Part IT — Representation Theory

Theorems with proof

Based on lectures by S. Martin
Notes taken by Dexter Chua

Lent 2016

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what
was actually lectured, and in particular, all errors are almost surely mine.

Linear Algebra and Groups, Rings and Modules are essential

Representations of finite groups

Representations of groups on vector spaces, matrix representations. Equivalence of
representations. Invariant subspaces and submodules. Irreducibility and Schur’s
Lemma. Complete reducibility for finite groups. Irreducible representations of Abelian
groups.

Character theory

Determination of a representation by its character. The group algebra, conjugacy classes,
and orthogonality relations. Regular representation. Permutation representations and
their characters. Induced representations and the Frobenius reciprocity theorem.
Mackey’s theorem. Frobenius’s Theorem. [12]

Arithmetic properties of characters
Divisibility of the order of the group by the degrees of its irreducible characters.
Burnside’s p®q® theorem. (2]

Tensor products
Tensor products of representations and products of characters. The character ring.
Tensor, symmetric and exterior algebras. 3]

Representations of St and SU,
The groups S*, SU> and SO(3), their irreducible representations, complete reducibility.
The Clebsch-Gordan formula. *Compact groups.* [4]

Further worked examples
The characters of one of GLa(Fy), S, or the Heisenberg group. 3]
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1 Group actions IT Representation Theory (Theorems with proof)

1 Group actions

Proposition. As groups, GL(V) = GL,,(F), with the isomorphism given by
0 — Ag.

Proposition. Matrices A;, A; represent the same element of GL(V') with respect
to different bases if and only if they are conjugate, namely there is some X €
GL,,(F) such that

Ay = XA XL

Proposition.
tr(XAX 1) = tr(A).

Proposition. Let o € GL(V), where V is a finite-dimensional vector space over
C and o™ = id for some positive integer m. Then « is diagonalizable.

Proposition. Let V be a finite-dimensional vector space over C, and a €
End(V), not necessarily invertible. Then « is diagonalizable if and only if there
is a polynomial f with distinct linear factors such that f(«) = 0.

Proposition. A finite family of individually diagonalizable endomorphisms of
a vector space over C can be simultaneously diagonalized if and only if they
commute.

Lemma. Given an action of G on X, we obtain a homomorphism 6 : G —
Sym(X), where Sym(X) is the set of all permutations of X.

Proof. For g € G, define §(g) = 6, € Sym(X) as the function X — X by z — gz.
This is indeed a permutation of X because f,-1 is an inverse.

Moreover, for any g1, g2 € G, we get 04,4, = 04,0,,, since (g1g2)x = g1(g2).

O
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2 Basic definitions

Lemma. The relation of “being isomorphic” is an equivalence relation on the
set of all linear representations of G over F.

Lemma. If p,p’ are isomorphic representations, then they have the same di-
mension.

Proof. Trivial since isomorphisms between vector spaces preserve dimension. [

Lemma. Let p: G — GL(V) be a representation, and W be a G-subspace of
V. If B={vy, -+ ,v,} is a basis containing a basis By = {vy, -+, vy} of W
(with 0 < m < m), then the matrix of p(g) with respect to B has the block upper

triangular form
* *
0 =

Lemma. Let p : G — GL(V) be a decomposable representation with G-invariant
decomposition V=U @ W. Let By = {uy,--- ,ux} and By = {wy,--- ,w;} be
bases for U and W, and B = B; U By be the corresponding basis for V. Then
with respect to B, we have

_ (lpu(9)]s, 0
[p(g)]B( 0 ° [pu(g)]zs)

for each g € G.
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3 Complete reducibility and Maschke’s theorem

Theorem. Every finite-dimensional representation V of a finite group over a
field of characteristic 0 is completely reducible, namely, V2 V; & --- @V, is a
direct sum of irreducible representations.

Theorem (Maschke’s theorem). Let G be a finite group, and p : G — GL(V)
a representation over a finite-dimensional vector space V over a field F with
charF = 0. If W is a G-subspace of V, then there exists a G-subspace U of V
such that V=W @ U.

Proof. From linear algebra, we know W has a complementary subspace. Let
W' be any vector subspace complement of W in V, i.e. V. =W ® W' as vector
spaces.

Let ¢ : V. — W be the projection of V onto W along W', i.e. if v =w +w’
with w € W, w’ € W', then ¢(v) = w.

The clever bit is to take this ¢ and tweak it a little bit. Define

- T Al )

geG

This is in some sense an averaging operator, averaging over what p(g) does. Here
we need the field to have characteristic zero such that ﬁ is well-defined. In fact,

this theorem holds as long as char F' { |G].
For simplicity of expression, we drop the p’s, and simply write

\GI > galg™'v).

geG

We first claim that ¢ has image in W. This is true since for v € V, ¢(g~'v) € W,
and gW < W. So this is a little bit like a projection.

Next, we claim that for w € W, we have g(w) = w. This follows from the
fact that ¢ itself fixes W. Since W is G-invariant, we have g~ 'w € W for all
w € W. So we get

1
q(w) \G\qu 'w) |G‘Zgg W:@ZW:W.

geG geG geG

Putting these together, this tells us ¢ is a projection onto W.
Finally, we claim that for h € G, we have hq(v) = g(hv), i.e. it is invariant
under the G-action. This follows easily from definition:

h 1
a(v |G|qug v)

geG

= %” > hgalg™'v)

geG

—1
|G| > (hg)q hv)

geqG
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We now put ¢’ = hg. Since h is invertible, summing over all g is the same as
summing over all g’. So we get

- Tclu S dalg ()

g9'eG
— 4(hv).

We are pretty much done. We finally show that ker ¢ is G-invariant. If v € ker ¢
and h € G, then g(hv) = hg(v) = 0. So hv € kerq.
Thus
V=imgdkerg=W @ kerq

is a GG-subspace decomposition. O

Proposition. Let W be G-invariant subspace of V, and V' have a G-invariant
inner product. Then W+ is also G-invariant.

Proof. To prove this, we have to show that for all v € W+, g € G, we have
gv e W,

This is not hard. We know v € W+ if and only if (v,w) =0 for all w € W.
Thus, using the definition of G-invariance, for v € W+, we know

(gv,gw) =0

forall g e G,we W.
Thus for all w € W, pick w = g~'w’ € W, and this shows (gv,w’) = 0.
Hence gv € W+, O

Theorem (Weyl’s unitary trick). Let p be a complex representation of a finite
group G on the complex vector space V. Then there is a G-invariant Hermitian
inner product on V.

Corollary. Every finite subgroup of GL,, (C) is conjugate to a subgroup of U(n).

Proof. We start by defining an arbitrary inner product on V: take a basis
e1,- - ,e,. Define (e;,e;) = d;;, and extend it sesquilinearly. Define a new inner
product

1
<V7W> = @ Z(gv,gw)'

geG

We now check this is sesquilinear, positive-definite and G-invariant. Sesquilin-
earity and positive-definiteness are easy. So we just check G-invariance: we
have

(hv, hw) — é S ((gh)v, (gh)w)
geG

1 ! /
Z@Z(gng)

g'eG
= (v,w). O

Proposition. Let p be an irreducible representation of the finite group G over
a field of characteristic 0. Then p is isomorphic to a subrepresentation of preg.
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Proof. Take p : G — GL(V') be irreducible, and pick our favorite 0 # v € V.
Now define 0 : FG — V by

Z age, — Z ag(gv).

It is not hard to see this is a G-homomorphism. We are now going to exploit the
fact that V is irreducible. Thus, since im0 is a G-subspace of V' and non-zero,
we must have imf = V. Also, kerf is a G-subspace of FG. Now let W be
the G-complement of ker# in FG, which exists by Maschke’s theorem. Then
W < FG is a G-subspace and

FG = ker 0 & W.
Then the isomorphism theorem gives

W 2 FG/kerf 2im6 = V. O
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4 Schur’s lemma

Theorem (Schur’s lemma).

(i) Assume V and W are irreducible G-spaces over a field F. Then any
G-homomorphism 6 : V' — W is either zero or an isomorphism.

(ii) If F is algebraically closed, and V is an irreducible G-space, then any
G-endomorphism V' — V is a scalar multiple of the identity map ¢y .

Proof.

(i) Let 6 : V. — W be a G-homomorphism between irreducibles. Then ker 6 is
a G-subspace of V', and since V is irreducible, either ker § = 0 or ker6 = V.
Similarly, im € is a G-subspace of W, and as W is irreducible, we must
have im@ = 0 or im# = W. Hence either ker§ = V', in which case 6 = 0,
or kerf =0 and im@ = W, i.e. 0 is a bijection.

(ii) Since F is algebraically closed, § has an eigenvalue A. Then 6 — \vy is a
singular G-endomorphism of V. So by (i), it must be the zero map. So
0= /\Lv. O

Corollary. If V,W are irreducible complex G-spaces, then

1 V,W are G-isomorphic

dime Home (V, W) {O otherwise
Proof. If V-and W are not isomorphic, then the only possible map between
them is the zero map by Schur’s lemma.

Otherwise, suppose V' 2= W and let 61,02 € Homg(V, W) be both non-
zero. By Schur’s lemma, they are isomorphisms, and hence invertible. So
050, € Endg (V). Thus 65 '0; = Ay for some A € C. Thus 6; = \,. O

Corollary. If G is a finite group and has a faithful complex irreducible repre-
sentation, then its center Z(QG) is cyclic.

Proof. Let p: G — GL(V) be a faithful irreducible complex representation. Let
z € Z(G). So zg = gz for all g € G. Hence ¢, : v — 2v is a G-endomorphism
on V. Hence by Schur’s lemma, it is multiplication by a scalar p., say. Thus
2v=yp,viorallveV.

Then the map

o:Z(G)—C*
Z > fig

is a representation of Z(G). Since p is faithful, so is 0. So Z(G) = {p. : z €
Z(@G)} is isomorphic to a finite subgroup of C*, hence cyclic. O

Corollary. The irreducible complex representations of a finite abelian group G
are all 1-dimensional.
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Proof. We can use the fact that commuting diagonalizable matrices are simulta-
neously diagonalizable. Thus for every irreducible V', we can pick some v € V'
that is an eigenvector for each g € G. Thus (v) is a G-subspace. As V is
irreducible, we must have V = (v).

Alternatively, we can prove this in a representation-theoretic way. Let V' be
an irreducible complex representation. For each g € G, the map

Og: V=V
Vi gv

is a G-endomorphism of V', since it commutes with the other group elements.
Since V is irreducible, 0, = A\giy for some Ay € C. Thus

gv = MgV
for any g. As V is irreducible, we must have V = (v). O

Proposition. The finite abelian group G = C,,, X --- x C,,, has precisely |G|
irreducible representations over C.

Proof. Write

G= <$1> X oo X (a:r>,
where |z;| = n;. Any irreducible representation p must be one-dimensional. So
we have

p:G— C*.
Let p(1,--- ,xj,---,1) = A\;. Then since p is a homomorphism, we must have
)\?j = 1. Therefore \; is an n;th root of unity.
Now the values (A1,---,\;) determine p completely, namely
el ) = XA

Also, whenever \; is an n;th root of unity for each ¢, then the above formula
gives a well-defined representation. So there is a one-to-one correspondence
p e (Ar,-o- 5 An), with A7 =1

Since for each j, there are n; many n;th roots of unity, it follows that there
are |G| =nq -+ n, many choices of the \;. Thus the proposition. O

Lemma. Let V,V;, V5 be G-vector spaces over F. Then
(i) Homg(V, Vi @ Va) = Homg(V, Vi) @ Homeg (V, V)
(ii) Homg(V; & V5, V) 2 Homg(V1, V) @ Homg (Va, V).

Proof. The proof is to write down the obvious homomorphisms and inverses.
Define the projection map

71-7;:‘/1@‘/2—)‘/1'7

which is the G-linear projection onto V;.
Then we can define the G-homomorphism

Homg (V, V1 @ V2) — Homg (V, V1) @ Homg(V, V2)
@ = (M, Top).

Then the map (¢1,12) — 11 + 9 is an inverse.
For the second part, we have the homomorphism ¢ — (¢|v,, ¢lv,) with

inverse (1, 12) — Y171 + ama.

10
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Lemma. Let F be an algebraically closed field, and V be a representation of G.
Suppose V = @, V; is its decomposition into irreducible components. Then
for each irreducible representation S of G,

{j : V; = S}| = dimHomg (S, V).
Proof. We induct on n. If n = 0, then this is a trivial space. If n = 1, then V'

itself is irreducible, and by Schur’s lemma, dim Homg (S, V) =1V =5, 0
otherwise. Otherwise, for n > 1, we have

n—1
V= (@ m) aV,.
=1

By the previous lemma, we know

n—1 n—1

dim homg (S, (@ Vi> @ Vn> = dim Homg <S,@Vi> + dim homg (S, V,,).
i=1 i=1

The result then follows by induction. O

11
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5 Character theory

Theorem.
(i) xv(1) =dim V.

(ii) xv is a class function, namely it is conjugation invariant, i.e.

xv(hgh™') = xv(g)

for all g,h € G. Thus yy is constant on conjugacy classes.

(i) xv(g™") = xv(9)-

(iv) For two representations V, W, we have
Xvew = Xv + Xw-

Proof.
(i) Obvious since py (1) = idy.
(ii) Let R, be the matrix representing g. Then
X(hgh™") = tr(Rp Ry Ry, ") = t(Ry) = X(9),
as we know from linear algebra.

(iii) Since g € G has finite order, we know p(g) is represented by a diagonal
matrix

A1
Rg: '.. y
An

and x(g) = > Ai. Now g~ ! is represented by
At
Rga = . ,

)\71

n

Noting that each A; is an nth root of unity, hence |A;| = 1, we know

X =Y A"=Y "N => N =x(g).

(iv) Suppose V =V, @ Va, with p: G — GL(V) splitting into p; : G — GL(V;).
Pick a basis B; for V;, and let B = By U Bs. Then with respect to B, we

have
_ [Pl(g)] 1 0
Ip(9)]s = ( o (g)}&) .
So x(g) = tr(p(9)) = tr(p1(9)) + tr(p2(9)) = x1(9) + x2(9)- O

12
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Lemma. Let p : G — GL(V') be a complex representation affording the character
X- Then

Ix(9)] < x(1),

with equality if and only if p(g) = AI for some X\ € C, a root of unity. Moreover,
x(g) = x(1) if and only if g € ker p.

Proof. Fix g, and pick a basis of eigenvectors of p(g). Then the matrix of p(g)
is diagonal, say
A1

plg) = . :
An

Ix(9)l = ‘ZM <Y =D 1 =dimV = x(1).

In the triangle inequality, we have equality if and only if all the \;’s are equal,
to A, say. So p(g) = AI. Since all the A;’s are roots of unity, so is .

And, if x(g) = x(1), then since p(g) = AI, taking the trace gives x(g) = Ax(1).
SoA=1,1ie. p(g)=1. So g € kerp. O

Hence

Lemma.
(i) If x is a complex (irreducible) character of G, then so is ¥.

(ii) If x is a complex (irreducible) character of G, then so is ex for any linear
(1-dimensional) character e.

Proof.

(i) If R : G — GL,(C) is a complex matrix representation, then so is R : G —

GL,(C), where g — R(g). Then the character of R is Y

(ii) Similarly, R’ : g — &(g)R(g) for g € G is a representation with character
£X-

It is left as an exercise for the reader to check the details. O

Theorem (Completeness of characters). The complex irreducible characters of
G form an orthonormal basis of C(G), namely

(i) If p: G = GL(V) and p' : G — GL(V') are two complex irreducible
representations affording characters x, x’ respectively, then

, 1 if p and p’ are isomorphic representations
6x) = )
0 otherwise

This is the (row) orthogonality of characters.

(ii) Each class function of G can be expressed as a linear combination of
irreducible characters of G.

Corollary. Complex representations of finite groups are characterised by their
characters.

13
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Proof. Let p : G — GL(V) afford the character xy. We know we can write
p=mip1 ® - B mypk, where py,--- , p are (distinct) irreducible and m; >0
are the multiplicities. Then we have

X =mix1+ -+ MeXk,

where x; is afforded by p;. Then by orthogonality, we know

mj = (X, X;j)-

So we can obtain the multiplicity of each p; in p just by looking at the inner
products of the characters. O

Corollary (Irreducibility criterion). If p : G — GL(V) is a complex repre-
sentation of G affording the character x, then p is irreducible if and only if

Gx) =1

Proof. If p is irreducible, then orthogonality says (x,x) = 1. For the other
direction, suppose (x,x) = 1. We use complete reducibility to get

X=>_ mix;,

with x; irreducible, and m; > 0 the multiplicities. Then by orthogonality, we

get
(6x) = m3.

But (x,x) = 1. So exactly one of m; is 1, while the others are all zero, and

X = X;j- So x is irreducible. O
Theorem. Let pq,- -, pi be the irreducible complex representations of G, and
let their dimensions be ny, - ,ng. Then

|G| = an

Proof. Recall that pres : G — GL(CG), given by G acting on itself by multipli-
cation, is the regular representation of G' of dimension |G|. Let its character be
Treg, the regular character of G.

First note that we have myeg(1) = |G|, and myeg(h) = 0 if b # 1. The first
part is obvious, and the second is easy to show, since we have only Os along the
diagonal.

Next, we decompose Tyeg as

Treg = § a5 Xjs

We now want to find a;. We have
1 _ 1
aj = (Meeg X) = 157 > Tes(9)x5(9) = g 16hu ) =),
geG

Then we get
|G = Tees(1) = Y ajx; (1) =Y x;(1)? =D nl. O

14
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Corollary. The number of irreducible characters of G (up to equivalence) is k,
the number of conjugacy classes.

Proof. The irreducible characters and the characteristic functions of the conju-
gacy classes are both bases of C(G). O

Corollary. Two elements g1, g2 are conjugate if and only if x(g1) = x(g=2) for
all irreducible characters x of G.

Proof. If g1, g2 are conjugate, since characters are class functions, we must have

x(91) = x(g2)-
For the other direction, let d be the characteristic function of the class of g;.

Then since 0 is a class function, we can write

0= ijXj’

where x; are the irreducible characters of G. Then

3(g2) =D _myxi(g2) = > _myx;lg1) = 6(g1) = 1.

So gs is in the same conjugacy class as g;. O

15
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6 Proof of orthogonality

Theorem (Row orthogonality relations). If p : G — GL(V) and p' : G —
GL(V') are two complex irreducible representations affording characters x, x’
respectively, then

, 1 if p and p’ are isomorphic representations
ox') = . :
0 otherwise

Proof. We fix a basis of V and of V'. Write R(g), R'(g) for the matrices of p(g)
and p'(g) with respect to these bases respectively. Then by definition, we have

-1
', x) |G| > X

geG

G2 LR R

gEG 1<z<n
1<j<n

For any linear map ¢ : V — V'’ we define a new map by averaging by p’ and p.
p: V=V
v ﬁ > 0 (g enlg)v
We first check ¢ is a G-homomorphism — if h € G, we need to show
P (hHgp(h)(v) = ¢(v).
We have

p (b= ")@p(h)(v) >0 ((gh)™Heplgh)v
|G|g€G

= 1 2 el

g'eG
= p(v).
(i) Now we first consider the case where p, p’ is not isomorphic. Then by
Schur’s lemma, we must have ¢ = 0 for any linear ¢ : V — V',

We now pick a very nice ¢, where everything disappears. We let ¢ = ¢,3,
the operator having matrix F,g with entries 0 everywhere except 1 in the

(a, B) position.
Then £,3 = 0. So for each 7, j, we have

1 (R s R(g)) = 0.

geG

Using our choice of €43, we get

,1 o
61 2 0 0 =0

geqG

16
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for all 7, j. We now pick a =1 and 8 =j. Then
R'(¢g7YHuR =0.
P> (9
geG

We can sum this thing over all ¢ and j to get that (x’,x) = 0.

(ii) Now suppose p, p’ are isomorphic. So we might as well take x = x/, V =V’
and p=p'. If ¢ : V — V is linear, then ¢ € Endg (V).

We first claim that tr<,5 = tr. To see this, we have
tro = Z tr(p Z tro =tro,
IGI = gl =

using the fact that traces don’t see conjugacy (and p(g—1) = p(g)~! since
p is a group homomorphism).

By Schur’s lemma, we know @ = Ar,, for some A € C (which depends on
¢). Then if n = dim V, then
1
A= —tro.
n

Let ¢ = e43. Then trop = §a5. Hence
1
€ap = |G| ZP Eaﬁp 9) = ﬁaaﬁL‘

In terms of matrices, we take the (4, j)th entry to get

1 . 1
E i = *5(1 52

We now put a =14 and 8 = j. Then we are left with
1 . 1
@l Zg: R(g™)uR(g)j5 = 55@*

Summing over all ¢ and j, we get (x,x) = 1. O

Alternative proof. Consider two representation spaces V' and W. Then

1
(xw,xv) = |G| ZXW 9)xv(9) = @ ZXV@W*(Q)

We notice that there is a natural isomorphism V @ W* = Hom(W, V), and
the action of g on this space is by conjugation. Thus, a G-invariant element
is just a G-homomorphism W — V. Thus, we can decompose Hom(V, W) =
Homg(V, W)@ U for some G-space U, and U has no G-invariant element. Hence
in the decomposition of Hom(V, W) into irreducibles, we know there are exactly
dim Homg (V, W) copies of the trivial representation. By Schur’s lemma, this
number is 1 if V=W, and 0if V2 W.
So it suffices to show that if x is a non-trivial irreducible character, then

> xlg) =

geG

But if p affords y, then any element in the image of dec p(g) is fixed by G.
By irreducibility, the image must be trivial. So }° . p(g) = 0. O

17
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Theorem (Column orthogonality relations). We have

k
ZW%‘(Q@) =6;0|Cal(ge)|-

Corollary.
k
Gl ="
i=1

Proof of column orthogonality. Consider the character table X = (x;(g;)). We

know
0ij is 0
(Xi> X5 Z | CG (90)Xk(ge)-
Then -
XD 'XT = Ik,
where
|Ca(gr)l - 0
D= i
0 o+ |Calgr)|
Since X is square, it follows that D™'X7 is the inverse of X. So XTX = D,
which is exactly the theorem. O

Theorem. Each class function of GG can be expressed as a linear combination
of irreducible characters of G.

Proof. We list all the irreducible characters x1,-- -, x¢ of G. Note that we don’t
know the number of irreducibles is k. This is essentially what we have to prove
here. We now claim these generate C(G), the ring of class functions.

Now recall that C(G) has an inner product. So it suffices to show that the
orthogonal complement to the span (x1,---,x¢) in C(G) is trivial. To see this,
assume f € C(G) satisfies

<f7 Xj> =0
for all y; irreducible. We let p : G — GL(V) be an irreducible representation

affording x € {x1,---, x¢}. Then (f,x) = 0.
Consider the function

= Z f(g V=V
|Gl
For any h € G, we can compute

p(h) " op(h) = |G|Zf p(h~'gh) = mz F(h="gh)p(h~ gh) =
g

using the fact that f is a class function. So this is a G-homomorphism. So as p
is irreducible, Schur’s lemma says it must be of the form Acy for some A € C.
Now we take the trace of this thing. So we have

nA = tr <|é| %:f(g)p(g)> = ﬁ %:mx(g) =(f,x)=0.

18



6 Proof of orthogonality — II Representation Theory (Theorems with proof)

SoA=0,1ie. >, f(9)p(g) =0, the zero endomorphism on V. This is valid for
any irreducible representation, and hence for every representation, by complete
reducibility.

In particular, take p = pyeg, Where pres(g) : €1 > €4 for each g € G. Hence

Y F(@)preg(g) s e1 =Y Flg)ey.

Since this is zero, it follows that we must have ) f(g)e, = 0. Since the e,’s are

linearly independent, we must have f(g) =0 for all g € G, i.e. f=0. O
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7 Permutation representaticllsRepresentation Theory (Theorems with proof)

7 Permutation representations

Lemma. 7x always contains the trivial character 1 (when decomposed in the
basis of irreducible characters). In particular, span{e;, + -+ e, } is a trivial
G-subspace of CX, with G-invariant complement {>° a,e; : > a, = 0}.

Lemma. (mx, 1), which is the multiplicity of 1 in 7x, is the number of orbits
of G on X.

Proof. We write X as the disjoint union of orbits, X = X; U---U X,. Then
it is clear that the permutation representation on X is just the sum of the
permutation representations on the X, i.e.

7TX:7TX1+"'+7T:Eu

where 7x; is the permutation character of G'on X;. So to prove the lemma, it
is enough to consider the case where the action is transitive, i.e. there is just
one orbit.

So suppose G acts transitively on X. We want to show (rx,1) = 1. By
definition, we have

1
:@H(g,x)GGxX:gx:w}l
1
v Z lGl‘v
|G| rzeX

where G, is the stabilizer of z. By the orbit-stabilizer theorem, we have |G, || X| =
|G|. So we can write this as

So done. O

Lemma. Let G act on the sets X1, X5. Then G acts on X; x X5 by

9(331,552) = (9931,9932>-
Then the character
7TX1><X2 = 7TX17TX27

and so
(rx,,Tx,) = number of orbits of G on X; x Xs.

Proof. We know 7x, x x,(g) is the number of pairs (21, z2) € X7 x X5 fixed by
g. This is exactly the number of things in X3 fixed by ¢ times the number of
things in X, fixed by g. So we have

TX1x X (g) =TX, (g)ﬂXz (g)
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7 Permutation representaticllsRepresentation Theory (Theorems with proof)

Then using the fact that mq, 7o are real, we get

(Tx,,7x,) = ‘Tl;l Zg:ﬂxl (9)7x,(9)

_ T<1;| > T 9ma9)1e(9)

= <7TX17TX2’ 1>

= (Tx,x X5, 1)-
So the previous lemma gives the desired result. O

Lemma. Let G act on X, with |[X| > 2. Then
mx =la+ X,

with x irreducible if and only if G is 2-transitive on X.

Proof. We know
mx =milg +maxe + -+ mexe,
with 1g, x2, -, x¢ distinct irreducible characters and m; € N are non-zero.
Then by orthogonality,
J
(mx,mx) = Zm?
i=1

Since (rx,mx) is the number of orbits of X x X, we know G is 2-transitive on
X if and only if £ =2 and m; = mg = 1. O]

Lemma. Let g € A,,, n > 1. If g commutes with some odd permutation in .S,
then Cg, (g) = Ca, (g). Otherwise, Cg, splits into two conjugacy classes in A,, of
equal size.
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8 Normal subgroups and lifihgRepresentation Theory (Theorems with proof)

8 Normal subgroups and lifting

Lemma. Let N <G. Let p: G/N — GL(V) be a representation of G/N. Then
the composition

p: G Rl GNP, GL(V)

is a representation of G, where p(g) = p(gN). Moreover,
(i) p is irreducible if and only if § is irreducible.
(ii

(iii

The corresponding characters satisfy x(g) = x(gN).

)
)
) degx = deg X.
)

(iv) The lifting operation x — x is a bijection
{irreducibles of G/N} <— {irreducibles of G with N in their kernel}.

We say x lifts to x.

Proof. Since a representation of G is just a homomorphism G — GL(V), and
the composition of homomorphisms is a homomorphisms, it follows immediately
that p as defined in the lemma is a representation.

i) We can compute
(i)

ﬁ > x(9)x(9)
1

geG

=@ > > x(gk)x(gk)

gNEG/N kEN

:ﬁ > Y X(gN)x(gN)

gNeG/N keN

06x) =

=L 3 INREMRN)
Gl vea n
1 _—
= W gNgG:/NX(QN)X(gN)
= (.3

So (x,x) =1 if and only if (X, x) = 1. So p is irreducible if and only if p
is irreducible.

(ii) We can directly compute
x(9) = trp(g) = tr(p(gN)) = X(9N)
forall g € G.
(iii) To see that y and x have the same degree, we just notice that
deg x = x(1) = X(N) = deg x.

Alternatively, to show they have the same dimension, just note that p and
p map to the general linear group of the same vector space.
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8 Normal subgroups and lifihgRepresentation Theory (Theorems with proof)

(iv) To show this is a bijection, suppose X is a character of G/N and x is its
lift to G. We need to show the kernel contains N. By definition, we know
X(N) = x(1). Also, if k € N, then x(k) = x(kN) = x(V) = x(1). So
N < kerx.

Now let x be a character of G with N < ker . Suppose p: G — GL(V)
affords x. Define

§:G/N — GL(V)
gN + p(g)

Of course, we need to check this is well-defined. If gN = ¢’N, then
g tg' € N. So p(g) = p(g’) since N < ker p. So this is indeed well-defined.
It is also easy to see that p is a homomorphism, hence a representation of
G/N.

Finally, if ¥ is a character of p, then x(gN) = x(g) for all ¢ € G by
definition. So x lifts to x. It is clear that these two operations are inverses
to each other. O

Lemma. Given a group G, the derived subgroup or commutator subgroup
G' = ([a,b] : a,b € G),

where [a, b] = aba=1b™!, is the unique minimal normal subgroup of G such that
G/G' is abelian. So if G/N is abelian, then G’ < N.

Moreover, G has precisely £ = |G : G’| representations of dimension 1, all
with kernel containing G’, and are obtained by lifting from G/G’.

In particular, by Lagrange’s theorem, ¢ | G.

Proof. Consider [a,b] = aba='b~! € G’. Then for any h € G, we have
h(aba~ b1 )h~1 = ((ha)b(ha)—lb—l) (bhb—lh—l) = [ha,b][b,h] € G
So in general, let [a1, b1][as, bs] - - - [an, by] € G'. Then
hlay, bi][az, ba] - - - [an, bp]h ™" = (R[ay, bi]h 1) (h[ag, bo]h ™) - - - (R[an, bu]h 1),

which is in G’. So G’ is a normal subgroup.

Let N < G. Let g,h € G. Then [g,h] € N if and only if ghg~th™! € N if
and only if ghN = hgN, if and only if (¢N)(hN) = (hN)(gN) by normality.

Since G’ is generated by all [g, h], we know G’ < N if and only if G/N is
abelian.

Since G/G’, is abelian, we know it has exactly ¢ irreducible characters,
X1, s Xe, all of degree 1. The lifts of these to GG also have degree 1, and by the
previous lemma, these are precisely the irreducible characters x; of G such that
G' < ker x;.

But any degree 1 character of G is a homomorphism x : G — C*, hence
X(ghg=th™1) = 1. So for any 1-dimensional character, x, we must have G’ <
ker x. So the lifts x1,--- , x¢ are all 1-dimensional characters of G. O

Lemma. G is not simple if and only if x(g) = x(1) for some irreducible character
X # 1g and some 1 # g € G. Any normal subgroup of G is the intersection of
the kernels of some of the irreducible characters of G, i.e. N = [ker x;.
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8 Normal subgroups and lifihgRepresentation Theory (Theorems with proof)

Proof. Suppose x(g) = x(1) for some non-trivial irreducible character y, and x
is afforded by p. Then g € kerp. So if g # 1, then 1 # ker p << G, and ker p # G.
So G cannot be simple.

If 1 # N < G is a non-trivial proper subgroup, take an irreducible character
X of G/N, and suppose X # lg/n. Lift this to get an irreducible character x,
afforded by the representation p of G. Then N < kerp <1 G. So x(g) = x(1) for
g€ N.

Finally, let 1 # N < G. We claim that N is the intersection of the kernels of
the lifts x1,--- , x¢ of all the irreducibles of G/N. Clearly, we have N <, ker x;.
If g€ G\ N, then gN # N. So X(gN) # x(N) for some irreducible x of G/N.
Lifting x to x, we have x(g) # x(1). So ¢ is not in the intersection of the
kernels. O
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9  Dual spaces and tensor piddReproferegatisenfilizmny (Theorems with proof)

9 Dual spaces and tensor products of represen-
tations

9.1 Dual spaces

Lemma. Let p : G — GL(V) be a representation over F, and let V* =
Homp(V,F) be the dual space of V. Then V* is a G-space under

(0" (9)9)(v) = ¢(p(g™")V).
This is the dual representation to p. Its character is x(p*)(g) = x,(g7).

Proof. We have to check p* is a homomorphism. We check

P (91) (P (92)9)(v) = (" (g2)9) (p(g1 ) (V)
¢(p(92 )p(gr V)
= ¢(p((g192)~ 1)("))
= (p"(9192)9) (V).

To compute the character, fixa g € G, and let eq, - - - , e, be a basis of eigenvectors
of V of p(g), say

p(g)e; = Aje;.

If we have a dual space of V, then we have a dual basis. We let ¢1,--- , &, be
the dual basis. Then

(p*(9)e5)(e:) = £5(p(g™")ei) = g5(A tei) = AT 10iy = A; 10y = A ej(en).

Thus we get
p*(9)e; = Aj e

=> At =x,0g7h). O

So

9.2 Tensor products

Lemma.

(i) ForveV,weW and A € F, we have
W) eaw=Aveaw)=ve (Aw).
(i) If x,x1,%x2 € V and y,y1,y2 € W, then

(x1+%X2)Qy=(x1®y)+ (x2®Y)
X®(y1+y2) = (x®@y1) + (x@y2).

Proof.
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9  Dual spaces and tensor piddReproferegatisenfilizmny (Theorems with proof)

(i) Let v=> a;v;, and w = > 5;w;. Then

AV)@w =" (Aa;)Bvi ®w,

ij
Avew) =AY aBvi®w,
ij
©(Aw) =Y a(AB))vs @ wy,
and these three things are obviously all equal.

(ii) Similar nonsense. O

Lemma. Let {e;,-- ,e,,} be any other basis of V, and {f;,--- ,f,,} be another
basis of W. Then
{e;@f;:1<i<m,1<j<n}

isa basisof V@ W.
Proof. Writing

Vi = E ke, Wy = E Bjefe,

Vi @ Wy = Z aikBiie; @ f;.

Therefore {e; ® f;} spans V @ W. Moreover, there are nm of these. Therefore
they form a basis of V@ W. O

we have

Proposition. Let p: G — GL(V) and p’ : G — GL(V’). We define
p@p :G— GLV @V
by
(p@p)(9): 3o Aigvi @ Wi = Y Nig(p(9)vi) @ (' (9)W;)-
Then p ® p’ is a representation of g, with character
Xpep' (9) = Xo(9) X0 (9)
for all g € G.

Proof. 1t is clear that (p® p')(g) € GL(V @ V') for all g € G. So p®p’ is a
homomorphism G — GL(V @ V).

To check the character is indeed as stated, let g € G. Let vy,---,v,, be
a basis of V' of eigenvectors of p(g), and let wy,--- ,w, be a basis of V' of
eigenvectors of p/(g), say

p(g)vi = Xivi,  p'(g)w; = pw;.

Then
(@ p)(9)(vi®@w;) = p(g)vi @ p'(9)W;
= /\ivi X MW 5
= (Aipy) (Vi @ wy).
So

Xowp(9) = D Nitty = (Z )\i) (Z Mj) = Xo(9) X, (9)- O
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9  Dual spaces and tensor piddReproferegatisenfilizmny (Theorems with proof)

9.3 Powers of characters
Lemma. For any G-space V, S2V and A%V are G-subspaces of V®?2, and
Ve =52V @ APV
The space S2V has basis
{vivi=v;®v;+v;®v;:1<i<j<n}
while A2V has basis
{Vinvj=v;®v;—v;®v;: 1 <i<j<n}

Note that we have a strict inequality for 7 < j, since v; ® v; — v; ® v; = 0 if
i = j. Hence

1 1
dim S?V = in(n +1), dimA?V = in(n —1).

Proof. This is elementary linear algebra. For the decomposition V®2 given
x € V®2, we can write it as

1 1
X:§(x+7(x))—|—§(x—7(x)). O

es2v eN2V

Lemma. Let p : G — GL(V) be a representation affording the character y.
Then x? = xs+xa Where xg = S2x is the character of G in the subrepresentation
on S?V, and xa = A2y the character of G in the subrepresentation on A2V.
Moreover, for g € G,

1 1
xs(9) = 5(*(9) +x(6%), xal9) = 5(x*(9) = x(9*)-
Proof. The fact that x> = xg + xa is immediate from the decomposition of
G-spaces.
We now compute the characters xs and x. For g € G, we let vy,--- ,v, be

a basis of V of eigenvectors of p(g), say
p(9)vi = A\iv;.
We'll be lazy and just write gv; instead of p(g)v;. Then, acting on A%V, we get
g(Vi AVy) = XNiAjvi Avj.

Thus
xa@= > X\

1<i<j<n

Since the answer involves the square of the character, let’s write that down:

(@) = (X0’
=D A2 NN

1<j

=x(9°) +2) N\

=x(9°) + 2xa(9)-
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9  Dual spaces and tensor piddReproferegatisenfilizmny (Theorems with proof)

Then we can solve to obtain

xal9) = 3 (0(9) ~ x(6)
Then we can get )
xs = X" = xa = 5(x*(9) + x(¢))- O

9.4 Characters of G x H

Proposition. Let G and H be two finite groups with irreducible characters
X1, , Xk and 1y, -+, 1, respectively. Then the irreducible characters of the
direct product G x H are precisely

where

(xi%5) (g, h) = xi(9)¥;(h).

Proof. Take p : G — GL(V) affording x, and p' : H — GL(W) affording ).
Then define

pp :GxH— GLV W)
(9,h) = plg) @ ' (h),

where
(p(9) @ p'(h)(vi @ wj) = p(g)vi @ p' (h)w;.

This is a representation of G x H on V @ W, and X,g, = x¥. The proof is
similar to the case where p, p’ are both representations of G, and we will not
repeat it here.

Now we need to show x;v; are distinct and irreducible. It suffices to show
they are orthonormal. We have

<Xi¢ijr¢S>G><H:ﬁ > xit(g, h)xrtbs(g, )

(g,h)EGXH
1 [ 1 -
=1 ;xi (9)xr(9) <|H| };{ Z/Jj(h)l/fs(h))

= 0ir0js.

So it follows that {x;1;} are distinct and irreducible. We need to show this is
complete. We can consider

> ()P = 3o = (W) (X wi) = (GllH| = (6 x A

So done. O
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9  Dual spaces and tensor piddReproferegatisenfilizmny (Theorems with proof)

9.5 Symmetric and exterior powers
9.6 Tensor algebra
9.7 Character ring

Lemma. Suppose « is a generalized character and (o, @) = 1 and «(1) > 0.
Then « is actually a character of an irreducible representation of G.

Proof. We list the irreducible characters as x1,---, xx. We then write

Since the x;’s are orthonormal, we get

(o, ) :an =1.

So exactly one of n; is +1, while the others are all zero. So oo = +; for some 1.
Finally, since (1) > 0 and also x(1) > 0, we must have n; = +1. Soa = x;. O
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10 Induction and restrictionl]l Representation Theory (Theorems with proof)

10 Induction and restriction

Lemma. Let H < G. If 9 is any non-zero irreducible character of H, then there
exists an irreducible character x of G such that ¢ is a constituent of Resg X, i-e.

(Res$; x, 1) # 0.

Proof. We list the irreducible characters of G as x1,- -, xx- Recall the regular
character 7. Consider

1G]

Res$ e RUMES
< H g |H|

(1) # 0.

On the other hand, we also have

k
<Resg Tregs V)g = Z deg x; <R€Sg X ¢>
1

If this sum has to be non-zero, then there must be some 4 such that (Resg Xis ¥) #
0. O

Lemma. Let x be an irreducible character of G, and let
Resfy x = Y ciXis
i

with y; irreducible characters of H, and ¢; non-negative integers. Then

ZCZZ <|G: H|,
with equality iff x(g) =0 for all g € G\ H.
Proof. We have
(Res$ x,Res% x) i = Z cz.
However, by definition, we also have
(Res X, Resfy X) H > Ixn
I

On the other hand, since x is irreducible, we have

1:< X)G
> Ix(9)
|G| =
|G| STIx(WP+ DD I
heH geG\H

H 2 2
— g Xt ¥ o

geG\H
H
\Gl 2
So the result follows. O
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10 Induction and restrictionl]l Representation Theory (Theorems with proof)

Lemma. Let ¢ € Cyz. Then Ind% ¢ € C(G), and Ind% (1) = |G = H|1(1).

Proof. The fact that Ind% 7 ¥ is a class function follows from direct inspection of
the formula. Then we have

Gl e
Ind% |H‘Z¢ = 1 (1) = |G : Hly(1). O

Lemma. Given a (left) transversal t,--- ¢, of H, we have

n

Indf ¢(g) = > _ (¢, gta).

i=1

Proof. We can express every x € G as « = t;h for some h € H and i. We then
have

D((th) " g(tih)) = G(hH (8 gti)h) = Ot gta),
since 1 is a class function of H, and hfl(tflgti)h € H if and only if t;lgti € H,
as h € H. So the result follows. O

Theorem (Frobenius reciprocity). Let ¢ € C(H) and ¢ € C(G). Then
<RGSE ¥, ¢>H = <907 Indg q/)>G

Proof. We have

- G 2 P o)

z,g€G

We now write y = z~!gz. Then summing over g is the same as summing over y.
Since ¢ is a G-class function, this becomes

IGIIHI )

z,yeG

Now note that the sum is independent of z. So this becomes

IHIZ

yeG

Now this only has contributions when y € H, by definition of ¢ So

=i 4, 7

Corollary. Let 1 be a character of H. Then Indg 1 is a character of G.
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10 Induction and restrictionl]l Representation Theory (Theorems with proof)

Proof. Let x be an irreducible character of G. Then
(Indf ¥, x) = (4, Resfy x)-

Since ¢ and Resg X are characters, the thing on the right is in Z>y. Hence Indg
is a linear combination of irreducible characters with non-negative coefficients,
and is hence a character. O
Proposition. Let ¢ be a character of H < G, and let g € G. Let

m

Calg)nH = JCal(xy),

i=1

where the x; are the representatives of the H conjugacy classes of elements of H
conjugate to g. If m = 0, then Indg ¥(g) = 0. Otherwise,

o e
Ind v(9) = 1Co(0) 2 1 G

Proof. It m =0, then {z € G : 2 gz € H} = 0. So ¢(z~gx) = 0 for all 2. So
Ind$ 1 (g) = 0 by definition.
Now assume m > 0. We let
X;={x € G:x 'gr € H and is conjugate in H to z;}.
By definition of z;, we know the X;’s are pairwise disjoint, and their union is
{z € G: 27 'gx € H}. Hence by definition,
1

Ind§ ¢(g) = = > ¥(x" " gx)
|H| zeG
1 & _
==Y P gx)
H i=1 z€X;
1 m
= ﬁ Z Z Y ()
1=1zeX;
i=1
So we now have to show that in fact
X 1Calg)
|H|  |Cr ()]

We fix some 1 < 7 < m. Choose some g; € G such that g; Lgg; = ;. This exists
by definition of x;. So for every ¢ € C(g) and h € H, we have

(cgih)~*g(cgih) = h™g; ¢ gegih
We now use the fact that ¢ commutes with g, since ¢ € C(g), to get
= hilgi_lcflcggih
=h7'g;  ggih
=h"'z;h.
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10 Induction and restrictionl]l Representation Theory (Theorems with proof)

Hence by definition of X;, we know cg;h € X;. Hence
Ca(9)giH C X;.

Conversely, if x € X;, then 2~ gz = h='a;h = h='(g; *ggi)h for some h. Thus
xh~'g; ' € Cq(g), and so = € Cg(g)gih. So

x € Ca(g)g:H.

So we conclude

Thus, using some group theory magic, which we shall not prove, we get

[Cal9)l H]

|Xi| =[Ca(g)g:H| = —
|H N g; " Cal9)gil

Finally, we note
9, 'Ca(9)9: = Calg; ' 99:) = Colwy).

Thus
x, — MHICe)| _ HICelo)]
[HNCa(zi)|  [Cul)
Dividing, we get
Xl _ [Calg)]
[H|  |Cr ()]
So done. 0

Lemma. Let ¢ = 1p, the trivial character of H. Then Indg 1y = 7x, the
permutation character of G on the set X, where X = G/H is the set of left
cosets of H.

Proof. We let n = |G : H|, and t1,--- ,t, be representatives of the cosets. By
definition, we know

Indf 15(g) = Z L (t; ' gt:)
=1

= |{i:t;'gti € H}|
=|{i:gct;Ht; "}

But tthi_l is the stabilizer in G of the coset t;H € X. So this is equal to

= [fixx (9)|
=mx(9)- O
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11 Frobenius groups IT Representation Theory (Theorems with proof)

11 Frobenius groups

Theorem (Frobenius’ theorem (1891)). Let G be a transitive permutation
group on a finite set X, with | X| = n. Assume that each non-identity element
of G fixes at most one element of X. Then the set of fixed point-free elements
(“derangements” )

K={1}U{geG:ga#aforal ac X}
is a normal subgroup of G with order n.

Proof. The idea of the proof is to construct a character © whose kernel is K.
First note that by definition of K, we have

G=KuU | Ga,
acX

where G, is, as usual, the stabilizer of . Also, we know that G, NGz = {1} if
a # 8 by assumption, and by definition of K, we have K NG, = {1} as well.

Next note that all the G, are conjugate. Indeed, we know G is transitive,
and gG,g~ ! = Ggo. We set H = G, for some arbitrary choice of a. Then the
above tells us that

G| = |K| - [X[(|H] - 1).
On the other hand, by the orbit-stabilizer theorem, we know |G| = | X||H|. So it
follows that we have
|K| = | X[ =n.

We first compute what induced characters look like.

Claim. Let ¢ be a character of H. Then

np(l) g=1
Indg ¥(g) =< vlg) g€ H\{1}.
0 ge K\ {1}

Since every element in G is either in K or conjugate to an element in H, this
uniquely specifies what the induced character is.

This is a matter of computation. Since [G : H| = n, the case g = 1
immediately follows. Using the definition of the induced character, since any
non-identity in K is not conjugate to any element in H, we know the induced
character vanishes on K \ {1}.

Finally, suppose g € H \ {1}. Note that if z € G, then gz~ € G44. So this
lies in H if and only if z € H. So we can write the induced character as

1 . _ 1 _
Ind 4 (g) = TH] Z P(rga™t) = 1] Z P(hgh™") = 9(g).
geG heH
Claim. Let ¢ be an irreducible character of H, and define
0 =v% —yp(1)(1n)° +v1)le.

Then 6 is a character, and

_Jy(h) heH
9(9)_{1/;(1) ke K’
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Note that we chose the coefficients exactly so that the final property of 8
holds. This is a matter of computation:

1 heH\{1} K\{1}

¥¢ nap(1) ¥(h) 0

P(1)(1r)% (1) P(1) 0
vl (1) P(1) P(1)
0; P(1) P(h) P(1)

The less obvious part is that 6 is a character. From the way we wrote it, we
already know it is a virtual character. We then compute the inner product

1 2
(0.0)a = 151 > 16(9)]

geG

=|%;| S P+ S 160

geK geG\K

= 1@ nlp(P +n > (k)
h#1€H

- <n > |w<h>2>

heH
1

= @(H\HK%WH)

=1.

So either 6 or —6 is a character. But 8(1) = (1) > 0. So 6 is a character.
Finally, we have

Claim. Let 11, -+, be the irreducible representations of H, and 6; be the
corresponding representations of G constructed above. Set

Then we have

0(9) = {LHI Z;?

From this, it follows that the kernel of the representation affording 6 is K, and
in particular K is a normal subgroup of G.

This is again a computation using column orthogonality. For 1 # h € H, we
have

O(h) = Zi/fi(l)i/)i(h) =0,

and for any y € K, we have

Oly) = Y wi()? = |H|.
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O

Proposition. The left action of any finite Frobenius group on the cosets of the
Frobenius complement satisfies the hypothesis of Frobenius’ theorem.

Proof. Let G be a Frobenius group, having a complement H. Then the action of
G on the cosets G/H is transitive. Furthermore, if 1 # g € G fixes *H and yH,
then we have g € xHx~' NyHy . This implies H N (y~'z)H(y lz)~ # 1.
Hence xH = yH. O
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12 Mackey theory

Proposition. Let G be a finite group and H, K < G. Let g1, -, gk be the
representatives of the double cosets K\G/H. Then

k

G G ~ K
Resf Indf 1gr = @ Indjs ;o 1.
i=1

Theorem (Mackey’s restriction formula). In general, for K, H < G, we let
S={1,q1, -, 9} be a set of double coset representatives, so that

G= U Kg;H.

We write Hy = gHg ' N K < G. We let (p, W) be a representation of H. For
each g € G, we define (pg, W,) to be a representation of H,, with the same
underlying vector space W, but now the action of H, is

pg(x) = plg ' zg),

where h = g~ xg € H by construction.

This is clearly well-defined. Since Hy, < K, we obtain an induced representa-
tion Indgg Wy.

Let G be finite, H, K < G, and W be a H-space. Then

Res Ind§; W = @D Indjy, W,
geS

1

Corollary. Let 1 be a character of a representation of H. Then
Resf Indf ¢ = Y Indjy 1)y,
geS
where 1), is the class function (and a character) on H, given by
Yg(z) = ¢(9_1$9)-

Corollary (Mackey’s irreducibility criterion). Let H < G and W be a H-space.
Then V = Ind$ W is irreducible if and only if

(i) W is irreducible; and
(ii) For each g € S\ H, the two H, spaces W, and Res® W have no irreducible
g
constituents in common, where H, = gHg 'NH.

Proof. We use characters, and let W afford the character ¢». We take K = H in
Mackey’s restriction formula. Then we have H, = gHg~ ' N H.
Using Frobenius reciprocity, we can compute the inner product as

(Ind$; ¢, Ind$; ¢) ¢ = (¥, Res§ Indf ¢) i
= (. Indfj Y)u

geS
= > (Resf v, ¢g)n,
geS
= (W, )+ > (Resp 1, ¥g)m,

geS\H
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12 Mackey theory IT Representation Theory (Theorems with proof)

We can write this because if g = 1, then Hy, = H, and 94 = 9.

This is a sum of non-negative integers, since the inner products of characters
always are. So Indg 1 is irreducible if and only if (¢, ¢) = 1, and all the other
terms in the sum are 0. In other words, W is an irreducible representation of H,
and for all ¢ ¢ H, W and W, are disjoint representations of H,. O

Corollary. Let H <1 G, and suppose % is an irreducible character of H. Then
Indg 1 is irreducible if and only if ¢ is distinct from all its conjugates 1, for
g € G\ H (where ¢,(h) = ¢(g " hg) as before).

Proof. We take K = H <1 G. So the double cosets are just left cosets. Also,
H, = H for all g. Moreover, W, is irreducible since W is irreducible.

So, by Mackey’s irreducible criterion, Ind%W is irreducible precisely if

W 2 W, for all g € G\ H. This is equivalent to ¢ # 1. O
Theorem (Mackey’s restriction formula). In general, for K, H < G, we let
S={1,g91, - ,9-} be a set of double coset representatives, so that

G =|JKgH.

We write H; = gHg~' N K < G. We let (p, W) be a representation of H. For
each g € G, we define (pg, W,) to be a representation of H,, with the same
underlying vector space W, but now the action of Hj is

pe(x) = p(g~'zg),
where h = g~ 'zg € H by construction.
This is clearly well-defined. Since H; < K, we obtain an induced representa-
tion Indgq Wy.
Let G be finite, H, K < G, and W be a H-space. Then

Resf Indf W = (P Indj W,
geS

Proof. Write V = Ind$ W. Pick g € G, so that KgH € K\G/H. Given a left
transversal 7 of H in G, we can obtain V explicitly as a direct sum

vz@mw.

teT

The idea is to “coarsen” this direct sum decomposition using double coset
representatives, by collecting together the t ® W’s with t € KgH. We define

Vigg= P teow

teKgHNT

Now each V(g) is a K-space — given k € K and t@w € t @ W, since t € KgH,
we have kt € KgH. So there is some t' € T such that ktH = ¢ H. Then
t' € ktH C KgH. So we can define

k-(tew) =t (' kt)w),

where t'kt € H.
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12 Mackey theory IT Representation Theory (Theorems with proof)

Viewing V as a K-space (forgetting its whole G-structure), we have

Resf V =P V(g).
geS

The left hand side is what we want, but the right hand side looks absolutely
nothing like Indgg Wy. So we need to show

Vig)= @ teow=mdy W,
teKgHNT .

as K representations, for each g € S.

Now for g fixed, each t € KgH can be represented by some kgh, and by
restricting to elements in the traversal 7 of H, we are really summing over cosets
kgH. Now cosets kgH are in bijection with cosets k(gHg~!) in the obvious way.
So we are actually summing over elements in K/(¢Hg ' N K) = K/H,. So we

write
Vig)= @ (kg ew.
kEK/H,

We claim that there is a isomorphism that sends k£ ®@ W, = (kg) ® W. We define
koW, — (kg) @ W by k®@w — kg®w. This is an isomorphism of vector spaces
almost by definition, so we only check that it is compatible with the action. The
action of x € K on the left is given by

pg(2)(k @ w) = k' @ (pg(K ™ xk)w) = k' @ (p(g™ k'~ akg)w),

where &k’ € K is such that k¥'"'zk € H,, i.e. g7 'k'"'akg € H. On the other
hand,

p(x)(kg ®w) = k" @ (p(K"z~" (kg))w),

where k" € K is such that k¥"~'zkg € H. Since there is a unique choice of k"
(after picking a particular transversal), and k’g works, we know this is equal to

Kg@ (plg~ k' akg)w).

So the actions are the same. So we have an isomorphism.
Then

Vig)= @ koW, =Indg W,
keK/H,

as required. O
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13 Integrality in the group algebra

Proposition.
(i) The algebraic integers form a subring of C.

(ii) If a € C is both an algebraic integer and rational, then « is in fact an
integer.

(iii) Any subring of C which is a finitely generated Z-module consists of algebraic
integers.

Proposition. If y is a character of G and g € G, then x(g) is an algebraic
integer.

Proof. We know x(g) is the sum of roots nth roots of unity (where n is the order
of g). Each root of unity is an algebraic integer, since it is by definition a root of
™ — 1. Since algebraic integers are closed under addition, the result follows. [

Proposition. The class sums Cy,-- -, Cj form a basis of Z(CG). There exists
non-negative integers a;je (with 1 <4,j,¢ < k) with
k
CiCj = ZaiﬂCg.
r=1

Proof. 1t is clear from definition that gCjg~! = C;. So we have C; € Z(CG).
Also, since the C;’s are produced from disjoint conjugacy classes, they are linearly
independent.

Now suppose z € Z(CG). So we can write

z= Zagg.

geqG

By definition, this commutes with all elements of CG. So for all h € G, we must
have

Ap-1gp = Qg.

So the function g — a4 is constant on conjugacy classes of G. So we can write
aj = a4 for g € C;. Then

k
g = ZOéjCj.
Jj=1

Finally, the center Z(CG) is an algebra. So

k
CZ'Cj = ZaiﬂCg
=1
for some complex numbers a;;¢, since the C; span. The claim is that a;j; € Z>

for all 4, j¢. To see this, we fix g; € C;. Then by definition of multiplication, we
know

aije = {(z,y) € C; x Cj : 2y = gu}|,

which is clearly a non-negative integer. O
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Lemma. The values of

VX9

are algebraic integers.

Proof. Using the definition of a;jy € Z>¢, and the fact that w, is an algebra
homomorphism, we get

k
wy (Cown (C)) = aijewy (Co).
=1

Thus the span of {w(C;) : 1 < j <k} is a subring of C and is finitely generated
as a Z-module (by definition). So we know this consists of algebraic integers. [
Theorem. The degree of any irreducible character of G divides |G|, i.e.

G116
for each irreducible x;.

Proof. Let x be an irreducible character. By orthogonality, we have

G 1 -
x(1|) -5 z;;x(g)x(g Y

) Tk

0] Z ICilx(g:)x(g; )
k

= >0 LB, g,

Now we notice
[Cilx(g:)
x(1)

is an algebraic integer, by the previous lemma. Also, x(g; ') is an algebraic
integer. So the whole mess is an algebraic integer since algebraic integers are
closed under addition and multiplication.

|G|

But we also know M is rational. So it must be an integer! O
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14 Burnside’s theorem

Theorem (Burside’s p®q® theorem). Let p,q be primes, and let |G| = p%qP,
where a,b € Z>(, with a + b > 2. Then G is not simple.

Lemma. Suppose

is an algebraic integer, where A7 =1 for all j and some n. Then either o = 0 or
la] = 1.

Proof (non-examinable). Observe o € F = Q(g), where e = €2™/" (since \; € F
for all j). We let G = Gal(F/Q). Then

{BeF:0(B)=pforalloceg}=Q.

We define the “norm”
N(a) =[] o(a).
oceg
Then N(«) is fixed by every element ¢ € G. So N(«) is rational.
Now N(«) is an algebraic integer, since Galois conjugates o(a) of algebraic
integers are algebraic integers. So in fact N(«) is an integer. But for a € G, we
know

<1

o)l = |2 S o)

So if o # 0, then N(«a) = £1. So |a| = 1. O

Lemma. Suppose x is an irreducible character of G, and C is a conjugacy class
in G such that x(1) and |C| are coprime. Then for g € C, we have

Ix(9)l = x(1) or 0.

Proof. Of course, we want to consider the quantity

Since x(g) is the sum of degy = x(1) many roots of unity, it suffices to show
that « is an algebraic integer.
By Bézout’s theorem, there exists a,b € Z such that

ax(1) +bC| =1.
So we can write (@) (@)
xX\g xX\g
o === =ax(g) +b==%|C|.
()~ ORI
Since x(g) and %w | are both algebraic integers, we know « is. O

Proposition. If in a finite group, the number of elements in a conjugacy class
C is of (non-trivial) prime power order, then G is not non-abelian simple.
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Proof. Suppose G is a non-abelian simple group, and let 1 # g € G be living in
the conjugacy class C of order p”. If x # 1¢ is a non-trivial irreducible character
of G, then either x(1) and |C| = p" are not coprime, in which case p | x(1), or
they are coprime, in which case |x(g)| = x(1) or x(g) = 0.

However, it cannot be that |x(g)| = x(1). If so, then we must have p(g) = \I
for some A. So it commutes with everything, i.e. for all h, we have

p(gh) = p(g)p(h) = p(h)p(g) = p(hg).

Moreover, since G is simple, p must be faithful. So we must have gh = hg for all
h. So Z(G) is non-trivial. This is a contradiction. So either p | x(1) or x(g) = 0.
By column orthogonality applied to C and 1, we get

0=1+ > x(1)x(9),

1#£x irreducible, p|x(1)
where we have deleted the 0 terms. So we get
1 x(1
— =3 X,
x#1

But this is both an algebraic integer and a rational number, but not integer.
This is a contradiction. O

Theorem (Burside’s p®q® theorem). Let p,q be primes, and let |G| = p%¢®,
where a,b € Z>(, with a + b > 2. Then G is not simple.

Proof. Let |G| = p®¢®. If a = 0 or b = 0, then the result is trivial. Suppose
a,b>0. We let @ € Syl (G). Since @ is a p-group, we know Z(Q) is non-trivial.
Hence there is some 1 # g € Z(Q). By definition of center, we know @ < Cg(g).
Also, C¢(g) is not the whole of G, since the center of G is trivial. So

ICa(9)l =G : Calg)l = p"

for some 0 < 7 < a. So done. O
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15 Representations of compact groups

Theorem. Every one-dimensional (continuous) representation S* is of the form
przr 2"
for some n € Z.

Lemma. If ¢ : (R,4+) — (R,+) is a continuous group homomorphism, then
there exists a ¢ € R such that

Y(z) =cz
for all z € R.

Proof. Given ¢ : (R, +) — (R, +) continuous, we let ¢ = ¢(1). We now claim
that ¥(x) = cx.
Since 1) is a homomorphism, for every n € Z>¢ and z € R, we know

V() = Yl + -+ 2) = B(a) + -+ V(@) = (@),
In particular, when © = 1, we know 9 (n) = cn. Also, we have
$(=n) = —p(n) = —en.

Thus ¥ (n) = cn for all n € Z.
We now put x = 7 € Q. Then we have

myp(z) = Y(nx) = (m) = em.

So we must have

m m

v () =
So we get ¥(q) = cq for all ¢ € Q. But Q is dense in R, and 4 is continuous. So
we must have ¥(z) = cx for all z € R. O

Lemma. Continuous homomorphisms ¢ : (R, +) — S! are of the form

icx

plz) =e
for some ¢ € R.

Proof. Let ¢ : (R, +) — S! be defined by = — ¢**. This homomorphism wraps
the real line around S' with period 2.

We now claim that given any continuous function ¢ : R — S such that
©(0) = 1, there exists a unique continuous lifting homomorphism ¢ : R — R
such that

co=p, (0)=0.

EL ¢
Y
6 O
Sl

(R, +)

[ Janl

iy

(R, +)
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The lifting is constructed by starting with ¢(0) = 0, and then extending a small
interval at a time to get a continuous map R — R. We will not go into the
details. Alternatively, this follows from the lifting criterion from IID Algebraic
Topology.

We now claim that if in addition ¢ is a homomorphism, then so is its
continuous lifting . If this is true, then we can conclude that ¥ (x) = cx for
some ¢ € R. Hence

plx) = €.
To show that 1 is indeed a homomorphism, we have to show that ¥ (x + y) =
P(z) +(y).

By definition, we know

plr+y) = px)py)-
By definition of v, this means

e(W(z +y) — () —d(y) = 1.

We now look at our definition of € to get

Yz +y) —v(x) —P(y) = 2km

for some integer k € Z, depending continuously on = and y. But k can only be
an integer. So it must be constant. Now we pick our favorite = and y, namely
x =1y =0. Then we find kK = 0. So we get

Pz +y) =v(@) +¥(y).

So % is a group homomorphism. O
Theorem. Every one-dimensional (continuous) representation S! is of the form
pizrr 2"

for some n € Z.

Proof. Let p: St — C* be a continuous representation. We now claim that p
actually maps S! to S!. Since S! is compact, we know p(S!) has closed and
bounded image. Also,

p(z") = (p(2))"
for all n € Z. Thus for each z € S, if [p(z)| > 1, then the image of p(z") is
unbounded. Similarly, if it is less than 1, then p(z~") is unbounded. So we must
have p(S') C S!. So we get a continuous homomorphism

R — St
x> p(e™).

So we know there is some ¢ € R such that
p(eix) _ eicw

Now in particular,

27ri) _ eQTric'

1=p(e
This forces ¢ € Z. Putting n = ¢, we get

p(z) = 2". O
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Theorem. Let G be a compact Hausdorff topological group. Then there exists
a unique Haar measure on G.

Corollary (Weyl’s unitary trick). Let G be a compact group. Then every
representation (p, V') has a G-invariant Hermitian inner product.

Proof. As for the finite case, take any inner product (-, -) on V, then define a
new inner product by

(v, w) = /G (p(g)v plg)w) dg.

Then this is a G-invariant inner product. O

Theorem (Maschke’s theoerm). Let G be compact group. Then every repre-
sentation of G is completely reducible.

Proof. Given a representation (p,V’). Choose a G-invariant inner product. If
V is not irreducible, let W < V be a subrepresentation. Then W+ is also
G-invariant, and

V=WweWw

Then the result follows by induction. O

Theorem (Orthogonality). Let G be a compact group, and V and W be
irreducible representations of G. Then

1 v=w

(xv,xw) = {0 Ve

15.1 Representations of SU(2)
Lemma (SU(2)-conjugacy classes).

(i) Let t € T. Then sts~t =¢"1.

(i) s2 = —I € Z(SU(2)).

(iii) The normalizer

N(;(T):TUST:{(S 2),(% g) :ae(C,|a:1}.

(iv) Every conjugacy class C of SU(2) contains an element of T', i.e. CNT # 0.

(v) In fact,
CNT ={t,t7*}

for some t € T, and ¢t = ¢! if and only if ¢ = +1, in which case C = {t}.
(vi) There is a bijection
{conjugacy classes in SU(2)} < [—1,1],

given by
1
A —trA
2
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A0
=%

1 1 <

We can see that if
then

Proof.
(i) Write it out.

(ii

) Write it out.
(iii) Direct verification.
)

(iv) It is well-known from linear algebra that every unitary matrix X has an
orthonormal basis of eigenvectors, and hence is conjugate in U(2) to one
in T, say

RXQ' e T.
We now want to force @ into SU(2), i.e. make @ have determinant 1.
We put § = det Q. Since Q is unitary, i.e. QQT = I, we know |§| = 1. So
we let € be a square root of §, and define

Qr=c"'Q.

Then we have
Q1 XQl eT.

(v) Welet g € G, and suppose g € C. If g = +1I, then CNT = {g}. Otherwise,
¢ has two distinct eigenvalues A, A\~'. Note that the two eigenvlaues must
be inverses of each other, since it is in SU(2). Then we know

C—{h<8‘ Agl)hlthG}.
{205 9)

This is true since eigenvalues are preserved by conjugation, so if any
uw 0
0 'ufl )

then {p, n=1} = {\, A71}. Also, we can get the second matrix from the
first by conjugating with s.

Thus we find

(vi) Consider the map
1 .
3 tr : {conjugacy classes} — [—1,1].

By (v), matrices are conjugate in G iff they have the same set of eigenvalues.
Now

1 A0 1 -
itr <O )\_1> = §(A+)\) = Re(A) = cos b,
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where A = ¢?. Hence the map is a surjection onto [—1,1].

Now we have to show it is injective. This is also easy. If g and ¢’ have the
same image, i.e.
L t L trg’
—trg = —tr
9 g B g9,

then g and ¢’ have the same characteristic polynomial, namely
2 — (trg)x + 1.
Hence they have the same eigenvalues, and hence they are similar. O
Proposition. For ¢t € (—1,1), the class C; = S? as topological spaces.
Proof. Exercise! O

Lemma. A continuous class function f : G — C is determined by its restriction
to T, and F|r is even, i.e.

(6 m) = (0o 3)

Proof. Each conjugacy class in SU(2) meets T'. So a class function is determined
by its restriction to T. Evenness follows from the fact that the two elements are
conjugate. O

Lemma. If y is a character of a representation of SU(2), then its restriction
X|7 is a Laurent polynomial, i.e. a finite N-linear combination of functions

A0 .
(0 Al) = A

Proof. If V is a representation of SU(2), then Res?U(z) V' is a representation

of T, and its character ResiU@) x is the restriction of xy to T. But every

representation of 7" has its character of the given form. So done. O

for n € Z.

Theorem. The representations p, : SU(2) — GL(V},) of dimension n + 1 are
irreducible for n € Zx>o.

Proof. Let 0 ## W <V, be a G-invariant subspace, i.e. a subrepresentation of
V.. We will show that W =V,,.

All we know about W is that it is non-zero. So we take some non-zero vector
of W.

Claim. Let .
0#w= erx"_jyj eWw.
=0

Since this is non-zero, there is some ¢ such that r; # 0. The claim is that
"yt e W
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We argue by induction on the number of non-zero coeflicients r;. If there is
only one non-zero coefficient, then we are already done, as w is a non-zero scalar
multiple of 2%y’

So assume there is more than one, and choose one ¢ such that r; # 0. We
pick z € S with 27,272, ..., 227", 2~ all distinct in C. Now

Pn ((Z zl>) w = erz"_zjx"_jyj ew.

Subtracting a copy of w, we find

on ((Z Zl)) w— Zn—2iw _ er(zn—Qj _ Zn—Qi)xn—jyj cW.

We now look at the coefficient

n—2j n—2i).

ri(z —z

This is non-zero if and only if ; is non-zero and j # 7. So we can use this to
remove any non-zero coefficient. Thus by induction, we get

"Iyl e W
for all j such that r; # 0.
This gives us one basis vector inside W, and we need to get the rest.

Claim. W =1V,,.

We now know that "y’ € W for some i. We consider

pn <\2 G _11)> a" Tyt = \%(x +y) N (—x+y) e W.

It is clear that the coefficient of 2" is non-zero. So we can use the claim to
deduce z" € W.
Finally, for general a,b # 0, we apply

oo (& F))or = ew

and the coefficient of everything is non-zero. So basis vectors are in W. So
W =1V,. O

Theorem. Every finite-dimensional continuous irreducible representation of G
is one of the p,, : G — GL(V},) as defined above.

Proof. Assume py : G — GL(V) is an irreducible representation affording a
character yy € Nz, zil]cv. We will show that yy = x, for some n. Now we see

Xo =1
X1:z+z71
Xo=22+1+272
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form a basis of Q[z, 27!y, which is a non-finite dimensional vector space over
Q. Hence we can write
XV = § anXn;
n

a finite sum with finitely many a,, # 0. Note that it is possible that a,, € Q. So
we clear denominators, and move the summands with negative coefficients to
the left hand side. So we get

mxv + ZmiXi = anXj,
iel jeJd

with I, J disjoint finite subsets of N, and m, m;,n; € N.
We know the left and right-hand side are characters of representations of G.

So we get
mV @ @miVi = @nJVJ
I J
Since V is irreducible and factorization is unique, we must have V' = V,, for some

neJ. ]

Proposition. Let G = SU(2) or G = S, and V, W are representations of G.
Then

XVew = XVXW -

Proof. By the previous remark, it is enough to consider the case G = S'. Suppose
V and W have eigenbases ey, --- ,e, and fi,--- ,f,, respectively such that

p(z)e = 2"es, p(2)fy = 2",

for each 4, j. Then
p(z)(e; @ £;) = 2"t @ f;.

Thus the character is

Xvew(z) =Y MM = (Z Z") D M| = xv(2)xw(2). O

Proposition (Clebsch-Gordon rule). For n,m € N, we have
Vi@V Z2Voasm ®Vogm—a2® - @ V|n7m\+2 D V‘n,m|.

Proof. We just check this works for characters. Without loss of generality, we
assume n > m. We can compute

ZnJrl _ anfl

(XnXm)(Z) = ﬁ(zm Lamm2 4 Zﬁm)

Zn+m+172j _ Z2j7n7m71

M-

z—2z"1

<.
Il
o

Xn+m—2;(2).

1
1M:

Note that the condition n > m ensures there are no cancellations in the sum. [
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15.2 Representations of SO(3), SU(2) and U(2)
Proposition. There are isomorphisms of topological groups:
(i) SO(3) = SU(2)/{£I} = PSU(2)
(i) SO(4) = SU(2) x SU(2)/{£(I, 1)}
(iil) U(2) 2 U(1) x SU(2)/{£(L, 1)}

All maps are group isomorphisms, but in fact also homeomorphisms. To show
this, we can use the fact that a continuous bijection from a Hausdorff space to a
compact space is automatically a homeomorphism.

Corollary. Every irreducible representation of SO(3) has the following form:
pam : SO(3) = GL(Vay,),
for some m > 0, where V,, are the irreducible representations of SU(2).

Proof. Irreducible representations of SO(3) correspond to irreducible representa-
tions of SU(2) such that —I acts trivially by lifting. But —I acts on V;, as —1
when n is odd, and as 1 when n is even, since

Proposition. SO(3) = SU(2)/{£I}.

Proof sketch. Recall that SU(2) can be viewed as the sphere of unit norm
quaternions H =2 R*.
Let
H° ={AcH:trA=0}.

These are the “pure” quaternions. This is a three-dimensional subspace of H. It
is not hard to see this is

-a((i 2)-( 0 )-ream

where R(---) is the R-span of the things.
This is equipped with the norm

|A||> = det A.
This gives a nice 3-dimensional Euclidean space, and SU(2) acts as isometries
on Hy by conjugation, i.e.
X - A=XAX"1,

giving a group homomorphism

v :SU(2) = 0(3),

o1
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and the kernel of this map is Z(SU(2)) = {£I}. We also know that SU(2) is
compact, and O(3) is Hausdorff. Hence the continuous group isomorphism

@:SU2)/{xI} - imgp

is a homeomorphism. It remains to show that im ¢ = SO(3).

But we know SU(2) is connected, and det(¢(X)) is a continuous function
that can only take values 1 or —1. So det(p(X)) is either always 1 or always —1.
But det(p(I)) = 1. So we know det(p(X)) =1 for all X. Hence im¢ < SO(3).

To show that equality indeed holds, we have to show that all possible rotations
in HY are possible. We first show all rotations in the i, j-plane are implemented
by elements of the form a + bk, and similarly for any permutation of i, j, k. Since
all such rotations generate SO(3), we are then done. Now consider

e 0 ai b e 0\ _ ([ a e
0 e ) \-b —ai 0 e?) \—be 20 _qi)"
et 0
0 671'9

acts on R(i, j, k) by a rotation in the (j, k)-plane through an angle 2. We can
check that

cosf sinf cosf isind

—sinf cosf )’ isinf cos@
act by rotation of 26 in the (i, k)-plane and (i, j)-plane respectively. So done. [

Proposition. The complete list of irreducible representations of SO(4) is py, X pr,
where m,n > 0 and m =n (mod 2).

Proposition. The complete list of irreducible representations of U(2) is
det ™ @ p,,

where m,n € Z and n > 0, and det is the obvious one-dimensional representation.
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