field, f ∈ K[t] non-zero irreducible. Then

(i) If charK = 0, then f is separable.

(ii) If charK = p > 0, then f is not separable iff deg f > 0 and f ∈ K[tp]. For
example, t2p + 3tp + 1 is not separable.
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Proof. By definition, for irreducible f , f is not separable iff f has a repeated
root. So by our previous lemma, f is not separable if and only if f and f ′

have a common irreducible factor of positive degree in K[t]. However, since f is
irreducible, its only factors are 1 and itself. So this can happen if and only if
f ′ = 0.

To make it more explicit, we can write

f = ant
n + · · ·+ a1t+ a0.

Then we can write
f ′ = nant

n−1 + · · ·+ a1.

Now f ′ = 0 if and only if all coefficients iai = 0 for all i.

(i) Suppose charK = 0, then if deg f = 0, then f is trivially separable. If
deg f > 0, then f is not separable iff f ′ = 0 iff iai = 0 for all i iff ai = 0
for i ≥ 1. But we cannot have a polynomial of positive degree with all its
coefficients zero (apart from the constant term). So f must be separable.

(ii) If deg f = 0, then f is trivially separable. So assume deg f > 0.

Then f is not separable ⇔ f ′ = 0 ⇔ iai = 0 for i ≥ 0 ⇔ ai = 0 for all
i ≥ 1 not multiples of p ⇔ f ∈ K[tp].

Using this, it should be easy to find lots of examples of separable polynomials.

Definition (Separable elements and extensions). Let K ⊆ L be an algebraic
field extension. We say α ∈ L is separable over K if Pα is separable, where Pα
is the minimal polynomial of α over K.

We say L is separable over K (or L ⊆ L is separable) if all α ∈ L are separable.

Example.

– The extensions Q ⊆ Q(
√

2) and R ⊆ C are separable because charQ =
charR = 0. So we can apply our previous corollary.

– Let L = Fp(s) be the field of rational functions in s over Fp (which is the
fraction field of Fp[s]), and K = Fp(sp). We have K ⊆ L, and L = K(s).
Since sp ∈ K, s is a root of tp − sp ∈ K[t]. So s is algebraic over K and
hence L is algebraic over K. In fact Ps = tp−sp is the minimal polynomial
of s over K.

Now tp−sp = (t−s)p since the field has characteristic p. So Roottp−sp(L) =
{s}. So Ps is not separable.

As mentioned in the beginning, separable extensions are nice, or at least
non-weird. One particular nice result about separable extensions is that all finite
separable extensions are simple, i.e. if K ⊆ L is finite separable, then L = K(α)
for some α ∈ L. This is what we will be working towards for the remaining of
the section.

Example. Consider Q ⊆ Q(
√

2,
√

3). This is a separable finite extension. So
we should be able to generate Q(

√
2,
√

3) by just one element, not just two. In
fact, we can use α =

√
2 +
√

3, since we have

α3 = 11
√

2 + 9
√

3 = 2
√

2 + 9α.

So since α3 ∈ Q(α), we know that
√

2 ∈ Q(α). So we also have
√

3 ∈ Q(α).
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In general, it is not easy to find an α that works, but we our later result will
show that such an α exists.

Before that, we will prove some results about the K-homomorphisms.

Lemma. Let L/F/K be finite extensions, and E/K be a field extension. Then
for all α ∈ L, we have

|HomK(F (α), E)| ≤ [F (α) : F ]|HomK(F,E)|.

Note that if Pα is the minimal polynomial of α over F , then [F (α) : F ] =
degPα. So we can interpret this intuitively as follows: for each ψ ∈ HomK(F,E),
we can obtain a K-homomorphism in HomK(F (α), E) by sending things in
F according to ψ, and then send α to any root of Pα. Then there are at
most [F (α) : F ] K-homomorphisms generated this way. Moreover, each K-
homomorphism in HomK(F (α), E) can be created this way. So we get this
result.

Proof. We show that for each ψ ∈ HomK(F,E), there are at most [F (α) : F ]
K-isomorphisms in HomK(F (α), E) that restrict to ψ in F . Since each K-
isomorphism in HomK(F (α), E) has to restrict to something, it follows that
there are at most [F (α) : F ]|HomK(F,E)| K-homomorphisms from F (α) to E.

Now let Pα be the minimal polynomial for α in F , and let ψ ∈ HomK(F,E).
To extend ψ to a morphism F (α)→ E, we need to decide where to send α. So
there should be some sort of correspondence

RootPα(E)←→ {φ ∈ HomK(F (α), E) : φ|F = ψ}.

Except that the previous sentence makes no sense, since Pα ∈ F [t] but we are
not told that F is a subfield of E. So we use our ψ to “move” our things to E.

We let M = ψ(F ) ⊆ E, and q ∈ M [t] be the image of Pα under the
homomorphism F [t]→M [t] induced by ψ. As we have previously shown, there
is a one-to-one correspondence

Rootq(E)←→ HomM (M [t]/〈q〉, E).

What we really want to show is the correspondence between Rootq(E) and the
K-homomorphisms F [t]/〈Pα〉 → E that restrict to ψ on F . Let’s ignore the
quotient for the moment and think: what does it mean for φ ∈ HomK(F [t], E) to
restrict to ψ on F? We know that any φ ∈ HomL(F [t], E) is uniquely determined
by the values it takes on F and t. Hence if φ|F = ψ, then our φ must send F
to ψ(F ) = M , and can send t to anything in E. This corresponds exactly to
the M -homomorphisms M [t]→ E that does nothing to M and sends t to that
“anything” in E.

The situation does not change when we put back the quotient. Changing
from M [t] → E to M [t]/〈q〉 → E just requires that the image of t must be
a root of q. On the other hand, using F [t]/〈Pα〉 instead of F [t] requires that
φ(Pα(t)) = 0. But we know that φ(Pα) = ψ(Pα) = q. So this just requires
q(t) = 0 as well. So we get the one-to-one correspondence

HomM (M [t]/〈q〉, E)←→ {φ ∈ HomK(F [t]/〈Pα〉, E) : φ|F = ψ}.

Since F [t]/〈Pα〉 = F (α), there is a one-to-one correspondence

Rootq(E)←→ {φ ∈ HomK(F (α), E) : φ|F = ψ}.

So done.
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Theorem. Let L/K and E/K be field extensions. Then

(i) |HomK(L,E)| ≤ [L : K]. In particular, |AutK(L)| ≤ [L : K].

(ii) If equality holds in (i), then for any intermediate field K ⊆ F ⊆ L:

(a) We also have |HomK(F,E)| = [F : K].

(b) The map HomK(L,E)→ HomK(F,E) by restriction is surjective.

Proof.

(i) We have previously shown we can find a sequence of field extensions

K = F0 ⊆ F1 ⊆ · · · ⊆ Fn = L

such that for each i, there is some αi such that Fi = Fi−1(αi). Then by
our previous lemma, we have

|HomK(L,E)| ≤ [Fn : Fn−1]|HomK(Fn−1, E)|
≤ [Fn : Fn−1][Fn−1 : Fn−2]|HomK(Fn−2, E)|
...

≤ [Fn : Fn−1][Fn−1 : Fn−2] · · · [F1 : F0]|HomK(F0, E)|
= [Fn : F0]

= [L : K]

(ii) (a) If equality holds in (i), then every inequality in the proof above has
to an equality. Instead of directly decomposing K ⊆ L as a chain
above, we can first decompose K ⊆ F , then F ⊆ L, then join them
together. Then we can assume that F = Fi for some i. Then we get

|HomK(L,E)| = [L : F ]|HomK(F,E)| = [L : K].

Then the tower law says

|HomK(F,E)| = [F : K].

(b) By the proof of the lemma, for each ψ ∈ HomK(F,E), we know that

{φ : HomK(L,E) : φ|F = ψ} ≤ [L : F ]. (∗)

As we know that

|HomK(F,E)| = [F : K], |HomK(L,E)| = [L : K]

we must have had equality in (∗), or else we won’t have enough
elements. So in particular {φ : HomK(L,E) : φ|F = ψ} ≥ 1. So the
map is surjective.

With this result, we can prove prove the following result characterizing
separable extensions.

Theorem. Let L/K be a finite field extension. Then the following are equivalent:
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(i) There is some extension E of K such that |HomK(L,E)| = [L : K].

(ii) L/K is separable.

(iii) L = K(α1, · · · , αn) such that Pαi , the minimal polynomial of αi over K,
is separable for all i.

(iv) L = K(α1, · · · , αn) such that Rαi , the minimal polynomial of αi over
K(α1, · · · , αi−1) is separable for all i for all i.

Proof.

– (i) ⇒ (ii): For all α ∈ L, if Pα is the minimal polynomial of α over K,
then since K(α) is a subfield of L, by our previous theorem, we have

|HomK(K(α), E)| = [K(α) : K].

We also know that |RootPα(E)| = |HomK(K(α), E)|, and that [K(α) :
K] = degPα. So we know that Pα has no repeated roots in any splitting
field. So Pα is a separable. So L/K is a separable extension.

– (ii) ⇒ (iii): Obvious from definition

– (iii) ⇒ (iv): Since Rαi is a minimal polynomial in K(α1, · · · , αi−1), we
know that Rαi | Pαi . So Rαi is separable as Pαi is separable.

– (iv) ⇒ (i): Let E be the splitting field of Pα1
, · · · , Pαn . We do induction

on n to show that this satisfies the properties we want. If n = 1, then
L = K(α1). Then we have

|HomK(L,E)| = |RootPαi (E)| = degPα1 = [K(α1) : K] = [L : K].

We now induct on n. So we can assume that (iv) ⇒ (i) holds for smaller
number of generators. For convenience, we write Ki = K(α1, · · · , αi).
Then we have

|HomK(Kn−1, E)| = [Kn−1 : K].

We also know that

|HomK(Kn, E)| ≤ [Kn : Kn−1]|HomK(Kn−1, E)|.

What we actually want is equality. We now re-do (parts of) the proof of
this result, and see that separability guarantees that equality holds. If
we pick ψ ∈ HomK(Kn−1, E), then there is a one-to-one correspondence
between {φ ∈ HomK(Kn, E) : φ|Kn−1

= ψ} and Rootq(E), where q ∈M [t]
is defined as the image of Rαn under Kn−1[t]→M [t], and M is the image
of ψ.

Since Pαn ∈ K[t] and Rαn | Pαn , then q | Pαn . So q splits over E. By
separability assumption , we get that

|Rootq(E)| = deg q = degRαn = [Kn : Kn−1].

Hence we know that

|HomK(L,E)| = [Kn : Kn−1]|HomK(Kn−1, E)|
= [Kn : Kn−1][Kn−1 : K]

= [Kn : K].

So done.
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Before we finally get to the primitive element theorem, we prove the following
lemma. This will enable us to prove the trivial case of the primitive element
theorem, and will also be very useful later on.

Lemma. Let L be a field, L∗ \ {0} be the multiplicative group of L. If G is a
finite subgroup of L∗, then G is cyclic.

Proof. Since L∗ is abelian, G is also abelian. Then by the structure theorem on
finite abelian groups,

G ∼=
Z
〈n1〉

× · · · × Z
〈nr〉

,

for some ni ∈ N. Let m be the least common multiple of n1, · · · , nr, and let
f = tm − 1.

If α ∈ G, then αm = 1. So f(α) = 0 for all α ∈ G. Therefore

|G| = n1 · · ·nr ≤ |Rootf (L)| ≤ deg f = m.

Since m is the least common multiple of n1, · · · , nr, we must have m = n1 · · ·nr
and thus (ni, nj) = 1 for all i 6= j. Then by the Chinese remainder theorem, we
have

G ∼=
Z

〈n1〉
× · · · × Z

〈nr〉
=

Z
〈n1 · · ·nr〉

.

So G is cyclic.

We now come to the main theorem of the lecture:

Theorem (Primitive element theorem). Assume L/K is a finite and separable
extension. Then L/K is simple, i.e. there is some α ∈ L such that L = K(α).

Proof. At some point in our proof, we will require that L is infinite. So we
first do the finite case first. If K is finite, then L is also finite, which in turns
implies L∗ is finite too. So by the lemma, L∗ is a cyclic group (since it is a finite
subgroup of itself). So there is some α ∈ L∗ such that every element in L∗ is a
power of α. So L = K(α).

So focus on the case where K is infinite. Also, assume K 6= L. Then since
L/K is a finite extension, there is some intermediate field K ⊆ F ( L such that
L = F (β) for some β. Now L/K is separable. So F/K is also separable, and
[F : K] < [L : K]. Then by induction on degree of extension, we can assume
F/K is simple. In other words, there is some λ ∈ F such that F = K(λ). Now
L = K(λ, β). In the rest of the proof, we will try to replace the two generators
λ, β with just a single generator.

Unsurprisingly, the generator of L will be chosen to be a linear combination
of β and λ. We set

α = β + aλ

for some a ∈ K to be chosen later. We will show that K(α) = L. Actually,
almost any choice of a will do, but at the end of the proof, we will see which
ones are the bad ones.

Let Pβ and Pλ be the minimal polynomial of β and λ over K respectively.
Consider the polynomial f = Pβ(α− at) ∈ K(α)[t]. Then we have

f(λ) = Pβ(α− aλ) = Pβ(β) = 0.
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On the other hand, Pλ(λ) = 0. So λ is a common root of Pλ and f .
We now want to pick an a such that λ is the only common root of f and

Pλ (in E). If so, then the gcd of f and Pα in K(α) must only have λ as a root.
But since Pλ is separable, it has no double roots. So the gcd must be t− λ. In
particular, we must have λ ∈ K(α). Since α = β + aλ, it follows that β ∈ K(α)
as well, and so K(α) = L.

Thus, it remains to choose an a such that there are no other common roots.
We work in a splitting field of PβPλ, and write

Pβ = (t− β1) · · · (t− βm)

Pλ = (t− λ1) · · · (t− λn).

We wlog β1 = β and λ1 = λ.
Now suppose θ is a common root of f and Pλ. Then{

f(θ) = 0

Pλ(θ) = 0
⇒

{
Pβ(α− aθ) = 0

Pλ(θ) = 0
⇒

{
α− aθ = βi

θ = λj

for some i, j. Then we know that

α = βi + aλj .

However, by definition, we also know that

α = β + aλ

Now we see how we need to choose a. We need to choose a such that the elements

β + aλ 6= βi + aλj

for all i, j. But if they were equal, then we have

a =
λ− λj
βi − β

,

and there are only finitely many elements of this form. So we just have to pick
an a not in this list.

Corollary. Any finite extension L/K of field of characteristic 0 is simple, i.e.
L = K(α) for some α ∈ L.

Proof. This follows from the fact that all extensions of fields of characteristic
zero are separable.

We have previously seen that Q(
√

2,
√

3)/Q is a simple extension, but that
is of course true from this theorem. A more interesting example would be one in
which this fails. We will need a field with non-zero characteristic.

Example. Let L = Fp(s, u), the fraction field of Fp[s, u]. Let K = Fp(sp, up).
We have L/K. We want to show this is not simple.

If α ∈ L, then αp ∈ K. So α is a root of tp − αp ∈ K[t]. Thus the minimal
polynomial Pα has degree at most p. So [K(α) : K] = degPα ≤ p. On the other
hand, we have [L : K] = p2, since {siuj : 0 ≤ i, j < p} is a basis. So for any α,
we have K(α) 6= L. So L/K is not a simple extension. This then implies L/K
is not separable.
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At this point, one might suspect that all fields with positive characteristic
are not separable. This is not true by considering a rather silly example.

Example. Consider K = F2 and L = F2[s]/〈s2 + s+ 1〉. We can check manually
that s2 + s+ 1 has no roots and hence irreducible. So L is a field. So L/F2 is a
finite extension. Note that L only has 4 elements.

Now if α ∈ L \ F2, and Pα is the minimal polynomial of α over F2, then
Pα | t2 + t+ 1. So Pα is separable as a polynomial. So L/F2 is separable.

In fact, we have

Proposition. Let L/K be an extension of finite fields. Then the extension is
separable.

Proof. Let the characteristic of the fields be p. Suppose the extension were not
separable. Then there is some non-separable element α ∈ L. Then its minimal
polynomial must be of the form Pα =

∑
ait

pi.
Now note that the map K → K given by x 7→ xp is injective, hence surjective.

So we can write ai = bpi for all i. Then we have

Pα =
∑

ait
pi =

(∑
bit

i
)p
,

and so Pα is not irreducible, which is a contradiction.

2.7 Normal extensions

We are almost there. We will now move on to study normal extensions. Normal
extensions are very closely related to Galois extensions. In fact, we will show
that if an extension is normal and separable, then it is Galois. The advantage
of introducing the idea of normality is that normality is a much more concrete
definition to work with. It is much easier to check if an extension is normal than
to check if |AutK(L)| = [K : L]. In particular, we will shortly prove that the
splitting field of any polynomial is normal.

This is an important result, since we are going to use the splitting field to
study the roots of a polynomial, and since we mostly care about polynomials
over Q, this means all these splitting fields are automatically Galois extensions
of Q.

It is not immediately obvious why these extensions are called “normal” (just
like most other names in Galois theory). We will later see that normal extensions
are extensions that correspond to normal subgroups, in some precise sense given
by the fundamental theorem of Galois theory.

Definition (Normal extension). Let K ⊆ L be an algebraic extension. We say
L/K is normal if for all α ∈ L, the minimal polynomial of α over K splits over
L.

In other words, given any minimal polynomial, L should have all its roots.

Example. The extension Q( 3
√

2)/Q is not normal since the minimal polynomial
t3 − 2 does not split over Q( 3

√
2).

In some sense, extensions that are not “normal” are missing something. This
is somewhat similar to how Galois extensions work. Before we go deeper into
this, we need a lemma.
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Lemma. Let L/F/K be finite extensions, and K̄ is the algebraic closure of K.
Then any ψ ∈ HomK(F, K̄) extends to some φ ∈ HomK(L, K̄).

Proof. Let ψ ∈ HomK(F, K̄). If F = L, then the statement is trivial. So assume
L 6= F .

Pick α ∈ L \ F . Let qα ∈ F [t] be the minimal polynomial of α over F .
Consider ψ(qα) ∈ K̄[t]. Let β be any root of qα, which exists since K̄ is
algebraically closed. Then as before, we can extend ψ to F (α) by sending α to
β. More explicitly, we send

N∑
i=0

aiα
i 7→

∑
ψ(ai)β

i,

which is well-defined since any polynomial relation satisfied by α in F is also
satisfied by β.

Repeat this process finitely many times to get some element in HomK(L, K̄).

We will use this lemma to characterize normal extensions.

Theorem. Let L/K be a finite extension. Then L/K is a normal extension if
and only if L is the splitting field of some f ∈ K[t].

Proof. Suppose L/K is normal. Since L is finite, let L = K(α1, · · · , αn) for some
αi ∈ L. Let Pαi be the minimal polynomial of αi over K. Take f = Pα1 · · ·Pαn .
Since L/K is normal, each Pαi splits over L. So f splits over L, and L is a
splitting field of f .

For the other direction, suppose that L is the splitting field of some f ∈ K[t].
First we wlog assume L ⊆ K̄. This is possible since the natural injection K ↪→ K̄
extends to some φ : L→ K̄ by our previous lemma, and we can replace L with
φ(L).

Now suppose β ∈ L, and let Pβ be its minimal polynomial. Let β′ be another
root. We want to show it lives in L.

Now consider K(β). By the proof of the lemma, we can produce an embedding
ι : K(β) → K̄ that sends β to β′. By the lemma again, this extends to an
embedding of L into K̄. But any such embedding must send a root of f to a
root of f . So it must send L to L. In particular, ι(β) = β′ ∈ L. So Pβ splits
over L.

This allows us to identify normal extensions easily. The following theorem
then allows us to identify Galois extensions using this convenient tool.

Theorem. Let L/K be a finite extension. Then the following are equivalent:

(i) L/K is a Galois extension.

(ii) L/K is separable and normal.

(iii) L = K(α1, · · · , αn) and Pαi , the minimal polynomial of αi over K, is
separable and splits over L for all i.

Proof.
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– (i) ⇒ (ii): Suppose L/K is a Galois extension. Then by definition, this
means

|HomK(L,L)| = |AutK(L)| = [L : K].

To show that L/K is separable, recall that we proved that an extension is
separable if and only if there is some E such that |HomK(L,E)| = [L : K].
In this case, just pick E = L. Then we know that the extension is separable.

To check normality, let α ∈ L, and let Pα be its minimal polynomial over
K. We know that

|RootPα(L)| = |HomK(K[t]/〈Pα〉, L)| = |HomK(K(α), L)|.

But since |HomK(L,L)| = [L : K] and K(α) is a subfield of L, this implies

|HomK(K(α), L)| = [K(α) : K] = degPα.

Hence we know that
|RootPα(L)| = degPα.

So Pα splits over L.

– (ii) ⇒ (iii): Just pick α1, · · · , αn such that L = K(α1, · · · , αn). Then
these polynomials are separable since the extension is separable, and they
split since L/K is normal. In fact, by the primitive element theorem, we
can pick these such that n = 1.

– (iii) ⇒ (i): Since L = K(α1, · · · , αn) and the minimal polynomials Pαi
over K are separable, by a previous theorem, there are some extension E
of K such that

|HomK(L,E)| = [L : K].

To simplify notation, we first replace L with its image inside E under some
K-homomorphism L→ E, which exists since |HomK(L,E)| = [L : K] > 0.
So we can assume L ⊆ E.

We now claim that the inclusion

HomK(L,L)→ HomK(L,E)

is a surjection, hence a bijection. Indeed, if φ : L→ E, then φ takes αi to
φ(αi), which is a root of Pαi . Since Pαi splits over L, we know φ(αi) ∈ L
for all i. Since L is generated by these αi, it follows that φ(L) ⊆ L.

Thus, we have

[L : K] = |HomK(L,E)| = |HomK(L,L)|,

and the extension is Galois.

From this, it follows that if L/K is Galois, and we have an intermediate field
K ⊆ F ⊆ L, then L/F is also Galois.

Corollary. Let K be a field and f ∈ K[t] be a separable polynomial. Then the
splitting field of f is Galois.

This is one of the most crucial examples.
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2.8 The fundamental theorem of Galois theory

Finally, we can get to the fundamental theorem of Galois theory. Roughly, given
a Galois extension K ⊆ L, the fundamental theorem tell us there is a one-to-one
correspondence between intermediate field extensions K ⊆ F ⊆ L and subgroups
of the automorphism group Gal(L/K).

Given an intermediate field F , we can obtain a subgroup of Gal(L/K) by
looking at the automorphisms that fix F . To go the other way round, given a
subgroup H ≤ Gal(L/K), we can obtain a corresponding field by looking at the
field of elements that are fixed by everything in H. This is known as the fixed
field, and can in general be defined even for non-Galois extensions.

Definition (Fixed field). Let L/K be a field extension, H ≤ AutK(L) a
subgroup. We define the fixed field of H as

LH = {α ∈ L : φ(α) = α for all φ ∈ H}.

It is easy to see that LH is an intermediate field K ⊆ LH ⊆ L.

Before we get to the fundamental theorem, we first prove Artin’s lemma.
This in fact proves part of the results in the fundamental theorem, but is also
useful on its own right.

Lemma (Artin’s lemma). Let L/K be a field extension and H ≤ AutK(L) a
finite subgroup. Then L/LH is a Galois extension with AutLH (L) = H.

Note that we are not assuming that L/K is Galois, or even finite!

Proof. Pick any α ∈ L. We set

{α1, · · · , αn} = {φ(α) : φ ∈ H},

where αi are distinct. Here we are allowing for the possibility that φ(α) = ψ(α)
for some distinct φ, ψ ∈ H.

By definition, we clearly have n < |H|. Let

f =

n∏
1

(t− αi) ∈ L[t].

We know that any φ ∈ H gives an homomorphism L[t] → L[t], and any such
map fixes f because φ just permutes the αi. Thus, the coefficients of f are in
LH , and thus f ∈ LH [t].

Since id ∈ H, we know that f(α) = 0. So α is algebraic over LH . Moreover,
if qα is the minimal polynomial of α over LH , then qα | f in LH [t]. Hence

[LH(α) : LH ] = deg qα ≤ deg f ≤ |H|.

Further, we know that f has distinct roots. So qα is separable, and so α is
separable. So it follows that L/LH is a separable extension.

We next show that L/LH is simple. This doesn’t immediately follow from
the primitive element theorem, because we don’t know it is a finite extension
yet, but we can still apply the theorem cleverly.

Pick α ∈ L such that [LH(α) : LH ] is maximal. This is possible since
[LH(α) : LH ] is bounded by |H|. The claim is that L = LH(α).
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We pick an arbitrary β ∈ L, and will show that this is in LH(α). By the
above arguments, LH ⊆ LH(α, β) is a finite separable extension. So by the
primitive element theorem, there is some λ ∈ L such that LH(α, β) = LH(λ).
Note that we must have

[LH(λ) : LH ] ≥ [LH(α) : LH ].

By maximality of [LH(α) : LH ], we must have equality. So LH(λ) = LH(α). So
β ∈ LH(α). So L = LH(α).

Finally, we show it is a Galois extension. Let L = LH(α). Then

[L : LH ] = [LH(α) : LH ] ≤ |H| ≤ |AutLH (L)|

Recall that we have previously shown that for any extension L/LH , we have
|AutLH (L)| ≤ [L : LH ]. Hence we must have equality above. So

[L : LH ] = |AutLH (L)|.

So the extension is Galois. Also, since we know that H ⊆ AutLH (L), we must
have H = AutLH (L).

Theorem. Let L/K be a finite field extension. Then L/K is Galois if and only
if LH = K, where H = AutK(L).

Proof. (⇒) Suppose L/K is a Galois extension. We want to show LH = K.
Using Artin’s lemma (and the definition of H), we have

[L : K] = |AutK(L)| = |H| = |AutLH (L)| = [L : LH ]

So [L : K] = [L : LH ]. So we must have LH = K.
(⇐) By the lemma, K = LH ⊆ L is Galois.

This is an important theorem. Given a Galois extension L/K, this gives us
a very useful test of when elements of α ∈ L are in fact in K. We will use this a
lot.

Finally, we get to the fundamental theorem.

Theorem (Fundamental theorem of Galois theory). Assume L/K is a (finite)
Galois extension. Then

(i) There is a one-to-one correspondence

H ≤ AutK(L)←→ intermediate fields K ⊆ F ⊆ L.

This is given by the maps H 7→ LH and F 7→ AutF (L) respectively.
Moreover, |AutK(L) : H| = [LH : K].

(ii) H ≤ AutK(L) is normal (as a subgroup) if and only if LH/K is a normal
extension if and only if LH/K is a Galois extension.

(iii) If H C AutK(L), then the map AutK(L)→ AutK(LH) by the restriction
map is well-defined and surjective with kernel isomorphic to H, i.e.

AutK(L)

H
= AutK(LH).
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Proof. Note that since L/K is a Galois extension, we know

|AutK(L)| = |HomK(L,L)| = [L : K],

By a previous theorem, for any intermediate field K ⊆ F ⊆ L, we know
|HomK(F,L)| = [F : K] and the restriction map HomK(L,L) → HomK(F,L)
is surjective.

(i) The maps are already well-defined, so we just have to show that the maps
are inverses to each other. By Artin’s lemma, we know that H = AutLH (L),
and since L/F is a Galois extension, the previous theorem tells that
LAutF (L) = F . So they are indeed inverses. The formula relating the index
and the degree follows from Artin’s lemma.

(ii) Note that for every φ ∈ AutK(L), we have that LφHφ
−1

= φLH , since

α ∈ LφHφ−1

iff φ(ψ(φ−1(α))) = α for all ψ ∈ H iff ψ(φ−1(α)) = φ−1(α)
for all ψ ∈ H iff α ∈ φLH . Hence H is a normal subgroup if and only if

φ(LH) = LH for all φ ∈ AutK(L). (∗)

Assume (∗). We want to first show that HomK(LH , LH) = HomK(LH , L).
Let ψ ∈ HomK(LH , L). Then by the surjectivity of the restriction map
HomK(L,L) → HomK(LH , L), ψ must be the restriction of some ψ̃ ∈
HomK(L,L). So ψ̃ fixes LH by (∗). So ψ sends LH to LH . So ψ ∈
HomK(LH , LH). So we have

|AutK(LH)| = |HomK(LH , LH)| = |HomK(LH , L)| = [LH : K].

So LH/K is Galois, and hence normal.

Now suppose LH/K is a normal extension. We want to show this implies
(∗). Pick any α ∈ LH and φ ∈ AutK(L). Let Pα be the minimal polynomial
of α over K. So φ(α) is a root of Pα (since φ fixes Pα ∈ K, and hence
maps roots to roots). Since LH/K is normal, Pα splits over LH . This
implies that φ(α) ∈ LH . So φ(LH) = LH .

Hence, H is a normal subgroup if and only if φ(LH) = LH if and only if
LH/K is a Galois extension.

(iii) Suppose H is normal. We know that AutK(L) = HomK(L,L) restricts
to HomK(LH , L) surjectively. To show that we in fact have restriction
to AutK(LH), by the proof above, we know that φ(LH) = LH for all
φ ∈ AutK(LH). So this does restrict to an automorphism of LH . In other
words, the map AutK(L) → AutK(LH) is well-defined. It is easy to see
this is a group homomorphism.

Finally, we have to calculate the kernel of this homomorphism. Let E
be the kernel. Then by definition, E ⊇ H. So it suffices to show that
|E| = |H|. By surjectivity of the map and the first isomorphism theorem
of groups, we have

|AutK(L)|
|E|

= |AutK(LH)| = [LH : K] =
[L : K]

[L : LH ]
=
|AutK(L)|
|H|

,

noting that LH/K and L/K are both Galois extensions, and |H| = [LH :
K] by Artin’s lemma. So |E| = |H|. So we must have E = H.
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Example. Let p be an odd prime, and ζp be a primitive pth root of unity. Given
a (square-free) integer n, when is

√
n in Q(ζp)? We know that

√
n ∈ Q(ζp) if and

only if Q(
√
n) ⊆ Q(ζp). Moreover, [Q(

√
n) : Q] = 2, i.e. Q(

√
n) is a quadratic

extension.
We will later show that Gal(Q(ζp)/Q) ∼= (Z/pZ)∗ ∼= Cp−1. Then by the

fundamental theorem of Galois theory, quadratic extensions contained in Q(ζp)
correspond to index 2-subgroups of Gal(Q(ζp)/Q). By general group theory,
there is exactly one such subgroup. So there is exactly one square-free n such
that Q(

√
n) ⊆ Q(ζp) (since all quadratic extensions are of the form Q(

√
n)),

given by the fixed field of the index 2 subgroup of (Z/pZ)∗.
Now we shall try to find some square root lying in Q(ζp). We will not fully

justify the derivation, since we can just square the resulting number to see that
it is correct. We know the general element of Q(ζp) looks like

p−1∑
k=0

ckζ
k
p .

We know Gal(Q(ζp)/Q) ∼= (Z/pZ)∗ acts by sending ζp 7→ ζnp for each n ∈ (Z/pZ)∗,
and the index 2 subgroup consists of the quadratic residues. Thus, if an element
is fixed under the action of the quadratic residues, the quadratic residue powers
all have the same coefficient, and similarly for the non-residue powers.

If we wanted this to be a square root, then the action of the remaining
elements of Gal(Q(ζp)/Q) should negate this object. Since these elements swap
the residues and the non-residues, we would want to have something like ck = 1 if
k is a quadratic residue, and −1 if it is a non-residue, which is just the Legendre
symbol! So we are led to try to square

τ =

p−1∑
k=1

(
k

p

)
ζkp .

It is an exercise in the Number Theory example sheet to show that the square
of this is in fact

τ2 =

(
−1

p

)
p.

So we have
√
p ∈ Q(ζp) if p ≡ 1 (mod 4), and

√
−p ∈ Q(ζp) if p ≡ 3 (mod 4).

2.9 Finite fields

We’ll have a slight digression and look at finite fields. We adopt the notation
where p is always a prime number, and Zp = Z/〈p〉. It turns out finite fields are
rather simple, as described in the lemma below:

Lemma. Let K be a finite field with q = |K| element. Then

(i) q = pd for some d ∈ N, where p = charK > 0.

(ii) Let f = tq − t. Then f(α) = 0 for all α ∈ K. Moreover, K is the splitting
field of f over Fp.

This means that a finite field is completely determined by the number of
elements.
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Proof.

(i) Consider the set {m ·1K}m∈Z, where 1K is the unit in K and m· represents
repeated addition. We can identify this with Fp. So we have the extension
Fp ⊆ K. Let d = [K : Fp]. Then q = |K| = pd.

(ii) Note that K∗ = K \ {0} is a finite multiplicative group with order q − 1.
Then by Lagrange’s theorem, αq−1 = 1 for all α ∈ K∗. So αq − α = 0 for
all α 6= 0. The α = 0 case is trivial.

Now every element in K is a root of f . So we need to check that all roots
of f are in K. Note that the derivative f ′ = qtq−1 − 1 = −1 (since q is a
power of the characteristic). So f ′(α) = −1 6= 0 for all α ∈ K. So f and
f ′ have no common roots. So f has no repeated roots. So K contains q
distinct roots of f . So K is a splitting field.

Lemma. Let q = pd, q′ = pd
′
, where d, d′ ∈ N. Then

(i) There is a finite field K with exactly q elements, which is unique up to
isomorphism. We write this as Fq.

(ii) We can embed Fq ⊆ Fq′ iff d | d′.

Proof.

(i) Let f = tq − t, and let K be a splitting field of f over Fp. Let L =
Rootf (K). The objective is to show that L = K. Then we will have
|K| = |L| = |Rootf (K)| = deg f = q, because the proof of the previous
lemma shows that f has no repeated roots.

To show that L = K, by definition, we have L ⊆ K. So we need to show
every element in K is in L. We do so by showing that L itself is a field.
Then since L contains all the roots of f and is a subfield of the splitting
field K, we must have K = L.

It is straightforward to show that L is a field: if α, β ∈ L, then

(α+ β)q = αq + βq = α+ β.

So α+ β ∈ L. Similarly, we have

(αβ)q = αqβq = αβ.

So αβ ∈ L. Also, we have

(α−1)q = (αq)−1 = α−1.

So α−1 ∈ L. So L is in fact a field.

Since any field of size q is a splitting field of f , and splitting fields are
unique to isomorphism, we know that K is unique.

(ii) Suppose Fq ⊆ Fq′ . Then let n = [Fq′ : Fq]. So q′ = qn. So d′ = nd. So
d | d′.
On the other hand, suppose d | d′. Let d′ = dn. We let f = tq

′ − t. Then
for any α ∈ Fq, we have

f(α) = αq
′
− α = αq

n

− α = (· · · ((αq)q)q · · · )q − α = α− α = 0.
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Since Fq′ is the splitting field of f , all roots of f are in Fq′ . So we know
that Fq ⊆ F′q.

Note that if F̄p is the algebraic closure of Fp, then Fq ⊆ F̄p for every q = pd.
We then have ⋃

k∈N
Fpk = F̄p,

because any α ∈ F̄p is algebraic over Fp, and so belongs to some Fq.

Definition. Consider the extension Fqn/Fq, where q is a power of p. The
Frobenius Frq : Fqn → Fqn is defined by α 7→ αq.

This is a homomorphism precisely because the field is of characteristic zero.
In fact, Frq ∈ AutFq (Fqn), since αq = α for all α ∈ Fq.

The following two theorems tells us why we care about the Frobenius.

Theorem. Consider Fqn/Fq. Then Frq is an element of order n as an element
of AutFq (Fqn).

Proof. For all α ∈ Fqn , we have Frnq (α) = αq
n

= α. So the order of Frq divides
n.

If m | n, then the set

{α ∈ Fqn : Frmq (α) = α} = {α ∈ Fqn : αq
m

= α} = Fqm .

So if m is the order of Frq, then Fqm = Fqn . So m = n.

Theorem. The extension Fqn/Fq is Galois with Galois group Gal(Fqn/Fq) =
AutFq (Fqn) ∼= Z/nZ, generated by Frq.

Proof. The multiplicative group F∗qn = Fqn \ {0} is finite. We have previously
seen that multiplicative groups of finite fields are cyclic. So let α be a generator
of this group. Then Fqn = Fq(α). Let Pα be the minimal polynomial of α over
Fq. Then since AutFq (Fqn) has an element of order n, we get

n ≤ |AutFq (Fqn)| = |HomFq (Fq(α),Fqn)|.

Since Fq(α) is generated by one element, we know

|HomFq (Fq(α),Fqn)| = |RootPα(Fqn)|

So we have
n ≤ |RootPα(Fqn)| ≤ degPα = [Fqn : Fq] = n.

So we know that
|AutFq (Fqn)| = [Fqn : Fq] = n.

So Fqn/Fq is a Galois extension.
Since |AutFq (Fqn)|, it has to be generated by Frq, since this has order n. In

particular, this group is cyclic.

We see that finite fields are rather nice — there is exactly one field of order
pd for each d and prime p, and these are all of the finite fields. All extensions
are Galois and the Galois group is a simple cyclic group.
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Example. Consider F2/F2. We can write

F2 = {0, 1} ⊆ F4 = {0, 1, α, α2},

where α is a generator of F∗4. Define φ ∈ AutF2
(F4) by φ(α) = α2. Then

AutF2(F4) = {id, φ}

since it has order 2.

Note that we can also define the Frobenius Frp : F̄p → F̄p, where α 7→ αp.

Then Fpd is the elements of F̄p fixed by Frdp. So we can recover this subfield by
just looking at the Frobenius.
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3 Solutions to polynomial equations

We have now proved the fundamental theorem of Galois theory, and this gives a
one-to-one correspondence between (intermediate) field extensions and subgroups
of the Galois group. That is our first goal achieved. Our next big goal is to use
this Galois correspondence to show that, in general, polynomials of degree 5 or
more cannot be solved by radicals.

First of all, we want to make this notion of “solving by radicals” precise.
We all know what this means if we are working over Q, but we need to be very
precise when working with arbitrary fields.

For example, we know that the polynomial f = t3 − 5 ∈ Q[t] can be “solved
by radicals”. In this case, we have

Rootf (C) = { 3
√

5, µ
3
√

5, µ2 3
√

5},

where µ3 = 1, µ 6= 1. In general fields, we want to properly define the analogues
of µ and 3

√
5.

These will correspond to two different concepts. The first is cyclotomic
extensions, where the extension adds the analogues of µ, and the second is
Kummer extensions, where we add things like 3

√
5.

Then, we would say a polynomial is soluble by radicals if the splitting field
of the polynomial can be obtained by repeatedly taking cyclotomic and Kummer
extensions.

3.1 Cyclotomic extensions

Definition (Cyclotomic extension). For a field K, we define the nth cyclotomic
extension to be the splitting field of tn − 1.

Note that if K is a field and L is the nth cyclotomic extension, then
Roottn−1(L) is a subgroup of multiplicative group L∗ = L \ {0}. Since this is a
finite subgroup of L∗, it is a cyclic group.

Moreover, if charK = 0 or 0 < charK - n, then (tn − 1)′ = ntn−1 and this
has no common roots with tn − 1. So tn − 1 has no repeated roots. In other
words, tn − 1 has n distinct roots. So as a group,

Roottn−1(L) ∼= Z/nZ.

In particular, this group has at least one element µ of order n.

Definition (Primitive root of unity). The nth primitive root of unity is an
element of order n in Roottn−1(L).

These elements correspond to the elements of the multiplicative group of
units in Z/nZ, written (Z/nZ)×.

The next theorem tells us some interesting information about these roots
and some related polynomials.

Theorem. For each d ∈ N, there exists a dth cyclotomic monic polynomial
φd ∈ Z[t] satisfying:

(i) For each n ∈ N, we have

tn − 1 =
∏
d|n

φd.
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(ii) Assume charK = 0 or 0 < charK - n. Then

Rootφn(L) = {nth primitive roots of unity}.

Note that here we have an abuse of notation, since φn is a polynomial in
Z[t], not K[t], but we can just use the canonical map Z[t]→ K[t] mapping
1 to 1 and t to t.

Proof. We do induction on n to construct φn. When n = 1, let φ1 = t− 1. Then
(i) and (ii) hold in this case, trivially.

Assume now that (i) and (ii) hold for smaller values of n. Let

f =
∏

d|n,d<n

φd.

By induction, f ∈ Z[t]. Moreover, if d | n and d < n, then φd | (tn − 1) because
(td − 1) | (tn − 1). We would like to say that f also divides tn − 1. However, we
have to be careful, since to make this conclusion, we need to show that φd and
φd′ have no common roots for distinct d, d′ | n (and d, , d′ < n).

Indeed, by induction, φd and φ′d have no common roots because

Rootφd(L) = {dth primitive roots of unity},
Rootφd′ (L) = {d′th primitive roots of unity},

and these two sets are disjoint (or else the roots would not be primitive).
Therefore φd and φd′ have no common irreducible factors. Hence f | tn − 1. So
we can write

tn − 1 = fφn,

where φn ∈ Q[t]. Since f is monic, φn has integer coefficients. So indeed
φn ∈ Z[t]. So the first part is proven.

To prove the second part, note that by induction,

Rootf (L) = {non-primitive nth roots of unit},

since all nth roots of unity are dth primitive roots of unity for some smaller d.
Since fφn = tn − 1, φn contains the remaining, primitive nth roots of unit.

Since tn − 1 has no repeated roots, we know that φn does not contain any extra
roots. So

Rootφn(L) = {nth primitive roots of unity}.

These φn are what we use to “build up” the polynomials tn − 1. These
will later serve as a technical tool to characterize the Galois group of the nth
cyclotomic extension of Q.

Before we an reach that, we first take a tiny step, and prove something that
works for arbitrary fields first.

Theorem. Let K be a field with charK = 0 or 0 < charK - n. Let L be the
nth cyclotomic extension of K. Then L/K is a Galois extension, and there is an
injective homomorphism θ : Gal(L/K)→ (Z/nZ)×.

In addition, every irreducible factor of φn (in K[t]) has degree [L : K].
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The important thing about our theorem is the homomorphism

θ : Gal(L/K)→ (Z/nZ)×.

In general, we don’t necessarily know much about Gal(L/K), but the group
(Z/nZ)× is well-understood. In particular, we now know that Gal(L/K) is
abelian.

Proof. Let µ be an nth primitive root of unity. Then

Roottn−1(L) = {1, µ, µ2, · · · , µn−1}

is a cyclic group of order n generated by µ. We first construct the homomorphism
θ : AutK(L) → (Z/nZ)× as follows: for each φ ∈ AutK(L), φ is completely
determined by the value of φ(µ) since L = K(µ). Since φ is an automorphism, it
must take an nth primitive root of unity to another nth primitive root of unity.
So φ(µ) = µi for some i such that (i, n) = 1. Now let θ(φ) = ī ∈ (Z/nZ)×. Note
that this is well-defined since if µi = µj , then i− j has to be a multiple of n.

Now it is easy to see that if φ, ψ ∈ AutK(L) are given by φ(µ) = µi, and
ψ(µ) = µj , then φ ◦ ψ(µ) = φ(µj) = µij . So θ(φψ) = īj = θ(φ)θ(ψ). So θ is a
group homomorphism.

Now we check that θ is injective. If θ(φ) = 1̄ (note that (Z/nZ)× is a
multiplicative group with unit 1), then φ(µ) = µ. So φ = id.

Now we show that L/K is Galois. Recall that L = K(µ), and let Pµ be
a minimal polynomial of µ over K. Since µ is a root of tn − 1, we know that
Pµ | tn − 1. Since tn − 1 has no repeated roots, Pµ has no repeated roots. So Pµ
is separable. Moreover, Pµ splits over L as tn − 1 splits over L. So the extension
is separable and normal, and hence Galois.

Applying the previous theorem, each irreducible factor g of φn is a minimal
polynomial of some nth primitive root of unity, say λ. Then L = K(λ). So

deg g = degPλ = [K(λ) : K] = [L : K].

Example. We can calculate the following in Q[t].

(i) φ1 = t− 1.

(ii) φ2 = t+ 1 since t2 − 1 = φ1φ2.

(iii) φ3 = t2 + t+ 1.

(iv) φ4 = t2 + 1.

These are rather expected. Now take K = F2. Then 1 = −1. So we might be
able to further decompose these polynomials. For example, t+ 1 = t− 1 in F2.
So we have

φ4 = t2 + 1 = t2 − 1 = φ1φ2.

So in F2, φ4 is not irreducible. Similarly, if we have too much time, we can show
that

φ15 = (t4 + t+ 1)(t4 + t3 + 1).

So φ15 is not irreducible. However, they are irreducible over the rationals, as we
will soon see.
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So far, we know Gal(L/K) is an abelian group, isomorphic to a subgroup of
(Z/nZ)×. However, we are greedy and we want to know more. The following
lemma tells us when this θ is an isomorphism.

Lemma. Under the notation and assumptions of the previous theorem, φn is
irreducible in K[t] if and only if θ is an isomorphism.

Proof. (⇒) Suppose φn is irreducible. Recall that Rootφn(L) is exactly the nth
primitive roots of unity. So if µ is an nth primitive root of unity, then Pµ, the
minimal polynomial of µ over K is φn. In particular, if λ is also an nth primitive
root of unity, then Pµ = Pλ. This implies that there is some φλ ∈ AutK(L) such
that φλ(µ) = λ.

Now if ī ∈ (Z/nZ)×, then taking λ = µi, this shows that we have φλ ∈
AutK(L) such that θ(φλ) = ī. So θ is surjective, and hence an isomorphism.

(⇔) Suppose that θ is an isomorphism. We will reverse the above argument
and show that all roots have the same minimal polynomial. Let µ be a nth
primitive root of unity, and pick ī ∈ (Z/nZ)×, and let λ = µi. Since θ is an
isomorphism, there is some φλ ∈ AutK(L) such that θ(φλ) = ī, i.e. φλ(µ) =
µi = λ. Then we must have Pµ = Pλ.

Since every nth primitive root of unity is of the form µi (with (i, n) = 1), this
implies that all nth primitive roots have the same minimal polynomial. Since
the roots of φn are all the nth primitive roots of unity, its irreducible factors are
exactly the minimal polynomials of the primitive roots. Moreover, φn does not
have repeated roots. So φn = Pµ. In particular, φn is irreducible.

We want to apply this lemma to the case of rational numbers. We want to
show that θ is an isomorphism. So we have to show that φn is irreducible in
Q[t].

Theorem. φn is irreducible in Q[t]. In particular, it is also irreducible in Z[t].

Proof. As before, this can be achieved by showing that all nth primitive roots
have the same minimal polynomial. Moreover, let µ be our favorite nth primitive
root. Then all other primitive roots λ are of the form λ = µi, where (i, n) = 1. By
the fundamental theorem of arithmetic, we can write i as a product i = q1 · · · qn.
Hence it suffices to show that for all primes q - n, we have Pµ = Pµq . Noting
that µq is also an nth primitive root, this gives

Pµ = Pµq1 = P(µq1 )q2 = Pµq1q2 = · · · = Pµq1···qr = Pµi .

So we now let µ be an nth primitive root, Pµ be its minimal polynomial. Since
µ is a root of φn, we can write Pµ | φn inside Q[t]. So we can write

φn = PµR,

Since φn and Pµ are monic, R is also monic. By Gauss’ lemma, we must have
Pµ, R ∈ Z[t].

Note that showing Pµ = Pµq is the same as showing µq is a root of Pµ, since
degPµ = degPµq . So suppose it’s not. Since µq is an nth primitive root of unity,
it is a root of φn. So µq must be a root of R. Now let S = R(tq). Then µ is a
root of S, and so Pµ | S.

We now reduce mod q. For any polynomial f ∈ Z[t], we write the result of

reducing the coefficients mod q as f̄ . Then we have S̄ = R(tq) = R(t)
q
. Since
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P̄µ divides S̄ (by Gauss’ lemma), we know P̄µ and R(t) have common roots. But
φ̄n = P̄µR̄, and so this implies φ̄n has repeated roots. This is impossible since
φ̄n divides tn − 1, and since q - n, we know the derivative of tn − 1 does not
vanish at the roots. So we are done.

Corollary. Let K = Q and L be the nth cyclotomic extension of Q. Then the
injection θ : Gal(L/Q)→ (Z/nZ)× is an isomorphism.

Example. Let p be a prime number, and q = pd, d ∈ N. Consider Fq, a field
with q elements, and let L be the nth cyclotomic extension of Fq (where p - n).
Then we have a homomorphism θ : Gal(L/Fq)→ (Z/nZ)×.

We have previously shown that Gal(L/Fq) must be a cyclic group. So if
(Z/nZ)× is non-cyclic, then θ is not an isomorphism, and φn is not irreducible
in Fq[t].

For example, take p = q = 7 and n = 8. Then

(Z/8Z)× = {1̄, 3̄, 5̄, 7̄}

is not cyclic, because manual checking shows that there is no element of order 4.
Hence θ : Gal(L/F7)→ (Z/8Z)× is not an isomorphism, and φ8 is not irreducible
in F7[t].

3.2 Kummer extensions

We shall now consider a more general case, and study the splitting field of
tn − λ ∈ K[t]. As we have previously seen, we will need to make use of the nth
primitive roots of unity.

The definition of a Kummer extension will involve a bit more that it being
the splitting field of tn − λ. So before we reach the definition, we first studying
some properties of an arbitrary splitting field of tn − λ, and use this to motivate
the definition of a Kummer extension.

Definition (Cyclic extension). We say a Galois extension L/K is cyclic is
Gal(L/K) is a cyclic group.

Theorem. Let K be a field, λ ∈ K non-zero, n ∈ N, charK = 0 or 0 < charK -
n. Let L be the splitting field of tn − λ. Then

(i) L contains an nth primitive root of unity, say µ.

(ii) L/K(µ) is a cyclic (and in particular Galois) extension with degree [L :
K(µ)] | n.

(iii) [L : K(µ)] = n if and only if tn − λ is irreducible in K(µ)[t].

Proof.

(i) Under our assumptions, tn − λ and (tn − λ)′ = ntn−1 have no common
roots in L. So tn − λ has distinct roots in L, say α1, · · · , αn ∈ L.

It then follows by direct computation that α1α
−1
1 , α2α

−1
1 , · · · , αnα−1

1 are
distinct roots of unity, i.e. roots of tn − 1. Then one of these, say µ must
be an nth primitive root of unity.
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(ii) We know L/K(µ) is a Galois extension because it is the splitting field of
the separable polynomial tn − λ.

To understand the Galois group, we need to know how this field exactly
looks like. We let α be any root of tn − λ. Then the set of all roots can be
written as

{α, µα, µ2α, · · · , µn−1α}

Then
L = K(α1, · · · , αn) = K(µ, α) = K(µ)(α).

Thus, any element of Gal(L/K(µ)) is uniquely determined by what it sends
α to, and any homomorphism must send α to one of the other roots of
tn − λ, namely µiα for some i.

Define a homomorphism σ : Gal(L/K(µ)) → Z/nZ that sends φ to the
corresponding i (as an element of Z/nZ, so that it is well-defined).

It is easy to see that σ is an injective group homomorphism. So we know
Gal(L/K(µ)) is isomorphic to a subgroup of Z/nZ. Since the subgroup of
any cyclic group is cyclic, we know that Gal(L/K(µ)) is cyclic, and its size
is a factor of n by Lagrange’s theorem. Since |Gal(L/K(µ))| = [L : K(µ)]
by definition of a Galois extension, it follows that [L : K(µ)] divides n.

(iii) We know that [L : K(µ)] = [K(µ, α) : K(µ)] = deg qα. So [L : K(µ)] = n
if and only if deg qα = n. Since qα is a factor of tn − λ, deg qα = n if and
only if qα = tn − λ. This is true if and only if tn − λ is irreducible K(µ)[t].
So done.

Example. Consider t4 + 2 ∈ Q[t]. Let µ =
√
−1, which is a 4th primitive root

of unity. Now
t4 + 2 = (t− α)(t+ α)(t− µα)(t+ µα),

where α = 4
√
−2 is one of the roots of t4 + 2. Then we have the field extension

Q ⊆ Q(µ) ⊆ Q(µ, α), where Q(µ, α) is a splitting field of t4 + 2.
Since

√
−2 6∈ Q(µ), we know that t4 + 2 is irreducible in Q(µ)[t] by looking at

the factorization above. So by our theorem, Q(µ) ⊆ Q(µ, α) is a cyclic extension
of degree exactly 4.

Definition (Kummer extension). Let K be a field, λ ∈ K non-zero, n ∈ N,
charK = 0 or 0 < charK - n. Suppose K contains an nth primitive root of
unity, and L is a splitting field of tn − λ. If deg[L : K] = n, we say L/K is a
Kummer extension.

Note that we used to have extensions K ⊆ K(µ) ⊆ L. But if K already
contains a primitive root of unity, then K = K(µ). So we are left with the cyclic
extension K ⊆ L.

To following technical lemma will be useful:

Lemma. Assume L/K is a field extension. Then HomK(L,L) is linearly in-
dependent. More concretely, let λ1, · · · , λn ∈ L and φ1, · · · , φn ∈ HomK(L,L)
distinct. Suppose for all α ∈ L, we have

λ1φ1(α) + · · ·+ λnφn(α) = 0.

Then λi = 0 for all i.
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Proof. We perform induction on n.
Suppose we have some λi ∈ L and φi ∈ HomK(L,L) such that

λ1φ1(α) + · · ·+ λnφn(α) = 0.

The n = 1 case is trivial, since λ1φ1 = 0 implies λ1 = 0 (the zero homomorphism
does not fix K).

Otherwise, since the homomorphisms are distinct, pick β ∈ L such that
φ1(β) 6= φn(β). Then we know that

λ1φ1(αβ) + · · ·+ λnφn(αβ) = 0

for all α ∈ L. Since φi are homomorphisms, we can write this as

λ1φ1(α)φ1(β) + · · ·+ λnφn(α)φn(β) = 0.

On the other hand, by just multiplying the original equation by φn(β), we get

λ1φ1(α)φn(β) + · · ·+ λnφn(α)φn(β) = 0.

Subtracting the equations gives

λ1φ1(α)(φ1(β)− φn(β)) + · · ·+ λn−1φn−1(α)(φn−1(β)− φn(β)) = 0

for all α ∈ L. By induction, λi(φi(β) − φn(β)) = 0 for all 1 ≤ i ≤ n − 1. In
particular, since φ1(β)− φn(β) 6= 0, we have λ1 = 0. Then we are left with

λ2φ2(α) + · · ·+ λnφn(α) = 0.

Then by induction again, we know that all coefficients are zero.

Theorem. Let K be a field, n ∈ N, charK = 0 or 0 < charK - n. Suppose K
contains an nth primitive root of unity, and L/K is a cyclic extension of degree
[L : K] = n. Then L/K is a Kummer extension.

This is a rather useful result. If we look at the splitting field of a polynomial
tn − λ, even if the ground field includes the right roots of unity, a priori, this
doesn’t have to be a Kummer extension if it doesn’t have degree n. But we
previously showed that the extension must be cyclic. And so this theorem shows
that it is still a Kummer extension of some sort.

This is perhaps not too surprising. For example, if, say, n = 4 and λ is
secretly a square, then the splitting field of t4 − λ is just the splitting field of
t2 −

√
λ.

Proof. Our objective here is to find a clever λ ∈ K such that L is the splitting
field of tn − λ. To do so, we will have to hunt for a root β of tn − λ in L.

Pick φ a generator of Gal(L/K). We know that if β were a root of tn − λ,
then φ(β) = µ−1β for some primitive nth root of unity µ. Thus, we want to find
an element that satisfies such a property.

By the previous lemma, we can find some α ∈ L such that

β = α+ µφ(α) + µ2φ2(α) + · · ·+ µn−1φn−1(α) 6= 0.
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Then, noting that φn is the identity and φ fixes µ ∈ K, we see that β trivially
satisfies

φ(β) = φ(α) + µφ2α+ · · ·+ µn−1φn(α) = µ−1β,

In particular, we know that φ(β) ∈ K(β).
Now pick λ = βn. Then φ(βn) = µ−nβn = βn. So φ fixes βn. Since φ

generates Gal(L/K), we know all automorphisms of L/K fixes βn. So βn ∈ K.
Now the roots of tn − λ are β, µβ, · · · , µn−1β. Since these are all in β, we

know K(β) is the splitting field of tn − λ.
Finally, to show that K(β) = L, we observe that id, φ|K(β), . . . , φn|K(β) are

distinct elements of AutK(K(β)) since they do different things to β. Recall our
previous theorem that

[K(β) : K] ≥ |AutK(K(β))|.

So we know that n = [L : K] = [K(β) : K]. So L = K(β). So done.

Example. Consider t3 − 2 ∈ Q[t], and µ a third primitive root of unity. Then
we have the extension Q ⊆ Q(µ) ⊆ Q(µ, 3

√
2). Then Q ⊆ Q(µ) is a cyclotomic

extension of degree 2, and Q(µ) ⊆ Q(µ, 3
√

2) is a Kummer extension of degree 3.

3.3 Radical extensions

We are going to put these together and look at radical extensions, which allows
us to characterize what it means to “solve a polynomial with radicals”.

Definition (Radical extension). A field extension L/K is radical if there is
some further extension E/L and with a sequence

K = E0 ⊆ E1 ⊆ · · · ⊆ Er = E,

such that each Ei ⊆ Ei+1 is a cyclotomic or Kummer extension, i.e. Ei+1 is a
splitting field of tn − λi+1 over Ei for some λi+1 ∈ Ei.

Informally, we say Ei+1 is obtained by adding the roots “ n
√
λi+1” to Ei.

Hence we interpret a radical extension as an extension that only adds radicals.

Definition (Solubility by radicals). Let K be a field, and f ∈ K[t]. f . We say
f is soluble by radicals if the splitting field of f is a radical extension of K.

This means that f can be solved by radicals of the form n
√
λi.

Let’s go back to our first lecture and describe what we’ve done in the language
we’ve developed in the course.

Example. As we have shown in lecture 1, any polynomial f ∈ Q[t] of degree at
most 4 can be solved by radicals.

For example, assume deg f = 3. So f = t3 + at2 + bt + c. Let L be the
splitting field of f . Recall we reduced the problem of “solving” f to the case
a = 0 by the substitution x 7→ x − a

3 . Then we found our β, γ ∈ C such that
each root αi can be written as a linear combination of β and γ (and µ), i.e.
L ⊆ Q(β, γ, µ).

Then we showed that

{β3, γ3} =

{
−27c±

√
(27c)2 + 4× 27b3

2

}
.

47



3 Solutions to polynomial equations II Galois Theory

We now let
λ =

√
(27c)2 + 4× 27b3.

Then we have the extensions

Q ⊆ Q(λ) ⊆ Q(λ, µ) ⊆ Q(λ, µ, β),

and also
Q ⊆ L ⊆ Q(λ, µ, β).

Note that the first extension Q ⊆ Q(λ) is a Kummer extension since it is a
splitting field of t2 − λ2. Then Q(λ) ⊆ Q(λ, µ) is the third cyclotomic extension.
Finally, Q(λ, µ) ⊆ Q(λ, µβ) is a Kummer extension, the splitting field of t3 − β3.
So Q ⊆ L is a radical extension.

Let’s go back to the definition of a radical extension. We said L/K is radical
if there is a further extension E/L that satisfies certain nice properties. It would
be great if E/K is actually a Galois extensions. To show this, we first need a
technical lemma.

Lemma. Let L/K be a Galois extension, charK = 0, γ ∈ L and F the splitting
field of tn − γ over L. Then there exists a further extension E/F such that E/L
is radical and E/K is Galois.

Here we have the inclusions

K ⊆ L ⊆ F ⊆ E,

where K,L and F are given and E is what we need to find. The idea of the proof
is that we just add in the “missing roots” to obtain E so that E/K is Galois,
and doing so only requires performing cyclotomic and Kummer extensions.

Proof. Since we know that L/K is Galois, we would rather work in K than in L.
However, our γ is in L, not K. Hence we will employ a trick we’ve used before,
where we introduce a new polynomial f , and show that its coefficients are fixed
by Gal(L/K), and hence in K. Then we can look at the splitting field of f or
its close relatives.

Let
f =

∏
φ∈Gal(L/K)

(tn − φ(γ)).

Each φ ∈ Gal(L/K) induces a homomorphism L[t] → L[t]. Since each φ ∈
Gal(L/K) just rotates the roots of f around, we know that this induced homo-
morphism fixes f . Since all automorphisms in Gal(L/K) fix the coefficients of
f , the coefficients must all be in K. So f ∈ K[t].

Now since L/K is Galois, we know that L/K is normal. So L is the splitting
field of some g ∈ K[t]. Let E be the splitting field of fg over K. Then K ⊆ E
is normal. Since the characteristic is zero, this is automatically separable. So
the extension K ⊆ E is Galois.

We have to show that L ⊆ E is a radical extension. We pick our fields as
follows:

– E0 = L
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– E1 = splitting field of tn − 1 over E0

– E2 = splitting field of tn − γ over E1

– E3 = splitting field of tn − φ1(γ) over E2

– . . .

– Er = E,

where we enumerate Gal(L/K) as {id, φ1, φ2, · · · }.
We then have the sequence of extensions

L = E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ Er

Here E0 ⊆ E1 is a cyclotomic extension, and E1 ⊆ E2, E2 ⊆ E3 etc. are
Kummer extensions since they contain enough roots of unity and are cyclic. By
construction, F ⊆ E2. So F ⊆ E.

Theorem. Suppose L/K is a radical extension and charK = 0. Then there is
an extension E/L such that E/K is Galois and there is a sequence

K = E0 ⊆ E1 ⊆ · · · ⊆ E,

where Ei ⊆ Ei+1 is cyclotomic or Kummer.

Proof. Note that this is equivalent to proving the following statement: Let

K = L0 ⊆ L1 ⊆ · · ·Ls

be a sequence of cyclotomic or Kummer extensions. Then there exists an
extension Ls ⊆ E such that K ⊆ E is Galois and can be written as a sequence
of cyclotomic or Kummer extensions.

We perform induction on s. The s = 0 case is trivial.
If s > 0, then by induction, there is an extension M/Ls−1 such that M/K is

Galois and is a sequence of cyclotomic and Kummer extensions. Now Ls is a
splitting field of tn− γ over Ls−1 for some γ ∈ Ls−1. Let F be the splitting field
of tn − γ over M . Then by the lemma and its proof, there exists an extension
E/M that is a sequence of cyclotomic or Kummer extensions, and E/K is Galois.

K Ls−1

Ls = Ls−1( n
√
γ)

M

F = M( n
√
γ) E

However, we already know that M/K is a sequence of cyclotomic and Kummer
extensions. So E/K is a sequence of cyclotomic and Kummer extension. So
done.
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3.4 Solubility of groups, extensions and polynomials

Let f ∈ K[t]. We defined the notion of solubility of f in terms of radical
extensions. However, can we decide whether f is soluble or not without resorting
to the definition? In particular, is it possible to decide whether its soluble by
just looking at Gal(L/K), where L is the splitting field of f over K? It would
be great if we could do so, since groups are easier to understand than fields.

The answer is yes. It turns out the solubility of f corresponds to the solubility
of Gal(L/K). Of course, we will have to first define what it means for a group
to be soluble. After that, we will find examples of polynomials f of degree at
least 5 such that Gal(L/K) is not soluble. In other words, there are polynomials
that cannot be solved by radicals.

Definition (Soluble group). A finite group G is soluble if there exists a sequence
of subgroups

Gr = {1}C · · ·CG1 CG0 = G,

where Gi+1 is normal in Gi and Gi/Gi+1 is cyclic.

Example. Any finite abelian group is solvable by the structure theorem of finite
abelian groups:

G ∼=
Z
〈n1〉

× · · · × Z
〈nr〉

.

Example. Let Sn be the symmetric group of permutations of n letters. We
know that G3 is soluble since

{1}CA3 C S3,

where S3/A3
∼= Z/〈2〉 and A3/{0} ∼= Z/〈3〉.

S4 is also soluble by

{1}C {e, (1 2)(3 4)}C {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}CA4 C S4.

We can show that the quotients are Z/〈2〉, Z/〈3〉, Z/〈2〉 and Z/〈2〉 respectively.

How about Sn for higher n? It turns out they are no longer soluble for n ≥ 5.
To prove this, we first need a lemma.

Lemma. Let G be a finite group. Then

(i) If G is soluble, then any subgroup of G is soluble.

(ii) If ACG is a normal subgroup, then G is soluble if and only if A and G/A
are both soluble.

Proof.

(i) If G is soluble, then by definition, there is a sequence

Gr = {1}C · · ·CG1 CG0 = G,

such that Gi+1 is normal in Gi and Gi/Gi+1 is cyclic.

Let Hi = H ∩Gi. Note that Hi+1 is just the kernel of the obvious homo-
morphism Hi → Gi/Gi+1. So Hi+1 CHi. Also, by the first isomorphism
theorem, this gives an injective homomorphism Hi/Hi+1 → Gi/Gi+1. So
Hi/Hi+1 is cyclic. So H is soluble.
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(ii) (⇒) By (i), we know that A is solvable. To show the quotient is soluble,
by assumption, we have the sequence

Gr = {1}C · · ·CG1 CG0 = G,

such that Gi+1 is normal in Gi and Gi/Gi+1 is cyclic. We construct the
sequence for the quotient in the obvious way. We want to define Ei as the
quotient Gi/A, but since A is not necessarily a subgroup of E, we instead
define Ei to be the image of quotient map Gi → G/A. Then we have a
sequence

Er = {1}C · · ·C E0 = G/A.

The quotient map induces a surjective homomorphismGi/Gi+1 → Ei/Ei+1,
showing that Ei/Ei+1 are cyclic.

(⇐) From the assumptions, we get the sequences

Am = {1}C · · ·CA0 = A

Fn = AC · · ·C F0 = G

where each quotient is cyclic. So we get a sequence

Am = {1}CA1 C · · ·CA0 = Fn C Fn−1 C · · ·C F0 = G,

and each quotient is cyclic. So done.

Example. We want to show that Sn is not soluble if n ≥ 5. It is a well-known
fact that An is a simple non-abelian group, i.e. it has no non-trivial subgroup.
So An is not soluble. So Sn is not soluble.

The key observation in Galois theory is that solubility of polynomials is
related to solubility of the Galois group.

Definition (Soluble extension). A finite field extension L/K is soluble if there
is some extension L ⊆ E such that K ⊆ E is Galois and Gal(E/K) is soluble.

Note that this definition is rather like the definition of a radical extension,
since we do not require the extension itself to be “nice”, but just for there to be
a further extension that is nice. In fact, we will soon see they are the same.

Lemma. Let L/K be a Galois extension. Then L/K is soluble if and only if
Gal(L/K) is soluble.

This means that the whole purpose of extending to E is just to make it a
Galois group, and it isn’t used to introduce extra solubility.

Proof. (⇐) is clear from definition.
(⇒) By definition, there is some E ⊆ L such that E/K is Galois and

Gal(E/K) is soluble. By the fundamental theorem of Galois theory, Gal(L/K) is
a quotient of Gal(E/K). So by our previous lemma, Gal(L/K) is also soluble.

We now come to the main result of the lecture:

Theorem. Let K be a field with charK = 0, and L/K is a radical extension.
Then L/K is a soluble extension.
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Proof. We have already shown that if we have a radical extension L/K, then
there is a finite extension K ⊆ E such that K ⊆ E is a Galois extension, and
there is a sequence of cyclotomic or Kummer extensions

E0 = K ⊆ E1 ⊆ · · · ⊆ Er = E.

Let Gi = Gal(E/Ei). By the fundamental theorem of Galois theory, inclusion of
subfields induces an inclusion of subgroups

G0 = Gal(E/K) ≥ G1 ≥ · · · ≥ Gr = {1}.

In fact, Gi BGi+1 because Ei ⊆ Ei+1 are Galois (since cyclotomic and Kummer
extensions are). So in fact we have

G0 = Gal(E/K) BG1 B · · ·BGr = {1}.

Finally, note that by the fundamental theorem of Galois theory,

Gi/Gi+1 = Gal(Ei+1/Ei).

We also know that the Galois groups of cyclotomic and Kummer extensions are
abelian. Since abelian groups are soluble, our previous lemma implies that L/K
is soluble.

In fact, we will later show that the converse is also true. So an extension is
soluble if and only if it is radical.

Corollary. Let K be a field with charK = 0, and f ∈ K[t]. If f can be solved
by radicals, then Gal(L/K) is soluble, where L is the splitting field of f over K.

Again, we will later show that the converse is also true. However, to construct
polynomials that cannot be solved by radicals, this suffices. In fact, this corollary
is all we really need.

Proof. We have seen that L/K is a Galois extension. By assumption, L/K is
thus a radical extension. By the theorem, L/K is also a soluble extension. So
Gal(L/K) is soluble.

To find an f ∈ Q[t] which cannot be solved by radicals, it suffices to find an
f such that the Galois group is not soluble. We don’t know many non-soluble
groups so far. So in fact, we will find an f such that Gal(L/Q) = S5.

To do so, we want to relate Galois groups to permutation groups.

Lemma. Let K be a field, f ∈ K[t] of degree n with no repeated roots. Let
L be the splitting field of f over K. Then L/K is Galois and there exist an
injective group homomorphism

Gal(L/K)→ Sn.

Proof. Let Rootf (L) = {α1, · · · , αn}. Let Pαi be the minimal polynomial of αi
over K. Then Pαi | f implies that Pαi is separable and splits over L. So L/K is
Galois.

Now each φ ∈ Gal(L/K) permutes the αi, which gives a map Gal(L/K)→ Sn.
It is easy to show this is an injective group homomorphism.
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Note that there is not a unique or naturally-defined injective group homo-
morphism to Sn. This homomorphism, obviously, depends on how we decide to
number our roots.

Example. Let f = (t2 − 2)(t2 − 3) ∈ Q[t]. Let L be the splitting field of f over
Q. Then the roots are

Rootf (L) = {
√

2,−
√

2,
√

3,−
√

3}.

We label these roots as α1, α2, α3, α4 in order. Now note that L = Q(
√

2,
√

3),
and thus [L : Q] = 4. Hence |Gal(L/Q)| = 4 as well. We can let Gal(L/Q) =
{id, ϕ, ψ, λ}, where

id(
√

2) =
√

2 id(
√

3) =
√

3

ϕ(
√

2) = −
√

2 ϕ(
√

3) =
√

3

ψ(
√

2) =
√

2 ψ(
√

3) = −
√

3

λ(
√

2) = −
√

2 λ(
√

3) = −
√

3

Then the image of Gal(L/Q)→ S4 is given by

{e, (1 2), (3 4), (1 2)(3 4)}.

What we really want to know is if there are polynomials in which this map is
in fact an isomorphism, i.e. the Galois group is the symmetric group. If so, then
we can use this to produce a polynomial that is not soluble by polynomials.

To find this, we first note a group-theoretic fact.

Lemma. Let p be a prime, and σ ∈ Sp have order p. Then σ is a p-cycle.

Proof. By IA Groups, we can decompose σ into a product of disjoint cycles:

σ = σ1 · · ·σr.

Let σi have order mi > 1. Again by IA Groups, we know that

p = order of σ = lcm(m1, · · · ,mr).

Since p is a prime number, we know that p = mi for all i. Hence we must have
r = 1, since the cycles are disjoint and there are only p elements. So σ = σ1.
Hence σ is indeed an p cycle.

We will use these to find an example where the Galois group is the symmetric
group. The conditions for this to happen are slightly awkward, but the necessity
of these will become apparent in the proof.

Theorem. Let f ∈ Q[t] be irreducible and deg f = p prime. Let L ⊆ C be the
splitting field of f over Q. Let

Rootf (L) = {α1, α2, · · · , αp−2, αp−1, αp}.

Suppose that α1, α2, · · · , αp−2 are all real numbers, but αp−1 and αp are not.
In particular, αp−1 = ᾱp. Then the homomorphism β : Gal(L/Q) → Sn is an
isomorphism.
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Proof. From IA groups, we know that the cycles (1 2 · · · p) and (p − 1 p)
generate the whole of Sn. So we show that these two are both in the image of β.

As f is irreducible, we know that f = Pα1 , the minimal polynomial of α1

over Q. Then
p = degPαi = [Q(α1) : Q].

By the tower law, this divides [L : Q], which is equal to |Gal(L/Q)| since the
extension is Galois. Since p divides the order of Gal(L/Q), by Cauchy’s theorem
of groups, there must be an element of Gal(L/Q) that is of order p. This maps
to an element σ ∈ imβ of order exactly p. So σ is a p-cycle.

On the other hand, the isomorphism C→ C given by z 7→ z̄ restricted to L
gives an automorphism in Gal(L/Q). This simply permutes αp−1 and αp, since
it fixes the real numbers and αp−1 and αp must be complex conjugate pairs. So
τ = (p− 1 p) ∈ imβ.

Now for every 1 ≤ i < p, we know that σi again has order p, and hence
is a p-cycle. So if we change the labels of the roots α1, · · · , αp and replace
σ with σi, and then waffle something about combinatorics, we can assume
σ = (1 2 · · · p− 1 p). So done.

Example. Let t5 − 4t+ 2 ∈ Q[t]. Let L be the splitting field of f over Q.
First note that deg f = 5 is a prime. Also, by Eisenstein’s criterion, f is

irreducible. By finding the local maximum and minimum points, we find that
f has exactly three real roots. So by the theorem, there is an isomorphism
Gal(L/Q)→ S5. In other words, Gal(L/Q) ∼= S5.

We know S5 is not a soluble group. So f cannot be solved by radicals.

After spending 19 lectures, we have found an example of a polynomial that
cannot be solved by radicals. Finally.

Note that there are, of course, many examples of f ∈ Q[t] irreducible of
degree at least 5 that can be solved by radicals, such as f = t5 − 2.

3.5 Insolubility of general equations of degree 5 or more

We now want to do something more interesting. Instead of looking at a particular
example, we want to say there is no general formula for solving polynomial
equations of degree 5 or above. First we want to define certain helpful notions.

Definition (Field of symmetric rational functions). Let K be a field, L =
K(x1, · · · , xn), the field of rational functions over K. Then there is an injective
homomorphism Sn → AutK(L) given by permutations of xi.

We define the field of symmetric rational functions F = LSn to be the fixed
field of Sn.

There are a few important symmetric rational functions that we care about
more.

Definition (Elementary symmetric polynomials). The elementary symmetric
polynomials are e1, e2, · · · , en defined by

ei =
∑

1≤l1<l2<···<li≤n

x`1 · · ·x`i .
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It is easy to see that

e1 = x1 + x2 + · · ·+ xn

e2 = x1x2 + x1x3 + · · ·+ xn−1xn

en = x1 · · ·xn.

Obviously, e1, · · · , en ∈ F .

Theorem (Symmetric rational function theorem). Let K be a field, L =
K(x1, · · · , xn). Let F the field fixed by the automorphisms that permute the xi.
Then

(i) L is the splitting field of

f = tn − e1t
n−1 + · · ·+ (−1)nen

over F .

(ii) F = LSn ⊆ L is a Galois group with Gal(L/F ) isomorphic to Sn.

(iii) F = K(e1, · · · , en).

Proof.

(i) In L[t], we have
f = (t− x1) · · · (t− xn).

So L is the splitting field of f over F .

(ii) By Artin’s lemma, L/K is Galois and Gal(L/F ) ∼= Sn.

(iii) Let E = K(e1, · · · , en). Clearly, E ⊆ F . Now E ⊆ L is a Galois extension,
since L is the splitting field of f over E and f has no repeated roots.

By the fundamental theorem of Galois theory, since we have the Galois ex-
tensions E ⊆ F ⊆ L, we have Gal(L/F ) ≤ Gal(L/E). So Sn ≤ Gal(L/E).
However, we also know that Gal(L/E) is a subgroup of Sn, we must have
Gal(L/E) = Gal(L/F ) = Sn. So we must have E = F .

Definition (General polynomial). Let K be a field, u1, · · · , un variables. The
general polynomial over K of degree n is

f = tn + u1t
n−1 + · · ·+ un.

Technically, this is a polynomial in the polynomial ring K(u1, · · · , un)[t]. How-
ever, we say this is the general polynomial over K be cause we tend to think of
these ui as representing actual elements of K.

We say the general polynomial over K of degree n can be solved by radicals
if f can be solved by radicals over K(u1, · · · , un).

Example. The general polynomial of degree 2 over Q is

t2 + u1t+ u2.

This can be solved by radicals because its roots are

−u1 ±
√
u2

1 − 4u2

2
.

55



3 Solutions to polynomial equations II Galois Theory

Theorem. Let K be a field with charK = 0. Then the general polynomial
polynomial over K of degree n cannot be solved by radicals if n ≥ 5.

Proof. Let
f = tn + u1t

n−1 + · · ·+ un.

be our general polynomial of degree n ≥ 5. Let N be a splitting field of f over
K(u1, · · · , un). Let

Rootf (N) = {α1, · · · , αn}.
We know the roots are distinct because f is irreducible and the field has charac-
teristic 0. So we can write

f = (t− α1) · · · (t− αn) ∈ N [t].

We can expand this to get

u1 = −(α1 + · · ·+ αn)

u2 = α1α2 + α1α3 + · · ·+ αn−1αn

...

ui = (−1)i(ith elementary symmetric polynomial in α1, · · · , αn).

Now let x1, · · · , xn be new variables, and ei the ith elementary symmetric
polynomial in x1, · · · , xn. Let L = K(x1, · · · , xn), and F = K(e1, · · · , en). We
know that F ⊆ L is a Galois extension with Galois group isomorphic to Sn.

We define a ring homomorphism

θ : K[u1, · · · , un]→ K[e1, · · · , en] ⊆ K[x1, · · · , xn]

ui 7→ (−1)iei.

This is our equations of ui in terms αi, but with xi instead of αi.
We want to show that θ is an isomorphism. Note that since the homomor-

phism just renames ui into ei, the fact that θ is an isomorphism means there
are no “hidden relations” between the ei. It is clear that θ is a surjection. So it
suffices to show θ is injective. Suppose θ(h) = 0. Then

h(−e1, · · · , (−1)nen) = 0.

Since the xi are just arbitrary variables, we now replace xi with αi. So we get

h(−e1(α1, · · · , αn), · · · , (−1)n(en(α1, · · · , αn))) = 0.

Using our expressions for ui in terms of ei, we have

h(u1, · · · , un) = 0,

But h(u1, · · · , un) is just h itself. So h = 0. Hence θ is injective. So it is an
isomorphism. This in turns gives an isomorphism between

K(u1, · · · , un)→ K(e1, · · · , en) = F.

We can extend this to their polynomial rings to get isomorphisms between

K(u1, · · · , un)[t]→ F [t].
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In particular, this map sends our original f to

f 7→ tn − e1t
n−1 + · · ·+ (−1)nen = g.

Thus, we get an isomorphism between the splitting field of f over K(u1, · · · , un)
and the splitting field g over F .

The splitting field of f over K(u1, · · · , un) is just N by definition. From the
symmetric rational function theorem, we know that the splitting field of g over
F is just L, and So N ∼= L. So we have an isomorphism

Gal(N/K(u1, · · · , un))→ Gal(L/F ) ∼= Sn.

Since Sn is not soluble, f is not soluble.

This is our second main goal of the course, to prove that general polynomials
of degree 5 or more are not soluble by radicals.

Recall that we proved that all radical extensions are soluble. We now prove
the converse.

Theorem. Let K be a field with charK = 0. If L/K is a soluble extension,
then it is a radical extension.

Proof. Let L ⊆ E be such that K ⊆ E is Galois and Gal(E/K) is soluble. We
can replace L with E, and assume that in fact L/K is a soluble Galois extension.
So there is a sequence of groups

{0} = Gr C · · ·CG1 CG0 = Gal(L/K)

such that Gi/Gi+1 is cyclic.
By the fundamental theorem of Galois theory, we get a sequence of field

extension given by Li = LGi :

K = L0 ⊆ · · · ⊆ Lr = L.

Moreover, we know that Li ⊆ Li+1 is a Galois extension with Galois group
Gal(Li+1/Li) ∼= Gi/Gi+1. So Gal(Li+1/Li) is cyclic.

Let n = [L : K]. Recall that we proved a previous theorem that if
Gal(Li+1/Li) is cyclic, and Li contains a primitive kth root of unity (with
k = [Li+1 : Li]), then Li ⊆ Li+1 is a Kummer extension. However, we do not
know of Li contains the right root of unity. Hence, the trick here is to add an
nth primitive root of unity to each field in the sequence.

Let µ an nth primitive root of unity. Then if we add the nth primitive root
to each item of the sequence, we have

L0(µ) · · · Li(µ) Li+1(µ) · · · Lr(µ)

K = L0 · · · Li Li+1 · · · Lr = L

⊆

⊆

⊆ ⊆

⊆

⊆

⊆

⊆

⊆

⊆ ⊆ ⊆ ⊆ ⊆

We know that L0 ⊆ L0(µ) is a cyclotomic extension by definition. We will now
show that Li(µ) ⊆ Li+1(µ) is a Kummer extension for all i. Then L/K is radical
since L ⊆ Lr(µ).
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Before we do anything, we have to show Li(µ) ⊆ Li+1(µ) is a Galois extension.
To show this, it suffices to show Li ⊆ Li+1(µ) is a Galois extension.

Since Li ⊆ Li+1 is Galois, Li ⊆ Li+1 is normal. So Li+1 is the splitting of
some h over Li. Then Li+1(µ) is just the splitting field of (tn − 1)h. So Li ⊆
Li+1(µ) is normal. Also, Li ⊆ Li+1(µ) is separable since charK = charLi = 0.
Hence Li ⊆ Li+1(µ) is Galois, which implies that Li(µ) ⊆ Li+1(µ) is Galois.

We define a homomorphism of groups

Gal(Li+1(µ)/Li(µ))→ Gal(Li+1/Li)

by restriction. This is well-defined because Li+1 is the splitting field of some h
over Li, and hence any automorphism of Li+1(µ) must send roots of h to roots
of h, i.e. Li+1 to Li+1.

Moreover, we can see that this homomorphism is injective. If φ 7→ φ|Li+1
= id,

then it fixes everything in Li+1. Also, since it is in Gal(Li+1(µ)/Li(µ)), it fixes
Li(µ). In particular, it fixes µ. So φ must fix the whole of Li+1(µ). So φ = id.

By injectivity, we know that Gal(Li+1(µ)/Li(µ)) is isomorphic to a subgroup
of Gal(Li+1/Li). Hence it is cyclic. By our previous theorem, it follows that
Li(µ) ⊆ Li+1(µ) is a Kummer extension. So L/K is radical.

Corollary. Let K be a field with charK = 0 and h ∈ K[t]. Let L be the
splitting of h over K. Then h can be solved by radicals if and only if Gal(L/K)
is soluble.

Proof. (⇒) Proved before.
(⇐) Since L/K is a Galois extension, L/K is a soluble extension. So it is a

radial extension. So h can be solved by radicals.

Corollary. Let K be a field with charK = 0. Let f ∈ K[t] have deg f ≤ 4.
Then f can be solved by radicals.

Proof. Exercise.

Note that in the case where K = Q, we have proven this already by given
explicit solutions in terms of radicals in the first lecture.
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4 Computational techniques

In the last three lectures, we will look at some techniques that allow us to
actually compute the Galois group of polynomials (i.e. Galois groups of their
splitting fields).

4.1 Reduction mod p

The goal of this chapter is to see what happens when we reduce a polynomial
f ∈ Z[t] to the corresponding polynomial f̄ ∈ Fp[t].

More precisely, suppose we have a polynomial f ∈ Z[t], and E is its splitting
field over Q. We then reduce f to f̄ ∈ Fp[t] by reducing the coefficients mod p,
and let Ē be the splitting field of f̄ over Fp.

The ultimate goal is to show that under mild assumptions, there is an
injection

Gal(E/Fp) ↪→ Gal(E/Q).

To do this, we will go through a lot of algebraic fluff to obtain an alternative
characterization of the Galois group, and obtain the result as an easy corollary.

This section will be notationally heavy. First, in the background, we have a
polynomial f of degree n (whose field we shall specify later). Then we will have
three distinct set of variables, namely (x1, · · · , xn), (u1, · · · , un), plus a t. They
will play different roles.

– The xi will be placeholders. After establishing our definitions, we will then
map each xi to αi, a root of our f .

– The ui will stay as “general coefficients” all the time.

– t will be the actual variable we think our polynomial is in, i.e. all polyno-
mials will be variables in t, and ui and xi will form part of the coefficients.

To begin with, let

L = Q(x1, · · · , xn)

F = Q(e1, · · · , en).

where xi are variables and ei are the symmetric polynomials in the x1, · · · , xn.
We have seen that Gal(L/F ) ∼= Sn.

Now let

B = Z[x1, · · · , xn]

A = Z[e1, · · · , en].

It is an exercise on example sheet 4 to show that

B ∩ F = A. (∗)

We will for now take this for granted.
We now add it new variables u1, · · · , un, t. We previously mentioned that Sn

can act on, say L[u1, · · · , un, t] by permuting the variables. Here there are two
ways in which this can happen — a permutation can either permute the xi, or
permute the ui. We will have to keep this in mind.
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Now for each σ ∈ Sn, we define the linear polynomial

Rσ = t− xσ(1)u1 − · · · − xσ(n)un.

For example, we have

R(1) = t− x1u1 − · · · − xnun.

As mentioned, an element ρ ∈ Sn can act on Rρ in two ways: it either sends
Rσ 7→ Rρσ or Rσ 7→ Rσρ−1 .

It should be clear that the first action permutes the xi. What the second
action does is permute the ui. To see this, we can consider a simple case where
n = 2. Then the action ρ acting on R(1) sends

t− x1u1 − x2u2 7→ t− xρ−1(1)u1 − xρ−2(2)u2 = t− x1uρ(1) − x2uρ(2).

Finally, we define the following big scary polynomial:

R =
∏
σ∈Sn

Rσ ∈ B[u1, · · · , un, t].

We see that this is fixed by any permutation in σ ∈ Sn under both actions.
Considering the first action and using (∗), we see that in fact

R ∈ A[u1, · · · , un, t].

This is since if we view R as a polynomial over B in the variables u1, · · · , un, t,
then its coefficients will be invariant under permuting the xi. So the coefficients
must be a function of the ei, i.e. lie in A.

With these definitions in place, we can focus on a concrete polynomial.
Let K be a field, and let

f = tn + a1t
n−1 + · · ·+ an ∈ K[t]

have no repeated roots. We let E be the splitting field of f over K. Write

Rootf (E) = {α1, · · · , αn}.

Note that this is the setting we had at the beginning of the chapter, but with an
arbitrary field K instead of Q and Fp.

We define a ring homomorphism θ : B → E by xi 7→ αi. This extends to a
ring homomorphism

θ : B[u1, · · · , un, t]→ E[u1, · · · , un, t].

Note that the ring homomorphism θ send ei 7→ (−1)iai. So in particular, if
we restrict the homomorphism θ to A, then the image is restricted to the field
generated by ai. But we already have ai ∈ K. So θ(A) = K. In particular, since
R ∈ A[u1, · · · , un, t], we have

θ(R) ∈ K[u1, · · · , un, t].

Now let P be an irreducible factor of θ(R) in K[u1, · · · , un, t]. We want to say
each such irreducible polynomial is related to the Galois group G = Gal(E/K).
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Since f has no repeated roots, we can consider G as a subgroup of Sn, where
the elements of G are just the permutations of the roots αi. We will then show
that each irreducible polynomial corresponds to a coset of G.

Recall that at the beginning, we said Sn can act on our polynomial rings
by permuting the xi or ui. However, once we have mapped the xi to the αi
and focus on a specific field, Sn as a whole can no longer act on the αi, since
there might be non-trivial relations between the αi. Instead, only the subgroup
G ≤ Sn can act on αi. On the other hand, Sn can still act on ui.

Recall that R is defined as a product of linear factors Rσ’s. So we can find a
subset Λ ⊆ Sn such that

P =
∏
σ∈Λ

Rσ.

We will later see this Λ is just a coset of the Galois group G.
Pick σ ∈ Λ. Then by definition of P ,

Rσ | P

in E[u1, · · · , un, t]. Now if ρ ∈ G, then we can let ρ act on both sides by
permuting the xi (i.e. the αi). This does not change P because P has coefficients
in K and the action of G has to fix K. Hence we have

Rρσ | P.

More generally, if we let

H =
∏
ρ∈G

Rρσ ∈ E[u1, · · · , un, t],

then
H | P

by the irreducibility of P .
Since H is also invariant under the action of G, we know H ∈ K[u1, · · · , un, t].

By the irreducibility of P , we know H = P . Hence, we know

Λ = Gσ.

We have thus proved that the irreducible factors of θ(R) in K[u1, · · · , un, t] are
in one-to-one correspondence with the cosets of G in Sn. In particular, if P
corresponds to G itself, then

P =
∏
τ∈G

Rτ .

In general, if P corresponds to a coset Gσ, we can let λ ∈ Sn act on P by
permuting the ui’s. Then this sends

P =
∏
ρ∈G

Rρσ 7→ Q =
∏
ρ∈G

Rρσλ−1 .

So this corresponds to the coset Gσλ−1. In particular, P = Q if and only if
Gσ = Gσλ−1. So we can use this to figure out what permutations preserve an
irreducible factor. In particular, taking σ = (1), we have
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Theorem.

G = {λ ∈ Sn : λ preserves the irreducible factor corresponding to G}. (†)

This is the key result of this chapter, and we will apply this as follows:

Theorem. Let f ∈ Z[t] be monic with no repeated roots. Let E be the splitting
field of f over Q, and take f̄ ∈ Fp[t] be the obvious polynomial obtained by
reducing the coefficients of f mod p. We also assume this has no repeated roots,
and let Ē be the splitting field of f̄ .

Then there is an injective homomorphism

Ḡ = Gal(Ē/Fp) ↪→ G = Gal(E/Q).

Moreover, if f̄ factors as a product of irreducibles of length n1, n2, · · · , nr, then
Gal(f) contains an element of cycle type (n1, · · · , nr).

Proof. We apply the previous theorem twice. First, we take K = Q. Then

θ(R) ∈ Z[u1, · · · , un, t].

Let P be the irreducible factor of θ(R) corresponding to the Galois group G.
Applying Gauss’ lemma, we know P has integer coefficients.

Applying the theorem again, taking K = Fp. Denote the ring homomorphism
as θ̄. Then θ̄(R) ∈ Fp[u1, · · · , un, t]. Now let Q be the irreducible factor θ̄(R)
corresponding to Ḡ.

Now note that θ(R(1)) | P and θ̄(R(1)) | Q, since the identity is in G and Ḡ.

Also, note that θ̄(R) = θ(R), where the bar again denotes reduction mod p. So
Q | P̄ .

Considering the second action of Sn (i.e. permuting the ui), we can show
Ḡ ⊆ G, using the characterization (†). Details are left as an exercise.

This is incredibly useful for computing Galois groups, as it allows us to
explicitly write down some cycles in Gal(E,Q).

4.2 Trace, norm and discriminant

We are going to change direction a bit and look at traces and norms. These will
help us understand the field better, and perhaps prove some useful facts from
it. They will also lead to the notion of the discriminant, which is again another
tool that can be used to compute Galois groups, amongst many other things.

Definition (Trace). Let K be a field. If A = [aij ] is an n× n matrix over K,
we define the trace of A to be

tr(A) =

n∑
i=1

aii,

i.e. we take the sum of the diagonal terms.

It is a well-known fact that if B is an invertible n× n matrix, then

tr(B−1AB) = tr(A).

Hence given a finite-dimensional vector space V over K and σ : V → V a
K-linear map, then we can define the trace for the linear map as well.
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Definition (Trace of linear map). Let V be a finite-dimensional vector space
over K, and σ : V → V a K-linear map. Then we can define

tr(σ) = tr(any matrix representing σ).

Definition (Trace of element). Let K ⊆ L be a finite field extension, and
α ∈ L. Consider the K-linear map σ : L→ L given by multiplication with α, i.e.
β 7→ αβ. Then we define the trace of α to be

trL/K(α) = tr(σ).

Similarly, we can consider the determinant, and obtain the norm.

Definition (Norm of element). We define the norm of α to be

NL/K(α) = det(σ),

where σ is, again, the multiplication-by-α map.

This construction gives us two functions trL/K , NL/K : L→ K. It is easy to
see from definition that trL/K is additive while NL/K is multiplicative.

Example. Let L/K be a finite field extension, and x ∈ K. Then the matrix of
x is represented by xI, where I is the identity matrix. So

NL/K(x) = x[L:K], trL/K(x) = [L : K]x.

Example. Let K = Q, L = Q(i). Consider an element a+ bi ∈ Q(i), and pick
the basis {1, i} for Q(i). Then the matrix of a+ bi is(

a −b
b a

)
.

So we find that trL/K(a+ bi) = 2a and N(a+ bi) = a2 + b2 = |a+ bi|2.

In general, if K = Q and L = Q(
√
−d) where d > 0 is square-free, then

N(a+ b
√
−d) = a2 + b2d = |a+ b

√
−d|2. However, for other fields, the norm is

not at all related to the absolute value.

In general, computing norms and traces with the definition directly is not
fun. It turns out we can easily find the trace and norm of α from the minimal
polynomial of α, just like how we can find usual traces and determinants from
the characteristic polynomial.

To do so, we first prove the transitivity of trace and norm.

Lemma. Let L/F/K be finite field extensions. Then

trL/K = trF/K ◦ trL/F , NL/K = NF/K ◦NL/F .

To prove this directly is not difficult, but involves some confusing notation.
Purely for the sake of notational convenience, we shall prove the following more
general fact:

Lemma. Let F/K be a field extension, and V an F -vector space. Let T : V → V
be an F -linear map. Then it is in particular a K-linear map. Then

detK T = NF/K(detF T ), trK T = trF/K(trF T ).

63



4 Computational techniques II Galois Theory

Taking V to be L and T to be multiplication by α ∈ F clearly gives the
original intended result.

Proof. For α ∈ F , we will write mα : F → F for multiplication by α map viewed
as a K-linear map.

By IB Groups, Rings and Modules, there exists a basis {ei} such that T is
in rational canonical form, i.e. such that T is block diagonal with each diagonal
looking like 

0 0 · · · 0 a0

1 0 · · · 0 a1

0 1 · · · 0 a2

...
...

. . .
...

...
0 0 · · · 1 ar−1

 .

Since the norm is multiplicative and trace is additive, and

det

(
A 0
0 B

)
= detA detB, tr

(
A 0
0 B

)
= trA+ trB,

we may wlog T is represented by a single block as above.
From the rational canonical form, we can read off

detF T = (−1)r−1a0, trF T = ar−1.

We now pick a basis {fj} of F over K, and then {eifj} is a basis for V over
K. Then in this basis, the matrix of T over K is given by

0 0 · · · 0 ma0

1 0 · · · 0 ma1

0 1 · · · 0 ma2
...

...
. . .

...
...

0 0 · · · 1 mar−1

 .

It is clear that this has trace

trK(mar−1
) = trF/K(ar−1) = trF/K(trF T ).

Moreover, writing n = [L : K], we have

detK


0 0 · · · 0 ma0

1 0 · · · 0 ma1

0 1 · · · 0 ma2
...

...
. . .

...
...

0 0 · · · 1 mar−1

 = (−1)n(r−1) detK


ma0 0 0 · · · 0
ma1 1 0 · · · 0
ma2 0 1 · · · 0
...

...
...

. . .
...

mar−1
0 0 · · · 1


= (−1)n(r−1) detK(ma0)

= detK((−1)r−1ma0)

= NF/K((−1)r−1a0)

= NF/K(detF T ).

So the result follows.
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As a corollary, we have the following very powerful tool for computing norms
and traces.

Corollary. Let L/K be a finite field extension, and α ∈ L. Let r = [L : K(α)]
and let Pα be the minimal polynomial of α over K, say

Pα = tn + an−1t
n−1 + · · ·+ a0.

with ai ∈ K. Then
trL/K(α) = −ran−1

and
NL/K(α) = (−1)nrar0.

Note how this resembles the relation between the characteristic polynomial
and trace/determinants in linear algebra.

Proof. We first consider the case r = 1. Write mα for the matrix representing
multiplication by α. Then Pα is the minimal polynomial of mα. But since
degPα = n = dimK K(α), it follows that this is also the characteristic polynomial.
So the result follows.

Now if r 6= 1, we can consider the tower of extensions L/K(α)/K. Then we
have

NL/K(α) = NK(α)/K(NL/K(α)(α)) = NK(α)/K(αr)

= (NK(α)/K(α))r = (−1)nrar0.

The computation for trace is similar.

It is also instructive to prove this directly. In the case r = 1, we can pick the
basis {1, α, α2, · · · , αn−1} of L over K. Then the multiplication map sends

1 7→ α

α 7→ α2

...

αn−1 7→ αn = −an−1α
n−1 − · · · − a0

So the matrix is just

A =


0 0 · · · −a0

1 0 · · · −a1

0 1 · · · −a2

...
...

. . .
...

0 0 · · · −an−1


The characteristic polynomial of this matrix is

det(tI −A) = det


t 0 · · · a0

−1 t · · · a1

0 −1 · · · a2

...
...

. . .
...

0 0 · · · t+ an−1
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By adding ti multiples of the ith row to the first row for each i, this gives

det(tI −A) = det


0 0 · · · Pα
−1 t · · · a1

0 −1 · · · a2

...
...

. . .
...

0 0 · · · t+ an−1

 = Pα.

Then we notice that for r 6= 1, in an appropriate choice of basis, the matrix
looks like

C =


A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

 .

Theorem. Let L/K be a finite but not separable extension. Then trL/K(α) = 0
for all α ∈ L.

Proof. Pick β ∈ L such that Pβ , the minimal polynomial of β over K, is not
separable. Then by the previous characterization of separable polynomials, we
know p = charK > 0 with Pβ = q(tp) for some q ∈ K[t].

Now consider
K ⊆ K(βp) ⊆ K(β) ⊆ L.

To show trL/K = 0, by the previous proposition, it suffices to show trK(β)/K(βp) =
0.

Note that the minimal polynomial of βp over K is q because q(βp) = 0 and q
is irreducible. Then [K(β) : K] = degPβ = p deg q and deg[K(βp) : K] = deg q.
So [K(β) : K(βp)] = p.

Now {1, β, β2, · · · , βp−1} is a basis of K(β) over K(βp). Let Rβi be the
minimal polynomial of βi over K(βp). Then

Rβi =

{
t− 1 i = 0

tp − βir i 6= 0
,

We get the second case using the fact that p is a prime number, and hence
K(βp)(βi) = K(β) if 1 ≤ i < p. So [K(βp)(βi) : K(βp)] = p and hence the
minimal polynomial has degree p. Hence trK(β)/K(βp)(β

i) = 0 for all i.
Thus, trK(β)/K(βp) = 0. Hence

trL/K = trK(βp)/K ◦ trK(β)/K(βp) ◦ trL/K(β) = 0.

Note that if L/K is a finite extension, and charK = 0, then

trL/K(1) = [L : K] 6= 0.

So trL/K 6= 0. It is in fact true that all separable extensions have trL/K 6= 0, not
only when the field has characteristic 0.

Example. We want to show 3
√

3 6∈ Q( 3
√

2). Suppose not. Then we have
L = Q( 3

√
3) = Q( 3

√
2), since both extensions of Q have degree 3. Then there

exists some a, b, c ∈ Q such that

3
√

3 = a+ b
3
√

2 + c
3
√

22.
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We now compute the traces over Q. The minimal polynomials over Q are

P 3√3 = t3 − 3, P 3√2 = t3 − 2, P 3√4 = t3 − 4.

So we have

trL/Q(
3
√

3) = a trL/Q(1) + b trL/Q(
3
√

2) + c trL/Q(
3
√

4).

Since the minimal polynomials above do not have coefficients in t2, the traces of
the cube roots are zero. So we need a = 0. Then we are left with

3
√

3 = b
3
√

2 + c
3
√

4.

We apply the same trick again. We multiply by 3
√

2 to obtain

3
√

6 = b
3
√

4 + 2c.

We note that the minimal polynomial of 3
√

6 is t3 − 6. Taking the trace gives

trL/Q(
3
√

6) = b trL/Q(
3
√

4) + 6c.

Again, the traces are zero. So c = 0. So we have

3
√

3 = b
3
√

2.

In other words,

b3 =
3

2
,

which is clearly nonsense. This is a contradiction. So 3
√

3 6∈ Q( 3
√

2).

We can obtain another formula for the trace and norm as follows:

Theorem. Let L/K be a finite separable extension. Pick a further extension
E/L such that E/K is normal and

|HomK(L,E)| = [L : K].

Write HomK(L,E) = {ϕ1, · · · , ϕn}. Then

trL/K(α) =

n∑
i=1

ϕi(α), NL/K(α) =

n∏
i=1

ϕi(α)

for all α ∈ L.

Proof. Let α ∈ L. Let Pα be the minimal polynomial of α over K. Then there
is a one-to-one correspondence between

HomK(K(α), E)←→ RootPα(E) = {α1, · · · , αd}.

wlog we let α = α1.
Also, since

|HomK(L,E)| = [L : K],

we get
|HomK(K(α), E)| = [K(α) : K] = degPα.
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Moreover, the restriction map HomK(L,E) → HomK(K(α), E) (defined by
ϕ 7→ ϕ|K(α)) is surjective and sends exactly [K(α) : K] elements to any particular
element in HomK(K(α), E).

Therefore

∑
ϕi(α) = [L : K(α)]

∑
ψ∈HomK(K(α),E)

ψ(α) = [L : K(α)]

d∑
i=1

αi.

Moreover, we can read the sum of roots of a polynomial is the (negative of the)
coefficient of td−1, where

Pα = td + ad−1t
d−1 + · · ·+ a0.

So ∑
ϕi(α) = [L : K(α)](−ad−1) = trL/K(α).

Similarly, we have

∏
ϕi(α) =

 ∏
ψ∈HomK(K(α),E)

ψ(α)

[L:K(α)]

=

(
d∏
i=1

αi

)[L:K(α)]

= ((−1)da0)[L:K(α)]

= NL/K(α).

Corollary. Let L/K be a finite separable extension. Then there is some α ∈ L
such that trL/K(α) 6= 0.

Proof. Using the notation of the previous theorem, we have

trL/K(α) =
∑

ϕi(α).

Similar to a previous lemma, we can show that ϕ1, · · · , ϕn are “linearly indepen-
dent” over E, and hence

∑
ϕi cannot be identically zero. Hence there is some α

such that
trL/K(α) =

∑
ϕi(α) 6= 0.

Example. Let K = Fq ⊆ L = Fqn , with q is a power of some prime number p.
By a previous theorem on finite fields, we know L/K is Galois and

Gal(L/K) =
Z
nZ

and is generated by the Frobenius ϕ = Frq.
To apply the theorem, we had to pick an E such that E/K is normal and

HomK(L,E) = [L : K]. However, since L/K is Galois, we can simply pick
E = L.
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Then we know

trL/K(α) =
∑

ψ∈Gal(L/K)

ψ(α)

=

n−1∑
i=0

ϕi(α)

= α+ αq + αq
2

+ · · ·+ αq
n−1

.

Similarly, the norm is

NL/K(α) =

n−1∏
i=0

ϕi(α) = α · αq · · · · · αq
n−1

.

Recall that when solving quadratic equations f = t2 + bt+ c, we defined the
discriminant as b2 − 4c. This discriminant then determined the types of roots of
f . In general, we can define the discriminant of a polynomial of any degree, in a
scary way.

Definition (Discriminant). Let K be a field and f ∈ K[t], L the splitting field
of f over K. So we have

f = a(t− α1) · · · (t− αn)

for some a, α1, · · · , αn ∈ L. We define

∆f =
∏
i<j

(αi − αj), Df = ∆2
f = (−1)n(n−1)/2

∏
i 6=j

(αi − αj).

We call Df the discriminant of f .

Clearly, Df 6= 0 if and only if f has no repeated roots.

Theorem. Let K be a field and f ∈ K[t], L is the splitting field of f over K.
Suppose Df 6= 0 and charK 6= 2. Then

(i) Df ∈ K.

(ii) Let G = Gal(L/K), and θ : G → Sn be the embedding given by the
permutation of the roots. Then im θ ⊆ An if and only if ∆f ∈ K (if and
only if Df is a square in K).

Proof.

(i) It is clear that Df is fixed by Gal(L/K) since it only permutes the roots.

(ii) Consider a permutation σ ∈ Sn of the form σ = (` m), and let it act on
the roots. Then we claim that

σ(∆f ) = −∆f . (†)

So in general, odd elements in Sn negate ∆f while even elements fix it.
Thus, ∆f ∈ K iff ∆f is fixed by Gal(L/K) iff every element of Gal(L/K)
is even.
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To prove (†), we have to painstakingly check all terms in the product. We
wlog ` < m. If k < `,m. Then this swaps (αk − α`) with αk − αm), which
has no effect. The k > m case is similar. If ` < k < m, then this sends
(α` − αk) 7→ (αm − αk) and (αk − αm) 7→ (α` − αm). This introduces two
negative signs, which has no net effect. Finally, this sends (αk − αm) to
its negation, and so introduces a negative sign.

We will later use this result to compute certain Galois groups. Before that,
we see how this discriminant is related to the norm.

Theorem. Let K be a field, and f ∈ K[t] be an n-degree monic irreducible
polynomial with no repeated roots. Let L be the splitting field of f over K, and
let α ∈ RootF (L). Then

Df = (−1)n(n−1)/2NK(α)/K(f ′(α)).

Proof. Let HomK(K(α), L) = {ϕ1, · · · , ϕn}. Recall these are in one-to-one
correspondence with Rootf (L) = {α1, · · · , αn}. Then we can compute∏

i 6=j

(αi − αj) =
∏
i

∏
j 6=i

(αi − αj).

Note that since f is just monic, we have

f = (t− α1) · · · (t− αn).

Computing the derivative directly, we find∏
j 6=i

(αi − αj) = f ′(αi).

So we have ∏
i 6=j

(αi − αj) =
∏
i

f ′(αi).

Now since the ϕi just maps α to αi, we have∏
i 6=j

(αi − αj) =
∏
i

ϕi(f
′(α)) = NK(α)/K(f ′(α)).

Finally, multiplying the factor of (−1)n(n−1)/2 gives the desired result.

Example. Let K be a field with charK 6= 2, 3. Let f ∈ K[t] have degree 3, say

f = t3 + bt+ c

where we have gotten rid of the t2 term as in the first lecture. We further assume
f is irreducible with no repeated roots, and let L be the splitting field of f .

We want to compute the discriminant of this polynomial. Let α ∈ Rootf (L).
Then

β = f ′(α) = 3α2 + b.

Then we can see

β = −2b− 3c

α
.
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Alternatively, we have

α =
−3c

β + 2b
. (∗)

Putting (∗) into α3 + bα + c = 0, we find the minimal polynomial of β has
constant term −4b3 − 27c2. This then gives us the norm, and we get

Df = −NK(α)/K(β) = −4b3 − 27c2.

This is the discriminant of a cubic.
We can take a specific example, where

f = t3 − 31t+ 62.

Then f is irreducible over Q. We can compute Df , and find that it is a square.
So the previous theorem says the image of the Galois group Gal(L/K) is a
subgroup of A3. However, we also know Gal(L/K) has three elements since
deg f = 3. So we know Gal(L/K) ∼= A3.
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