
Part II — Representation Theory

Theorems with proof

Based on lectures by S. Martin
Notes taken by Dexter Chua

Lent 2016

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Linear Algebra and Groups, Rings and Modules are essential

Representations of finite groups
Representations of groups on vector spaces, matrix representations. Equivalence of
representations. Invariant subspaces and submodules. Irreducibility and Schur’s
Lemma. Complete reducibility for finite groups. Irreducible representations of Abelian
groups.

Character theory
Determination of a representation by its character. The group algebra, conjugacy classes,
and orthogonality relations. Regular representation. Permutation representations and
their characters. Induced representations and the Frobenius reciprocity theorem.
Mackey’s theorem. Frobenius’s Theorem. [12]

Arithmetic properties of characters
Divisibility of the order of the group by the degrees of its irreducible characters.
Burnside’s paqb theorem. [2]

Tensor products
Tensor products of representations and products of characters. The character ring.
Tensor, symmetric and exterior algebras. [3]

Representations of S1 and SU2

The groups S1, SU2 and SO(3), their irreducible representations, complete reducibility.
The Clebsch-Gordan formula. *Compact groups.* [4]

Further worked examples

The characters of one of GL2(Fq), Sn or the Heisenberg group. [3]
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1 Group actions II Representation Theory (Theorems with proof)

1 Group actions

Proposition. As groups, GL(V ) ∼= GLn(F), with the isomorphism given by
θ 7→ Aθ.

Proposition. Matrices A1, A2 represent the same element of GL(V ) with respect
to different bases if and only if they are conjugate, namely there is some X ∈
GLn(F) such that

A2 = XA1X
−1.

Proposition.
tr(XAX−1) = tr(A).

Proposition. Let α ∈ GL(V ), where V is a finite-dimensional vector space over
C and αm = id for some positive integer m. Then α is diagonalizable.

Proposition. Let V be a finite-dimensional vector space over C, and α ∈
End(V ), not necessarily invertible. Then α is diagonalizable if and only if there
is a polynomial f with distinct linear factors such that f(α) = 0.

Proposition. A finite family of individually diagonalizable endomorphisms of
a vector space over C can be simultaneously diagonalized if and only if they
commute.

Lemma. Given an action of G on X, we obtain a homomorphism θ : G →
Sym(X), where Sym(X) is the set of all permutations of X.

Proof. For g ∈ G, define θ(g) = θg ∈ Sym(X) as the function X → X by x 7→ gx.
This is indeed a permutation of X because θg−1 is an inverse.

Moreover, for any g1, g2 ∈ G, we get θg1g2 = θg1θg2 , since (g1g2)x = g1(g2x).
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2 Basic definitions II Representation Theory (Theorems with proof)

2 Basic definitions

Lemma. The relation of “being isomorphic” is an equivalence relation on the
set of all linear representations of G over F.

Lemma. If ρ, ρ′ are isomorphic representations, then they have the same di-
mension.

Proof. Trivial since isomorphisms between vector spaces preserve dimension.

Lemma. Let ρ : G→ GL(V ) be a representation, and W be a G-subspace of
V . If B = {v1, · · · ,vn} is a basis containing a basis B1 = {v1, · · · ,vm} of W
(with 0 < m < n), then the matrix of ρ(g) with respect to B has the block upper
triangular form (

∗ ∗
0 ∗

)
for each g ∈ G.

Lemma. Let ρ : G→ GL(V ) be a decomposable representation with G-invariant
decomposition V = U ⊕W . Let B1 = {u1, · · · ,uk} and B2 = {w1, · · · ,w`} be
bases for U and W , and B = B1 ∪ B2 be the corresponding basis for V . Then
with respect to B, we have

[ρ(g)]B =

(
[ρu(g)]B1 0

0 [ρu(g)]B2

)
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3 Complete reducibility and Maschke’s theoremII Representation Theory (Theorems with proof)

3 Complete reducibility and Maschke’s theorem

Theorem. Every finite-dimensional representation V of a finite group over a
field of characteristic 0 is completely reducible, namely, V ∼= V1 ⊕ · · · ⊕ Vr is a
direct sum of irreducible representations.

Theorem (Maschke’s theorem). Let G be a finite group, and ρ : G→ GL(V )
a representation over a finite-dimensional vector space V over a field F with
charF = 0. If W is a G-subspace of V , then there exists a G-subspace U of V
such that V = W ⊕ U .

Proof. From linear algebra, we know W has a complementary subspace. Let
W ′ be any vector subspace complement of W in V , i.e. V = W ⊕W ′ as vector
spaces.

Let q : V →W be the projection of V onto W along W ′, i.e. if v = w + w′

with w ∈W,w′ ∈W ′, then q(v) = w.
The clever bit is to take this q and tweak it a little bit. Define

q̄ : v 7→ 1

|G|
∑
g∈G

ρ(g)q(ρ(g−1)v).

This is in some sense an averaging operator, averaging over what ρ(g) does. Here
we need the field to have characteristic zero such that 1

|G| is well-defined. In fact,

this theorem holds as long as charF - |G|.
For simplicity of expression, we drop the ρ’s, and simply write

q̄ : v 7→ 1

|G|
∑
g∈G

gq(g−1v).

We first claim that q̄ has image in W . This is true since for v ∈ V , q(g−1v) ∈W ,
and gW ≤W . So this is a little bit like a projection.

Next, we claim that for w ∈ W , we have q̄(w) = w. This follows from the
fact that q itself fixes W . Since W is G-invariant, we have g−1w ∈ W for all
w ∈W . So we get

q̄(w) =
1

|G|
∑
g∈G

gq(g−1w) =
1

|G|
∑
g∈G

gg−1w =
1

|G|
∑
g∈G

w = w.

Putting these together, this tells us q̄ is a projection onto W .
Finally, we claim that for h ∈ G, we have hq̄(v) = q̄(hv), i.e. it is invariant

under the G-action. This follows easily from definition:

hq̄(v) = h
1

|G|
∑
g∈G

gq(g−1v)

=
1

|G|
∑
g∈G

hgq(g−1v)

=
1

|G|
∑
g∈G

(hg)q((hg)−1hv)
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3 Complete reducibility and Maschke’s theoremII Representation Theory (Theorems with proof)

We now put g′ = hg. Since h is invertible, summing over all g is the same as
summing over all g′. So we get

=
1

|G|
∑
g′∈G

g′q(g′−1(hv))

= q̄(hv).

We are pretty much done. We finally show that ker q̄ is G-invariant. If v ∈ ker q̄
and h ∈ G, then q̄(hv) = hq̄(v) = 0. So hv ∈ ker q̄.

Thus
V = im q̄ ⊕ ker q̄ = W ⊕ ker q̄

is a G-subspace decomposition.

Proposition. Let W be G-invariant subspace of V , and V have a G-invariant
inner product. Then W⊥ is also G-invariant.

Proof. To prove this, we have to show that for all v ∈ W⊥, g ∈ G, we have
gv ∈W⊥.

This is not hard. We know v ∈W⊥ if and only if 〈v,w〉 = 0 for all w ∈W .
Thus, using the definition of G-invariance, for v ∈W⊥, we know

〈gv, gw〉 = 0

for all g ∈ G,w ∈W .
Thus for all w′ ∈ W , pick w = g−1w′ ∈ W , and this shows 〈gv,w′〉 = 0.

Hence gv ∈W⊥.

Theorem (Weyl’s unitary trick). Let ρ be a complex representation of a finite
group G on the complex vector space V . Then there is a G-invariant Hermitian
inner product on V .

Corollary. Every finite subgroup of GLn(C) is conjugate to a subgroup of U(n).

Proof. We start by defining an arbitrary inner product on V : take a basis
e1, · · · , en. Define (ei, ej) = δij , and extend it sesquilinearly. Define a new inner
product

〈v,w〉 =
1

|G|
∑
g∈G

(gv, gw).

We now check this is sesquilinear, positive-definite and G-invariant. Sesquilin-
earity and positive-definiteness are easy. So we just check G-invariance: we
have

〈hv, hw〉 =
1

|G|
∑
g∈G

((gh)v, (gh)w)

=
1

|G|
∑
g′∈G

(g′v, g′w)

= 〈v,w〉.

Proposition. Let ρ be an irreducible representation of the finite group G over
a field of characteristic 0. Then ρ is isomorphic to a subrepresentation of ρreg.
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3 Complete reducibility and Maschke’s theoremII Representation Theory (Theorems with proof)

Proof. Take ρ : G → GL(V ) be irreducible, and pick our favorite 0 6= v ∈ V .
Now define θ : FG→ V by ∑

g

ageg 7→
∑

ag(gv).

It is not hard to see this is a G-homomorphism. We are now going to exploit the
fact that V is irreducible. Thus, since im θ is a G-subspace of V and non-zero,
we must have im θ = V . Also, ker θ is a G-subspace of FG. Now let W be
the G-complement of ker θ in FG, which exists by Maschke’s theorem. Then
W ≤ FG is a G-subspace and

FG = ker θ ⊕W.

Then the isomorphism theorem gives

W ∼= FG/ ker θ ∼= im θ = V.
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4 Schur’s lemma II Representation Theory (Theorems with proof)

4 Schur’s lemma

Theorem (Schur’s lemma).

(i) Assume V and W are irreducible G-spaces over a field F. Then any
G-homomorphism θ : V →W is either zero or an isomorphism.

(ii) If F is algebraically closed, and V is an irreducible G-space, then any
G-endomorphism V → V is a scalar multiple of the identity map ιV .

Proof.

(i) Let θ : V →W be a G-homomorphism between irreducibles. Then ker θ is
a G-subspace of V , and since V is irreducible, either ker θ = 0 or ker θ = V .
Similarly, im θ is a G-subspace of W , and as W is irreducible, we must
have im θ = 0 or im θ = W . Hence either ker θ = V , in which case θ = 0,
or ker θ = 0 and im θ = W , i.e. θ is a bijection.

(ii) Since F is algebraically closed, θ has an eigenvalue λ. Then θ − λιV is a
singular G-endomorphism of V . So by (i), it must be the zero map. So
θ = λιV .

Corollary. If V,W are irreducible complex G-spaces, then

dimC HomG(V,W ) =

{
1 V,W are G-isomorphic

0 otherwise

Proof. If V and W are not isomorphic, then the only possible map between
them is the zero map by Schur’s lemma.

Otherwise, suppose V ∼= W and let θ1, θ2 ∈ HomG(V,W ) be both non-
zero. By Schur’s lemma, they are isomorphisms, and hence invertible. So
θ−1

2 θ1 ∈ EndG(V ). Thus θ−1
2 θ1 = λιV for some λ ∈ C. Thus θ1 = λθ2.

Corollary. If G is a finite group and has a faithful complex irreducible repre-
sentation, then its center Z(G) is cyclic.

Proof. Let ρ : G→ GL(V ) be a faithful irreducible complex representation. Let
z ∈ Z(G). So zg = gz for all g ∈ G. Hence φz : v 7→ zv is a G-endomorphism
on V . Hence by Schur’s lemma, it is multiplication by a scalar µz, say. Thus
zv = µzv for all v ∈ V .

Then the map

σ : Z(G)→ C×

z 7→ µg

is a representation of Z(G). Since ρ is faithful, so is σ. So Z(G) = {µz : z ∈
Z(G)} is isomorphic to a finite subgroup of C×, hence cyclic.

Corollary. The irreducible complex representations of a finite abelian group G
are all 1-dimensional.
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4 Schur’s lemma II Representation Theory (Theorems with proof)

Proof. We can use the fact that commuting diagonalizable matrices are simulta-
neously diagonalizable. Thus for every irreducible V , we can pick some v ∈ V
that is an eigenvector for each g ∈ G. Thus 〈v〉 is a G-subspace. As V is
irreducible, we must have V = 〈v〉.

Alternatively, we can prove this in a representation-theoretic way. Let V be
an irreducible complex representation. For each g ∈ G, the map

θg : V → V

v 7→ gv

is a G-endomorphism of V , since it commutes with the other group elements.
Since V is irreducible, θg = λgιV for some λg ∈ C. Thus

gv = λgv

for any g. As V is irreducible, we must have V = 〈v〉.

Proposition. The finite abelian group G = Cn1
× · · · × Cnr

has precisely |G|
irreducible representations over C.

Proof. Write
G = 〈x1〉 × · · · × 〈xr〉,

where |xj | = nj . Any irreducible representation ρ must be one-dimensional. So
we have

ρ : G→ C×.
Let ρ(1, · · · , xj , · · · , 1) = λj . Then since ρ is a homomorphism, we must have
λ
nj

j = 1. Therefore λj is an njth root of unity.
Now the values (λ1, · · · , λr) determine ρ completely, namely

ρ(xj11 , · · · , xjrr ) = λj11 · · ·λjrr .

Also, whenever λi is an nith root of unity for each i, then the above formula
gives a well-defined representation. So there is a one-to-one correspondence
ρ↔ (λ1, · · · , λr), with λ

nj

j = 1.
Since for each j, there are nj many njth roots of unity, it follows that there

are |G| = n1 · · ·nr many choices of the λi. Thus the proposition.

Lemma. Let V, V1, V2 be G-vector spaces over F. Then

(i) HomG(V, V1 ⊕ V2) ∼= HomG(V, V1)⊕HomG(V, V2)

(ii) HomG(V1 ⊕ V2, V ) ∼= HomG(V1, V )⊕HomG(V2, V ).

Proof. The proof is to write down the obvious homomorphisms and inverses.
Define the projection map

πi : V1 ⊕ V2 → Vi,

which is the G-linear projection onto Vi.
Then we can define the G-homomorphism

HomG(V, V1 ⊕ V2) 7→ HomG(V, V1)⊕HomG(V, V2)

ϕ 7→ (π1ϕ, π2ϕ).

Then the map (ψ1, ψ2) 7→ ψ1 + ψ2 is an inverse.
For the second part, we have the homomorphism ϕ 7→ (ϕ|V1

, ϕ|V2
) with

inverse (ψ1, ψ2) 7→ ψ1π1 + ψ2π2.
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4 Schur’s lemma II Representation Theory (Theorems with proof)

Lemma. Let F be an algebraically closed field, and V be a representation of G.
Suppose V =

⊕n
i=1 Vi is its decomposition into irreducible components. Then

for each irreducible representation S of G,

|{j : Vj ∼= S}| = dim HomG(S, V ).

Proof. We induct on n. If n = 0, then this is a trivial space. If n = 1, then V
itself is irreducible, and by Schur’s lemma, dim HomG(S, V ) = 1 if V = S, 0
otherwise. Otherwise, for n > 1, we have

V =

(
n−1⊕
i=1

Vi

)
⊕ Vn.

By the previous lemma, we know

dim homG

(
S,

(
n−1⊕
i=1

Vi

)
⊕ Vn

)
= dim HomG

(
S,

n−1⊕
i=1

Vi

)
+ dim homG(S, Vn).

The result then follows by induction.
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5 Character theory II Representation Theory (Theorems with proof)

5 Character theory

Theorem.

(i) χV (1) = dimV .

(ii) χV is a class function, namely it is conjugation invariant, i.e.

χV (hgh−1) = χV (g)

for all g, h ∈ G. Thus χV is constant on conjugacy classes.

(iii) χV (g−1) = χV (g).

(iv) For two representations V,W , we have

χV⊕W = χV + χW .

Proof.

(i) Obvious since ρV (1) = idV .

(ii) Let Rg be the matrix representing g. Then

χ(hgh−1) = tr(RhRgR
−1
h ) = tr(Rg) = χ(g),

as we know from linear algebra.

(iii) Since g ∈ G has finite order, we know ρ(g) is represented by a diagonal
matrix

Rg =

λ1

. . .

λn

 ,

and χ(g) =
∑
λi. Now g−1 is represented by

Rg−1 =

λ
−1
1

. . .

λ−1
n

 ,

Noting that each λi is an nth root of unity, hence |λi| = 1, we know

χ(g−1) =
∑

λ−1
i =

∑
λi =

∑
λi = χ(g).

(iv) Suppose V = V1 ⊕ V2, with ρ : G→ GL(V ) splitting into ρi : G→ GL(Vi).
Pick a basis Bi for Vi, and let B = B1 ∪ B2. Then with respect to B, we
have

[ρ(g)]B =

(
[ρ1(g)]B1 0

0 [ρ2(g)]B2

)
.

So χ(g) = tr(ρ(g)) = tr(ρ1(g)) + tr(ρ2(g)) = χ1(g) + χ2(g).
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5 Character theory II Representation Theory (Theorems with proof)

Lemma. Let ρ : G→ GL(V ) be a complex representation affording the character
χ. Then

|χ(g)| ≤ χ(1),

with equality if and only if ρ(g) = λI for some λ ∈ C, a root of unity. Moreover,
χ(g) = χ(1) if and only if g ∈ ker ρ.

Proof. Fix g, and pick a basis of eigenvectors of ρ(g). Then the matrix of ρ(g)
is diagonal, say

ρ(g) =

λ1

. . .

λn

 ,

Hence
|χ(g)| =

∣∣∣∑λi

∣∣∣ ≤∑ |λi| =
∑

1 = dimV = χ(1).

In the triangle inequality, we have equality if and only if all the λi’s are equal,
to λ, say. So ρ(g) = λI. Since all the λi’s are roots of unity, so is λ.

And, if χ(g) = χ(1), then since ρ(g) = λI, taking the trace gives χ(g) = λχ(1).
So λ = 1, i.e. ρ(g) = I. So g ∈ ker ρ.

Lemma.

(i) If χ is a complex (irreducible) character of G, then so is χ̄.

(ii) If χ is a complex (irreducible) character of G, then so is εχ for any linear
(1-dimensional) character ε.

Proof.

(i) If R : G→ GLn(C) is a complex matrix representation, then so is R̄ : G→
GLn(C), where g 7→ R(g). Then the character of R̄ is χ̄

(ii) Similarly, R′ : g 7→ ε(g)R(g) for g ∈ G is a representation with character
εχ.

It is left as an exercise for the reader to check the details.

Theorem (Completeness of characters). The complex irreducible characters of
G form an orthonormal basis of C(G), namely

(i) If ρ : G → GL(V ) and ρ′ : G → GL(V ′) are two complex irreducible
representations affording characters χ, χ′ respectively, then

〈χ, χ′〉 =

{
1 if ρ and ρ′ are isomorphic representations

0 otherwise

This is the (row) orthogonality of characters.

(ii) Each class function of G can be expressed as a linear combination of
irreducible characters of G.

Corollary. Complex representations of finite groups are characterised by their
characters.
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5 Character theory II Representation Theory (Theorems with proof)

Proof. Let ρ : G → GL(V ) afford the character χ. We know we can write
ρ = m1ρ1 ⊕ · · · ⊕mkρk, where ρ1, · · · , ρk are (distinct) irreducible and mj ≥ 0
are the multiplicities. Then we have

χ = m1χ1 + · · ·+mkχk,

where χj is afforded by ρj . Then by orthogonality, we know

mj = 〈χ, χj〉.

So we can obtain the multiplicity of each ρj in ρ just by looking at the inner
products of the characters.

Corollary (Irreducibility criterion). If ρ : G → GL(V ) is a complex repre-
sentation of G affording the character χ, then ρ is irreducible if and only if
〈χ, χ〉 = 1.

Proof. If ρ is irreducible, then orthogonality says 〈χ, χ〉 = 1. For the other
direction, suppose 〈χ, χ〉 = 1. We use complete reducibility to get

χ =
∑

mjχj ,

with χj irreducible, and mj ≥ 0 the multiplicities. Then by orthogonality, we
get

〈χ, χ〉 =
∑

m2
j .

But 〈χ, χ〉 = 1. So exactly one of mj is 1, while the others are all zero, and
χ = χj . So χ is irreducible.

Theorem. Let ρ1, · · · , ρk be the irreducible complex representations of G, and
let their dimensions be n1, · · · , nk. Then

|G| =
∑

n2
i .

Proof. Recall that ρreg : G→ GL(CG), given by G acting on itself by multipli-
cation, is the regular representation of G of dimension |G|. Let its character be
πreg, the regular character of G.

First note that we have πreg(1) = |G|, and πreg(h) = 0 if h 6= 1. The first
part is obvious, and the second is easy to show, since we have only 0s along the
diagonal.

Next, we decompose πreg as

πreg =
∑

ajχj ,

We now want to find aj . We have

aj = 〈πreg, χj〉 =
1

|G|
∑
g∈G

πreg(g)χj(g) =
1

|G|
· |G|χj(1) = χj(1).

Then we get

|G| = πreg(1) =
∑

ajχj(1) =
∑

χj(1)2 =
∑

n2
j .
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5 Character theory II Representation Theory (Theorems with proof)

Corollary. The number of irreducible characters of G (up to equivalence) is k,
the number of conjugacy classes.

Proof. The irreducible characters and the characteristic functions of the conju-
gacy classes are both bases of C(G).

Corollary. Two elements g1, g2 are conjugate if and only if χ(g1) = χ(g2) for
all irreducible characters χ of G.

Proof. If g1, g2 are conjugate, since characters are class functions, we must have
χ(g1) = χ(g2).

For the other direction, let δ be the characteristic function of the class of g1.
Then since δ is a class function, we can write

δ =
∑

mjχj ,

where χj are the irreducible characters of G. Then

δ(g2) =
∑

mjχj(g2) =
∑

mjχj(g1) = δ(g1) = 1.

So g2 is in the same conjugacy class as g1.
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6 Proof of orthogonality II Representation Theory (Theorems with proof)

6 Proof of orthogonality

Theorem (Row orthogonality relations). If ρ : G → GL(V ) and ρ′ : G →
GL(V ′) are two complex irreducible representations affording characters χ, χ′

respectively, then

〈χ, χ′〉 =

{
1 if ρ and ρ′ are isomorphic representations

0 otherwise
.

Proof. We fix a basis of V and of V ′. Write R(g), R′(g) for the matrices of ρ(g)
and ρ′(g) with respect to these bases respectively. Then by definition, we have

〈χ′, χ〉 =
1

|G|
∑
g∈G

χ′(g−1)χ(g)

=
1

|G|
∑
g∈G

∑
1≤i≤n′
1≤j≤n

R′(g−1)iiR(g)jj .

For any linear map ϕ : V → V ′, we define a new map by averaging by ρ′ and ρ.

ϕ̃ : V → V ′

v 7→ 1

|G|
∑

ρ′(g−1)ϕρ(g)v

We first check ϕ̃ is a G-homomorphism — if h ∈ G, we need to show

ρ′(h−1)ϕ̃ρ(h)(v) = ϕ̃(v).

We have

ρ′(h−1)ϕ̃ρ(h)(v) =
1

|G|
∑
g∈G

ρ′((gh)−1)ϕρ(gh)v

=
1

|G|
∑
g′∈G

ρ′(g′−1)ϕρ(g′)v

= ϕ̃(v).

(i) Now we first consider the case where ρ, ρ′ is not isomorphic. Then by
Schur’s lemma, we must have ϕ̃ = 0 for any linear ϕ : V → V ′.

We now pick a very nice ϕ, where everything disappears. We let ϕ = εαβ ,
the operator having matrix Eαβ with entries 0 everywhere except 1 in the
(α, β) position.

Then ε̃αβ = 0. So for each i, j, we have

1

|G|
∑
g∈G

(R′(g−1)EαβR(g))ij = 0.

Using our choice of εαβ , we get

1

|G|
∑
g∈G

R′(g−1)iαR(g)βj = 0

16
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for all i, j. We now pick α = i and β = j. Then

1

|G|
∑
g∈G

R′(g−1)iiR(g)jj = 0.

We can sum this thing over all i and j to get that 〈χ′, χ〉 = 0.

(ii) Now suppose ρ, ρ′ are isomorphic. So we might as well take χ = χ′, V = V ′

and ρ = ρ′. If ϕ : V → V is linear, then ϕ̃ ∈ EndG(V ).

We first claim that tr ϕ̃ = trϕ. To see this, we have

tr ϕ̃ =
1

|G|
∑
g∈G

tr(ρ(g−1)ϕρ(g)) =
1

|G|
∑
g∈G

trϕ = trϕ,

using the fact that traces don’t see conjugacy (and ρ(g−1) = ρ(g)−1 since
ρ is a group homomorphism).

By Schur’s lemma, we know ϕ̃ = λιv for some λ ∈ C (which depends on
ϕ). Then if n = dimV , then

λ =
1

n
trϕ.

Let ϕ = εαβ . Then trϕ = δαβ . Hence

ε̃αβ =
1

|G|
∑
g

ρ(g−1)εαβρ(g) =
1

n
δαβι.

In terms of matrices, we take the (i, j)th entry to get

1

|G|
∑

R(g−1)iαR(g)βj =
1

n
δαβδij .

We now put α = i and β = j. Then we are left with

1

|G|
∑
g

R(g−1)iiR(g)jj =
1

n
δij .

Summing over all i and j, we get 〈χ, χ〉 = 1.

Alternative proof. Consider two representation spaces V and W . Then

〈χW , χV 〉 =
1

|G|
∑

χW (g)χV (g) =
1

|G|
∑

χV⊗W∗(g).

We notice that there is a natural isomorphism V ⊗ W ∗ ∼= Hom(W,V ), and
the action of g on this space is by conjugation. Thus, a G-invariant element
is just a G-homomorphism W → V . Thus, we can decompose Hom(V,W ) =
HomG(V,W )⊕U for some G-space U , and U has no G-invariant element. Hence
in the decomposition of Hom(V,W ) into irreducibles, we know there are exactly
dim HomG(V,W ) copies of the trivial representation. By Schur’s lemma, this
number is 1 if V ∼= W , and 0 if V 6∼= W .

So it suffices to show that if χ is a non-trivial irreducible character, then∑
g∈G

χ(g) = 0.

But if ρ affords χ, then any element in the image of
∑
g∈G ρ(g) is fixed by G.

By irreducibility, the image must be trivial. So
∑
g∈G ρ(g) = 0.
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6 Proof of orthogonality II Representation Theory (Theorems with proof)

Theorem (Column orthogonality relations). We have

k∑
i=1

χi(gj)χi(g`) = δj`|CG(g`)|.

Corollary.

|G| =
k∑
i=1

χ2
i (1).

Proof of column orthogonality. Consider the character table X = (χi(gj)). We
know

δij = 〈χi, χj〉 =
∑
`

1

|CG(g`)|
χi(g`)χk(g`).

Then
X̄D−1XT = Ik×k,

where

D =

|CG(g1)| · · · 0
...

. . .
...

0 · · · |CG(gk)|

 .

Since X is square, it follows that D−1X̄T is the inverse of X. So X̄TX = D,
which is exactly the theorem.

Theorem. Each class function of G can be expressed as a linear combination
of irreducible characters of G.

Proof. We list all the irreducible characters χ1, · · · , χ` of G. Note that we don’t
know the number of irreducibles is k. This is essentially what we have to prove
here. We now claim these generate C(G), the ring of class functions.

Now recall that C(G) has an inner product. So it suffices to show that the
orthogonal complement to the span 〈χ1, · · · , χ`〉 in C(G) is trivial. To see this,
assume f ∈ C(G) satisfies

〈f, χj〉 = 0

for all χj irreducible. We let ρ : G → GL(V ) be an irreducible representation
affording χ ∈ {χ1, · · · , χ`}. Then 〈f, χ〉 = 0.

Consider the function

ϕ =
1

|G|
∑
g

f(g)ρ(g) : V → V.

For any h ∈ G, we can compute

ρ(h)−1ϕρ(h) =
1

|G|
∑
g

f̄(g)ρ(h−1gh) =
1

|G|
∑
g

f̄(h−1gh)ρ(h−1gh) = ϕ,

using the fact that f̄ is a class function. So this is a G-homomorphism. So as ρ
is irreducible, Schur’s lemma says it must be of the form λιV for some λ ∈ C.

Now we take the trace of this thing. So we have

nλ = tr

(
1

|G|
∑
g

f(g)ρ(g)

)
=

1

|G|
∑
g

f(g)χ(g) = 〈f, χ〉 = 0.

18



6 Proof of orthogonality II Representation Theory (Theorems with proof)

So λ = 0, i.e.
∑
g f(g)ρ(g) = 0, the zero endomorphism on V . This is valid for

any irreducible representation, and hence for every representation, by complete
reducibility.

In particular, take ρ = ρreg, where ρreg(g) : e1 7→ eg for each g ∈ G. Hence∑
f(g)ρreg(g) : e1 7→

∑
g

f(g)eg.

Since this is zero, it follows that we must have
∑
f(g)eg = 0. Since the eg’s are

linearly independent, we must have f(g) = 0 for all g ∈ G, i.e. f = 0.
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7 Permutation representationsII Representation Theory (Theorems with proof)

7 Permutation representations

Lemma. πX always contains the trivial character 1G (when decomposed in the
basis of irreducible characters). In particular, span{ex1

+ · · ·+ exn
} is a trivial

G-subspace of CX, with G-invariant complement {
∑
x axex :

∑
ax = 0}.

Lemma. 〈πX , 1〉, which is the multiplicity of 1 in πX , is the number of orbits
of G on X.

Proof. We write X as the disjoint union of orbits, X = X1 ∪ · · · ∪ X`. Then
it is clear that the permutation representation on X is just the sum of the
permutation representations on the Xi, i.e.

πX = πX1 + · · ·+ πx`
,

where πXj is the permutation character of G on Xj . So to prove the lemma, it
is enough to consider the case where the action is transitive, i.e. there is just
one orbit.

So suppose G acts transitively on X. We want to show 〈πX , 1〉 = 1. By
definition, we have

〈πX , 1〉 =
1

|G|
∑
g

πX(g)

=
1

|G|
|{(g, x) ∈ G×X : gx = x}|

=
1

|G|
∑
x∈X
|Gx|,

where Gx is the stabilizer of x. By the orbit-stabilizer theorem, we have |Gx||X| =
|G|. So we can write this as

=
1

|G|
∑
x∈X

|G|
|X|

=
1

|G|
· |X| · |G|

|X|
= 1.

So done.

Lemma. Let G act on the sets X1, X2. Then G acts on X1 ×X2 by

g(x1, x2) = (gx1, gx2).

Then the character
πX1×X2

= πX1
πX2

,

and so
〈πX1 , πX2〉 = number of orbits of G on X1 ×X2.

Proof. We know πX1×X2
(g) is the number of pairs (x1, x2) ∈ X1 ×X2 fixed by

g. This is exactly the number of things in X1 fixed by g times the number of
things in X2 fixed by g. So we have

πX1×X2
(g) = πX1

(g)πX2
(g).
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Then using the fact that π1, π2 are real, we get

〈πX1
, πX2

〉 =
1

|G|
∑
g

πX1
(g)πX2

(g)

=
1

|G|
∑
g

πX1
(g)πX2

(g)1G(g)

= 〈πX1
πX2

, 1〉
= 〈πX1×X2

, 1〉.

So the previous lemma gives the desired result.

Lemma. Let G act on X, with |X| > 2. Then

πX = 1G + χ,

with χ irreducible if and only if G is 2-transitive on X.

Proof. We know
πX = m11G +m2χ2 + · · ·+m`χ`,

with 1G, χ2, · · · , χ` distinct irreducible characters and mi ∈ N are non-zero.
Then by orthogonality,

〈πX , πX〉 =

j∑
i=1

m2
i .

Since 〈πX , πX〉 is the number of orbits of X ×X, we know G is 2-transitive on
X if and only if ` = 2 and m1 = m2 = 1.

Lemma. Let g ∈ An, n > 1. If g commutes with some odd permutation in Sn,
then CSn

(g) = CAn
(g). Otherwise, CSn

splits into two conjugacy classes in An of
equal size.
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8 Normal subgroups and liftingII Representation Theory (Theorems with proof)

8 Normal subgroups and lifting

Lemma. Let N CG. Let ρ̃ : G/N → GL(V ) be a representation of G/N . Then
the composition

ρ : G G/N GL(V )natural ρ̃

is a representation of G, where ρ(g) = ρ̃(gN). Moreover,

(i) ρ is irreducible if and only if ρ̃ is irreducible.

(ii) The corresponding characters satisfy χ(g) = χ̃(gN).

(iii) degχ = deg χ̃.

(iv) The lifting operation χ̃ 7→ χ is a bijection

{irreducibles of G/N} ←→ {irreducibles of G with N in their kernel}.

We say χ̃ lifts to χ.

Proof. Since a representation of G is just a homomorphism G → GL(V ), and
the composition of homomorphisms is a homomorphisms, it follows immediately
that ρ as defined in the lemma is a representation.

(i) We can compute

〈χ, χ〉 =
1

|G|
∑
g∈G

χ(g)χ(g)

=
1

|G|
∑

gN∈G/N

∑
k∈N

χ(gk)χ(gk)

=
1

|G|
∑

gN∈G/N

∑
k∈N

χ̃(gN)χ̃(gN)

=
1

|G|
∑

gN∈G/N

|N |χ̃(gN)χ̃(gN)

=
1

|G/N |
∑

gN∈G/N

χ̃(gN)χ̃(gN)

= 〈χ̃, χ̃〉.

So 〈χ, χ〉 = 1 if and only if 〈χ̃, χ̃〉 = 1. So ρ is irreducible if and only if ρ̃
is irreducible.

(ii) We can directly compute

χ(g) = tr ρ(g) = tr(ρ̃(gN)) = χ̃(gN)

for all g ∈ G.

(iii) To see that χ and χ̃ have the same degree, we just notice that

degχ = χ(1) = χ̃(N) = deg χ̃.

Alternatively, to show they have the same dimension, just note that ρ and
ρ̃ map to the general linear group of the same vector space.
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8 Normal subgroups and liftingII Representation Theory (Theorems with proof)

(iv) To show this is a bijection, suppose χ̃ is a character of G/N and χ is its
lift to G. We need to show the kernel contains N . By definition, we know
χ̃(N) = χ(1). Also, if k ∈ N , then χ(k) = χ̃(kN) = χ̃(N) = χ(1). So
N ≤ kerχ.

Now let χ be a character of G with N ≤ kerχ. Suppose ρ : G → GL(V )
affords χ. Define

ρ̃ : G/N → GL(V )

gN 7→ ρ(g)

Of course, we need to check this is well-defined. If gN = g′N , then
g−1g′ ∈ N . So ρ(g) = ρ(g′) since N ≤ ker ρ. So this is indeed well-defined.
It is also easy to see that ρ̃ is a homomorphism, hence a representation of
G/N .

Finally, if χ̃ is a character of ρ̃, then χ̃(gN) = χ(g) for all g ∈ G by
definition. So χ̃ lifts to χ. It is clear that these two operations are inverses
to each other.

Lemma. Given a group G, the derived subgroup or commutator subgroup

G′ = 〈[a, b] : a, b ∈ G〉,

where [a, b] = aba−1b−1, is the unique minimal normal subgroup of G such that
G/G′ is abelian. So if G/N is abelian, then G′ ≤ N .

Moreover, G has precisely ` = |G : G′| representations of dimension 1, all
with kernel containing G′, and are obtained by lifting from G/G′.

In particular, by Lagrange’s theorem, ` | G.

Proof. Consider [a, b] = aba−1b−1 ∈ G′. Then for any h ∈ G, we have

h(aba−1b−1)h−1 =
(

(ha)b(ha)−1b−1
)(
bhb−1h−1

)
= [ha, b][b, h] ∈ G′

So in general, let [a1, b1][a2, b2] · · · [an, bn] ∈ G′. Then

h[a1, b1][a2, b2] · · · [an, bn]h−1 = (h[a1, b1]h−1)(h[a2, b2]h−1) · · · (h[an, bn]h−1),

which is in G′. So G′ is a normal subgroup.
Let N C G. Let g, h ∈ G. Then [g, h] ∈ N if and only if ghg−1h−1 ∈ N if

and only if ghN = hgN , if and only if (gN)(hN) = (hN)(gN) by normality.
Since G′ is generated by all [g, h], we know G′ ≤ N if and only if G/N is

abelian.
Since G/G′, is abelian, we know it has exactly ` irreducible characters,

χ̃1, · · · , χ̃`, all of degree 1. The lifts of these to G also have degree 1, and by the
previous lemma, these are precisely the irreducible characters χi of G such that
G′ ≤ kerχi.

But any degree 1 character of G is a homomorphism χ : G → C×, hence
χ(ghg−1h−1) = 1. So for any 1-dimensional character, χ, we must have G′ ≤
kerχ. So the lifts χ1, · · · , χ` are all 1-dimensional characters of G.

Lemma. G is not simple if and only if χ(g) = χ(1) for some irreducible character
χ 6= 1G and some 1 6= g ∈ G. Any normal subgroup of G is the intersection of
the kernels of some of the irreducible characters of G, i.e. N =

⋂
kerχi.
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8 Normal subgroups and liftingII Representation Theory (Theorems with proof)

Proof. Suppose χ(g) = χ(1) for some non-trivial irreducible character χ, and χ
is afforded by ρ. Then g ∈ ker ρ. So if g 6= 1, then 1 6= ker ρCG, and ker ρ 6= G.
So G cannot be simple.

If 1 6= N CG is a non-trivial proper subgroup, take an irreducible character
χ̃ of G/N , and suppose χ̃ 6= 1G/N . Lift this to get an irreducible character χ,
afforded by the representation ρ of G. Then N ≤ ker ρCG. So χ(g) = χ(1) for
g ∈ N .

Finally, let 1 6= N CG. We claim that N is the intersection of the kernels of
the lifts χ1, · · · , χ` of all the irreducibles of G/N . Clearly, we have N ≤

⋂
i kerχi.

If g ∈ G \N , then gN 6= N . So χ̃(gN) 6= χ̃(N) for some irreducible χ̃ of G/N .
Lifting χ̃ to χ, we have χ(g) 6= χ(1). So g is not in the intersection of the
kernels.
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9 Dual spaces and tensor products of represen-
tations

9.1 Dual spaces

Lemma. Let ρ : G → GL(V ) be a representation over F, and let V ∗ =
HomF(V,F) be the dual space of V . Then V ∗ is a G-space under

(ρ∗(g)ϕ)(v) = ϕ(ρ(g−1)v).

This is the dual representation to ρ. Its character is χ(ρ∗)(g) = χρ(g
−1).

Proof. We have to check ρ∗ is a homomorphism. We check

ρ∗(g1)(ρ∗(g2)ϕ)(v) = (ρ∗(g2)ϕ)(ρ(g−1
1 )(v))

= ϕ(ρ(g−1
2 )ρ(g−2

1 )v)

= ϕ(ρ((g1g2)−1)(v))

= (ρ∗(g1g2)ϕ)(v).

To compute the character, fix a g ∈ G, and let e1, · · · , en be a basis of eigenvectors
of V of ρ(g), say

ρ(g)ej = λjej .

If we have a dual space of V , then we have a dual basis. We let ε1, · · · , εn be
the dual basis. Then

(ρ∗(g)εj)(ei) = εj(ρ(g−1)ei) = εj(λ
−1
i ei) = λ−1

i δij = λ−1
j δij = λ−1

j εj(ei).

Thus we get
ρ∗(g)εj = λ−1

j εj .

So
χρ∗(g) =

∑
λ−1
j = χρ(g

−1).

9.2 Tensor products

Lemma.

(i) For v ∈ V , w ∈W and λ ∈ F, we have

(λv)⊗w = λ(v ⊗w) = v ⊗ (λw).

(ii) If x,x1,x2 ∈ V and y,y1,y2 ∈W , then

(x1 + x2)⊗ y = (x1 ⊗ y) + (x2 ⊗ y)

x⊗ (y1 + y2) = (x⊗ y1) + (x⊗ y2).

Proof.
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(i) Let v =
∑
αivi and w =

∑
βjwj . Then

(λv)⊗w =
∑
ij

(λαi)βjvi ⊗wj

λ(v ⊗w) = λ
∑
ij

αiβjvi ⊗wj

v ⊗ (λw) =
∑

αi(λβj)vi ⊗wj ,

and these three things are obviously all equal.

(ii) Similar nonsense.

Lemma. Let {e1, · · · , em} be any other basis of V , and {f1, · · · , fm} be another
basis of W . Then

{ei ⊗ fj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
is a basis of V ⊗W .

Proof. Writing

vk =
∑

αikei, w` =
∑

βj`f`,

we have
vk ⊗w` =

∑
αikβjlei ⊗ fj .

Therefore {ei ⊗ fj} spans V ⊗W . Moreover, there are nm of these. Therefore
they form a basis of V ⊗W .

Proposition. Let ρ : G→ GL(V ) and ρ′ : G→ GL(V ′). We define

ρ⊗ ρ′ : G→ GL(V ⊗ V ′)

by

(ρ⊗ ρ′)(g) :
∑

λijvi ⊗wj 7→
∑

λij(ρ(g)vi)⊗ (ρ′(g)wj).

Then ρ⊗ ρ′ is a representation of g, with character

χρ⊗ρ′(g) = χρ(g)χρ′(g)

for all g ∈ G.

Proof. It is clear that (ρ ⊗ ρ′)(g) ∈ GL(V ⊗ V ′) for all g ∈ G. So ρ ⊗ ρ′ is a
homomorphism G→ GL(V ⊗ V ′).

To check the character is indeed as stated, let g ∈ G. Let v1, · · · ,vm be
a basis of V of eigenvectors of ρ(g), and let w1, · · · ,wn be a basis of V ′ of
eigenvectors of ρ′(g), say

ρ(g)vi = λivi, ρ′(g)wj = µjwj .

Then

(ρ⊗ ρ′)(g)(vi ⊗wj) = ρ(g)vi ⊗ ρ′(g)wj

= λivi ⊗ µjwj

= (λiµj)(vi ⊗wj).

So
χρ⊗ρ′(g) =

∑
i,j

λiµj =
(∑

λi

)(∑
µj

)
= χρ(g)χρ′(g).

26



9 Dual spaces and tensor products of representationsII Representation Theory (Theorems with proof)

9.3 Powers of characters

Lemma. For any G-space V , S2V and Λ2V are G-subspaces of V ⊗2, and

V ⊗2 = S2V ⊕ Λ2V.

The space S2V has basis

{vivj = vi ⊗ vj + vj ⊗ vi : 1 ≤ i ≤ j ≤ n},

while Λ2V has basis

{vi ∧ vj = vi ⊗ vj − vj ⊗ vi : 1 ≤ i < j ≤ n}.

Note that we have a strict inequality for i < j, since vi ⊗ vj − vj ⊗ vi = 0 if
i = j. Hence

dimS2V =
1

2
n(n+ 1), dim Λ2V =

1

2
n(n− 1).

Proof. This is elementary linear algebra. For the decomposition V ⊗2, given
x ∈ V ⊗2, we can write it as

x =
1

2
(x + τ(x))︸ ︷︷ ︸
∈S2V

+
1

2
(x− τ(x))︸ ︷︷ ︸
∈Λ2V

.

Lemma. Let ρ : G → GL(V ) be a representation affording the character χ.
Then χ2 = χS+χΛ where χS = S2χ is the character of G in the subrepresentation
on S2V , and χΛ = Λ2χ the character of G in the subrepresentation on Λ2V .
Moreover, for g ∈ G,

χS(g) =
1

2
(χ2(g) + χ(g2)), χΛ(g) =

1

2
(χ2(g)− χ(g2)).

Proof. The fact that χ2 = χS + χΛ is immediate from the decomposition of
G-spaces.

We now compute the characters χS and χΛ. For g ∈ G, we let v1, · · · ,vn be
a basis of V of eigenvectors of ρ(g), say

ρ(g)vi = λivi.

We’ll be lazy and just write gvi instead of ρ(g)vi. Then, acting on Λ2V , we get

g(vi ∧ vj) = λiλjvi ∧ vj .

Thus
χΛ(g) =

∑
1≤i<j≤n

λiλj .

Since the answer involves the square of the character, let’s write that down:

(χ(g))2 =
(∑

λi

)2

=
∑

λ2
i + 2

∑
i<j

λiλj

= χ(g2) + 2
∑
i<j

λiλj

= χ(g2) + 2χΛ(g).
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Then we can solve to obtain

χΛ(g) =
1

2
(χ2(g)− χ(g2)).

Then we can get

χS = χ2 − χΛ =
1

2
(χ2(g) + χ(g2)).

9.4 Characters of G×H

Proposition. Let G and H be two finite groups with irreducible characters
χ1, · · · , χk and ψ1, · · · , ψr respectively. Then the irreducible characters of the
direct product G×H are precisely

{χiψj : 1 ≤ i ≤ k, 1 ≤ j ≤ r},

where
(χiψj)(g, h) = χi(g)ψj(h).

Proof. Take ρ : G → GL(V ) affording χ, and ρ′ : H → GL(W ) affording ψ.
Then define

ρ⊗ ρ′ : G×H → GL(V ⊗W )

(g, h) 7→ ρ(g)⊗ ρ′(h),

where
(ρ(g)⊗ ρ′(h))(vi ⊗wj) 7→ ρ(g)vi ⊗ ρ′(h)wj .

This is a representation of G × H on V ⊗W , and χρ⊗ρ′ = χψ. The proof is
similar to the case where ρ, ρ′ are both representations of G, and we will not
repeat it here.

Now we need to show χiψj are distinct and irreducible. It suffices to show
they are orthonormal. We have

〈χiψj , χrψs〉G×H =
1

|G×H|
∑

(g,h)∈G×H

χiψj(g, h)χrψs(g, h)

=

 1

|G|
∑
g∈G

χi(g)χr(g)

( 1

|H|
∑
h∈H

ψj(h)ψs(h)

)
= δirδjs.

So it follows that {χiψj} are distinct and irreducible. We need to show this is
complete. We can consider∑
i,j

χiψj(1)2 =
∑

χ2
i (1)ψ2

j (1) =
(∑

χ2
i (1)

)(∑
ψ2
j (1)

)
= |G||H| = |G×H|.

So done.
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9.5 Symmetric and exterior powers

9.6 Tensor algebra

9.7 Character ring

Lemma. Suppose α is a generalized character and 〈α, α〉 = 1 and α(1) > 0.
Then α is actually a character of an irreducible representation of G.

Proof. We list the irreducible characters as χ1, · · · , χk. We then write

α =
∑

niχi.

Since the χi’s are orthonormal, we get

〈α, α〉 =
∑

n2
i = 1.

So exactly one of ni is ±1, while the others are all zero. So α = ±χi for some i.
Finally, since α(1) > 0 and also χ(1) > 0, we must have ni = +1. So α = χi.
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10 Induction and restrictionII Representation Theory (Theorems with proof)

10 Induction and restriction

Lemma. Let H ≤ G. If ψ is any non-zero irreducible character of H, then there
exists an irreducible character χ of G such that ψ is a constituent of ResGH χ, i.e.

〈ResGH χ, ψ〉 6= 0.

Proof. We list the irreducible characters of G as χ1, · · · , χk. Recall the regular
character πreg. Consider

〈ResGH πreg, ψ〉 =
|G|
|H|

ψ(1) 6= 0.

On the other hand, we also have

〈ResGH πreg, ψ〉H =

k∑
1

degχi〈ResGH χi, ψ〉.

If this sum has to be non-zero, then there must be some i such that 〈ResGH χi, ψ〉 6=
0.

Lemma. Let χ be an irreducible character of G, and let

ResGH χ =
∑
i

ciχi,

with χi irreducible characters of H, and ci non-negative integers. Then∑
c2i ≤ |G : H|,

with equality iff χ(g) = 0 for all g ∈ G \H.

Proof. We have

〈ResGH χ,ResGH χ〉H =
∑

c2i .

However, by definition, we also have

〈ResGH χ,ResGH χ〉H =
1

|H|
∑
h∈H

|χ(h)|2.

On the other hand, since χ is irreducible, we have

1 = 〈χ, χ〉G

=
1

|G|
∑
g∈G
|χ(g)|2

=
1

|G|

∑
h∈H

|χ(h)|2 +
∑

g∈G\H

|χ(g)|2


=
|H|
|G|

∑
c2i +

1

|G|
∑

g∈G\H

|χ(g)|2

≥ |H|
|G|

∑
c2i .

So the result follows.
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10 Induction and restrictionII Representation Theory (Theorems with proof)

Lemma. Let ψ ∈ CH . Then IndGH ψ ∈ C(G), and IndGH ψ(1) = |G : H|ψ(1).

Proof. The fact that IndGH ψ is a class function follows from direct inspection of
the formula. Then we have

IndGH ψ(1) =
1

|H|
∑
x∈G

ψ̊(1) =
|G|
|H|

ψ(1) = |G : H|ψ(1).

Lemma. Given a (left) transversal t1, · · · , tn of H, we have

IndGH ψ(g) =

n∑
i=1

ψ̊(t−1
i gti).

Proof. We can express every x ∈ G as x = tih for some h ∈ H and i. We then
have

ψ̊((tih)−1g(tih)) = ψ̊(h−1(t−1
i gti)h) = ψ̊(t−1

i gti),

since ψ is a class function of H, and h−1(t−1
i gti)h ∈ H if and only if t−1

i gti ∈ H,
as h ∈ H. So the result follows.

Theorem (Frobenius reciprocity). Let ψ ∈ C(H) and ϕ ∈ C(G). Then

〈ResGH ϕ,ψ〉H = 〈ϕ, IndGH ψ〉G.

Proof. We have

〈ϕ,ψG〉 =
1

|G|
∑
g∈G

ϕ(g)ψG(g)

=
1

|G||H|
∑
x,g∈G

ϕ(g)ψ̊(x−1gx)

We now write y = x−1gx. Then summing over g is the same as summing over y.
Since ϕ is a G-class function, this becomes

=
1

|G||H|
∑
x,y∈G

ϕ(y)ψ̊(y)

Now note that the sum is independent of x. So this becomes

=
1

|H|
∑
y∈G

ϕ(y)ψ̊(y)

Now this only has contributions when y ∈ H, by definition of ψ̊. So

=
1

|H|
∑
y∈H

ϕ(y)ψ(y)

= 〈ϕH , ψ〉H .

Corollary. Let ψ be a character of H. Then IndGH ψ is a character of G.
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10 Induction and restrictionII Representation Theory (Theorems with proof)

Proof. Let χ be an irreducible character of G. Then

〈IndGH ψ, χ〉 = 〈ψ,ResGH χ〉.

Since ψ and ResGH χ are characters, the thing on the right is in Z≥0. Hence IndGH
is a linear combination of irreducible characters with non-negative coefficients,
and is hence a character.

Proposition. Let ψ be a character of H ≤ G, and let g ∈ G. Let

CG(g) ∩H =

m⋃
i=1

CH(xi),

where the xi are the representatives of the H conjugacy classes of elements of H
conjugate to g. If m = 0, then IndGH ψ(g) = 0. Otherwise,

IndGH ψ(g) = |CG(g)|
m∑
i=1

ψ(xi)

|CH(xi)|
.

Proof. If m = 0, then {x ∈ G : x−1gx ∈ H} = ∅. So ψ̊(x−1gx) = 0 for all x. So
IndGH ψ(g) = 0 by definition.

Now assume m > 0. We let

Xi = {x ∈ G : x−1gx ∈ H and is conjugate in H to xi}.

By definition of xi, we know the Xi’s are pairwise disjoint, and their union is
{x ∈ G : x−1gx ∈ H}. Hence by definition,

IndGH ψ(g) =
1

|H|
∑
x∈G

ψ̊(x−1gx)

=
1

|H|

m∑
i=1

∑
x∈Xi

ψ(x−1gx)

=
1

|H|

m∑
i=1

∑
x∈Xi

ψ(xi)

=

m∑
i=1

|Xi|
|H|

ψ(xi).

So we now have to show that in fact

|Xi|
|H|

=
|CG(g)|
|CH(xi)|

.

We fix some 1 ≤ i ≤ m. Choose some gi ∈ G such that g−1
i ggi = xi. This exists

by definition of xi. So for every c ∈ CG(g) and h ∈ H, we have

(cgih)−1g(cgih) = h−1g−1
i c−1gcgih

We now use the fact that c commutes with g, since c ∈ CG(g), to get

= h−1g−1
i c−1cggih

= h−1g−1
i ggih

= h−1xih.
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10 Induction and restrictionII Representation Theory (Theorems with proof)

Hence by definition of Xi, we know cgih ∈ Xi. Hence

CG(g)giH ⊆ Xi.

Conversely, if x ∈ Xi, then x−1gx = h−1xih = h−1(g−1
i ggi)h for some h. Thus

xh−1g−1
i ∈ CG(g), and so x ∈ CG(g)gih. So

x ∈ CG(g)giH.

So we conclude
Xi = CG(g)giH.

Thus, using some group theory magic, which we shall not prove, we get

|Xi| = |CG(g)giH| =
|CG(g)||H|

|H ∩ g−1
i CG(g)gi|

Finally, we note
g−1
i CG(g)gi = CG(g−1

i ggi) = CG(xi).

Thus

|Xi| =
|H||CG(g)|
|H ∩ CG(xi)|

=
|H||CG(g)|
|CH(xi)|

.

Dividing, we get
|Xi|
|H|

=
|CG(g)|
|CH(xi)|

.

So done.

Lemma. Let ψ = 1H , the trivial character of H. Then IndGH 1H = πX , the
permutation character of G on the set X, where X = G/H is the set of left
cosets of H.

Proof. We let n = |G : H|, and t1, · · · , tn be representatives of the cosets. By
definition, we know

IndGH 1H(g) =

n∑
i=1

1̊H(t−1
i gti)

= |{i : t−1
i gti ∈ H}|

= |{i : g ∈ tiHt−1
i }|

But tiHt
−1
i is the stabilizer in G of the coset tiH ∈ X. So this is equal to

= |fixX(g)|
= πX(g).
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11 Frobenius groups II Representation Theory (Theorems with proof)

11 Frobenius groups

Theorem (Frobenius’ theorem (1891)). Let G be a transitive permutation
group on a finite set X, with |X| = n. Assume that each non-identity element
of G fixes at most one element of X. Then the set of fixed point-free elements
(“derangements”)

K = {1} ∪ {g ∈ G : gα 6= α for all α ∈ X}

is a normal subgroup of G with order n.

Proof. The idea of the proof is to construct a character Θ whose kernel is K.
First note that by definition of K, we have

G = K ∪
⋃
α∈X

Gα,

where Gα is, as usual, the stabilizer of α. Also, we know that Gα ∩Gβ = {1} if
α 6= β by assumption, and by definition of K, we have K ∩Gα = {1} as well.

Next note that all the Gα are conjugate. Indeed, we know G is transitive,
and gGαg

−1 = Ggα. We set H = Gα for some arbitrary choice of α. Then the
above tells us that

|G| = |K| − |X|(|H| − 1).

On the other hand, by the orbit-stabilizer theorem, we know |G| = |X||H|. So it
follows that we have

|K| = |X| = n.

We first compute what induced characters look like.

Claim. Let ψ be a character of H. Then

IndGH ψ(g) =


nψ(1) g = 1

ψ(g) g ∈ H \ {1}
0 g ∈ K \ {1}

.

Since every element in G is either in K or conjugate to an element in H, this
uniquely specifies what the induced character is.

This is a matter of computation. Since [G : H] = n, the case g = 1
immediately follows. Using the definition of the induced character, since any
non-identity in K is not conjugate to any element in H, we know the induced
character vanishes on K \ {1}.

Finally, suppose g ∈ H \ {1}. Note that if x ∈ G, then xgx−1 ∈ Gxα. So this
lies in H if and only if x ∈ H. So we can write the induced character as

IndGH ψ(g) =
1

|H|
∑
g∈G

ψ̊(xgx−1) =
1

|H|
∑
h∈H

ψ(hgh−1) = ψ(g).

Claim. Let ψ be an irreducible character of H, and define

θ = ψG − ψ(1)(1H)G + ψ(1)1G.

Then θ is a character, and

θ(g) =

{
ψ(h) h ∈ H
ψ(1) k ∈ K

.
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11 Frobenius groups II Representation Theory (Theorems with proof)

Note that we chose the coefficients exactly so that the final property of θ
holds. This is a matter of computation:

1 h ∈ H \ {1} K \ {1}
ψG nψ(1) ψ(h) 0

ψ(1)(1H)G nψ(1) ψ(1) 0
ψ(1)1G ψ(1) ψ(1) ψ(1)
θi ψ(1) ψ(h) ψ(1)

The less obvious part is that θ is a character. From the way we wrote it, we
already know it is a virtual character. We then compute the inner product

〈θ, θ〉G =
1

|G|
∑
g∈G
|θ(g)|2

=
1

|G|

∑
g∈K
|θ(g)|2 +

∑
g∈G\K

|θ(g)|2


=
1

|G|

n|ψ(1)|2 + n
∑

h6=1∈H

|ψ(h)|2


=
1

|G|

(
n
∑
h∈H

|ψ(h)|2
)

=
1

|G|
(n|H|〈ψ,ψ〉H)

= 1.

So either θ or −θ is a character. But θ(1) = ψ(1) > 0. So θ is a character.
Finally, we have

Claim. Let ψ1, · · · , ψt be the irreducible representations of H, and θi be the
corresponding representations of G constructed above. Set

Θ =

t∑
i=1

θi(1)θi.

Then we have

θ(g) =

{
|H| g ∈ K
0 g 6∈ K

.

From this, it follows that the kernel of the representation affording θ is K, and
in particular K is a normal subgroup of G.

This is again a computation using column orthogonality. For 1 6= h ∈ H, we
have

Θ(h) =

t∑
i=1

ψi(1)ψi(h) = 0,

and for any y ∈ K, we have

Θ(y) =

t∑
i=1

ψi(1)2 = |H|.
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11 Frobenius groups II Representation Theory (Theorems with proof)

Proposition. The left action of any finite Frobenius group on the cosets of the
Frobenius complement satisfies the hypothesis of Frobenius’ theorem.

Proof. Let G be a Frobenius group, having a complement H. Then the action of
G on the cosets G/H is transitive. Furthermore, if 1 6= g ∈ G fixes xH and yH,
then we have g ∈ xHx−1 ∩ yHy−1. This implies H ∩ (y−1x)H(y−1x)−1 6= 1.
Hence xH = yH.
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12 Mackey theory II Representation Theory (Theorems with proof)

12 Mackey theory

Proposition. Let G be a finite group and H,K ≤ G. Let g1, · · · , gk be the
representatives of the double cosets K\G/H. Then

ResGK IndGH 1H ∼=
k⊕
i=1

IndK
giHg

−1
i ∩K

1.

Theorem (Mackey’s restriction formula). In general, for K,H ≤ G, we let
S = {1, g1, · · · , gr} be a set of double coset representatives, so that

G =
⋃
KgiH.

We write Hg = gHg−1 ∩K ≤ G. We let (ρ,W ) be a representation of H. For
each g ∈ G, we define (ρg,Wg) to be a representation of Hg, with the same
underlying vector space W , but now the action of Hg is

ρg(x) = ρ(g−1xg),

where h = g−1xg ∈ H by construction.
This is clearly well-defined. Since Hg ≤ K, we obtain an induced representa-

tion IndKHg
Wg.

Let G be finite, H,K ≤ G, and W be a H-space. Then

ResGK IndGHW =
⊕
g∈S

IndKHg
Wg.

Corollary. Let ψ be a character of a representation of H. Then

ResGK IndGH ψ =
∑
g∈S

IndKHg
ψg,

where ψg is the class function (and a character) on Hg given by

ψg(x) = ψ(g−1xg).

Corollary (Mackey’s irreducibility criterion). Let H ≤ G and W be a H-space.
Then V = IndGHW is irreducible if and only if

(i) W is irreducible; and

(ii) For each g ∈ S\H, the two Hg spaces Wg and ResHHg
W have no irreducible

constituents in common, where Hg = gHg−1 ∩H.

Proof. We use characters, and let W afford the character ψ. We take K = H in
Mackey’s restriction formula. Then we have Hg = gHg−1 ∩H.

Using Frobenius reciprocity, we can compute the inner product as

〈IndGH ψ, IndGH ψ〉G = 〈ψ,ResGH IndGH ψ〉H
=
∑
g∈S
〈ψ, IndHHg

ψg〉H

=
∑
g∈S
〈ResHHg

ψ,ψg〉Hg

= 〈ψ,ψ〉+
∑

g∈S\H

〈ResHHg
ψ,ψg〉Hg
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12 Mackey theory II Representation Theory (Theorems with proof)

We can write this because if g = 1, then Hg = H, and ψg = ψ.
This is a sum of non-negative integers, since the inner products of characters

always are. So IndGH ψ is irreducible if and only if 〈ψ,ψ〉 = 1, and all the other
terms in the sum are 0. In other words, W is an irreducible representation of H,
and for all g 6∈ H, W and Wg are disjoint representations of Hg.

Corollary. Let H CG, and suppose ψ is an irreducible character of H. Then
IndGH ψ is irreducible if and only if ψ is distinct from all its conjugates ψg for
g ∈ G \H (where ψg(h) = ψ(g−1hg) as before).

Proof. We take K = H C G. So the double cosets are just left cosets. Also,
Hg = H for all g. Moreover, Wg is irreducible since W is irreducible.

So, by Mackey’s irreducible criterion, IndGHW is irreducible precisely if
W 6∼= Wg for all g ∈ G \H. This is equivalent to ψ 6= ψg.

Theorem (Mackey’s restriction formula). In general, for K,H ≤ G, we let
S = {1, g1, · · · , gr} be a set of double coset representatives, so that

G =
⋃
KgiH.

We write Hg = gHg−1 ∩K ≤ G. We let (ρ,W ) be a representation of H. For
each g ∈ G, we define (ρg,Wg) to be a representation of Hg, with the same
underlying vector space W , but now the action of Hg is

ρg(x) = ρ(g−1xg),

where h = g−1xg ∈ H by construction.
This is clearly well-defined. Since Hg ≤ K, we obtain an induced representa-

tion IndKHg
Wg.

Let G be finite, H,K ≤ G, and W be a H-space. Then

ResGK IndGHW =
⊕
g∈S

IndKHg
Wg.

Proof. Write V = IndGHW . Pick g ∈ G, so that KgH ∈ K\G/H. Given a left
transversal T of H in G, we can obtain V explicitly as a direct sum

V =
⊕
t∈T

t⊗W.

The idea is to “coarsen” this direct sum decomposition using double coset
representatives, by collecting together the t⊗W ’s with t ∈ KgH. We define

V (g) =
⊕

t∈KgH∩T
t⊗W.

Now each V (g) is a K-space — given k ∈ K and t⊗w ∈ t⊗W , since t ∈ KgH,
we have kt ∈ KgH. So there is some t′ ∈ T such that ktH = t′H. Then
t′ ∈ ktH ⊆ KgH. So we can define

k · (t⊗w) = t′ ⊗ (ρ(t′−1kt)w),

where t′kt ∈ H.
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Viewing V as a K-space (forgetting its whole G-structure), we have

ResGK V =
⊕
g∈S

V (g).

The left hand side is what we want, but the right hand side looks absolutely
nothing like IndKHg

Wg. So we need to show

V (g) =
⊕

t∈KgH∩T
t⊗W ∼= IndKHg

Wg,

as K representations, for each g ∈ S.
Now for g fixed, each t ∈ KgH can be represented by some kgh, and by

restricting to elements in the traversal T of H, we are really summing over cosets
kgH. Now cosets kgH are in bijection with cosets k(gHg−1) in the obvious way.
So we are actually summing over elements in K/(gHg−1 ∩K) = K/Hg. So we
write

V (g) =
⊕

k∈K/Hg

(kg)⊗W.

We claim that there is a isomorphism that sends k⊗Wg
∼= (kg)⊗W . We define

k⊗Wg → (kg)⊗W by k⊗w 7→ kg⊗w. This is an isomorphism of vector spaces
almost by definition, so we only check that it is compatible with the action. The
action of x ∈ K on the left is given by

ρg(x)(k ⊗w) = k′ ⊗ (ρg(k
′−1xk)w) = k′ ⊗ (ρ(g−1k′−1xkg)w),

where k′ ∈ K is such that k′−1xk ∈ Hg, i.e. g−1k′−1xkg ∈ H. On the other
hand,

ρ(x)(kg ⊗w) = k′′ ⊗ (ρ(k′′x−1(kg))w),

where k′′ ∈ K is such that k′′−1xkg ∈ H. Since there is a unique choice of k′′

(after picking a particular transversal), and k′g works, we know this is equal to

k′g ⊗ (ρ(g−1k′−1xkg)w).

So the actions are the same. So we have an isomorphism.
Then

V (g) =
⊕

k∈K/Hg

k ⊗Wg = IndKHg
Wg,

as required.
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13 Integrality in the group algebra

Proposition.

(i) The algebraic integers form a subring of C.

(ii) If a ∈ C is both an algebraic integer and rational, then a is in fact an
integer.

(iii) Any subring of C which is a finitely generated Z-module consists of algebraic
integers.

Proposition. If χ is a character of G and g ∈ G, then χ(g) is an algebraic
integer.

Proof. We know χ(g) is the sum of roots nth roots of unity (where n is the order
of g). Each root of unity is an algebraic integer, since it is by definition a root of
xn − 1. Since algebraic integers are closed under addition, the result follows.

Proposition. The class sums C1, · · · , Ck form a basis of Z(CG). There exists
non-negative integers aij` (with 1 ≤ i, j, ` ≤ k) with

CiCj =

k∑
`=1

aij`C`.

Proof. It is clear from definition that gCjg
−1 = Cj . So we have Cj ∈ Z(CG).

Also, since the Cj ’s are produced from disjoint conjugacy classes, they are linearly
independent.

Now suppose z ∈ Z(CG). So we can write

z =
∑
g∈G

αgg.

By definition, this commutes with all elements of CG. So for all h ∈ G, we must
have

αh−1gh = αg.

So the function g 7→ αg is constant on conjugacy classes of G. So we can write
αj = αg for g ∈ Cj . Then

g =

k∑
j=1

αjCj .

Finally, the center Z(CG) is an algebra. So

CiCj =

k∑
`=1

aij`C`

for some complex numbers aij`, since the Cj span. The claim is that aij` ∈ Z≥0

for all i, j`. To see this, we fix g` ∈ C`. Then by definition of multiplication, we
know

aij` = |{(x, y) ∈ Ci × Cj : xy = g`}|,

which is clearly a non-negative integer.
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13 Integrality in the group algebraII Representation Theory (Theorems with proof)

Lemma. The values of

ωχ(Ci) =
χ(g)

χ(1)
|Ci|

are algebraic integers.

Proof. Using the definition of aij` ∈ Z≥0, and the fact that ωχ is an algebra
homomorphism, we get

ωχ(Ci)ωχ(Cj) =

k∑
`=1

aij`ωχ(C`).

Thus the span of {ω(Cj) : 1 ≤ j ≤ k} is a subring of C and is finitely generated
as a Z-module (by definition). So we know this consists of algebraic integers.

Theorem. The degree of any irreducible character of G divides |G|, i.e.

χj(1) | |G|

for each irreducible χj .

Proof. Let χ be an irreducible character. By orthogonality, we have

|G|
χ(1)

=
1

χ(1)

∑
g∈G

χ(g)χ(g−1)

=
1

χ(1)

k∑
i=1

|Ci|χ(gi)χ(g−1
i )

=

k∑
i=1

|Ci|χ(gi)

χ(1)
χ(gi)

−1.

Now we notice
|Ci|χ(gi)

χ(1)

is an algebraic integer, by the previous lemma. Also, χ(g−1
i ) is an algebraic

integer. So the whole mess is an algebraic integer since algebraic integers are
closed under addition and multiplication.

But we also know |G|
χ(1) is rational. So it must be an integer!
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14 Burnside’s theorem

Theorem (Burside’s paqb theorem). Let p, q be primes, and let |G| = paqb,
where a, b ∈ Z≥0, with a+ b ≥ 2. Then G is not simple.

Lemma. Suppose

α =
1

m

m∑
j=1

λj ,

is an algebraic integer, where λnj = 1 for all j and some n. Then either α = 0 or
|α| = 1.

Proof (non-examinable). Observe α ∈ F = Q(ε), where ε = e2πi/n (since λj ∈ F
for all j). We let G = Gal(F/Q). Then

{β ∈ F : σ(β) = β for all σ ∈ G} = Q.

We define the “norm”
N(α) =

∏
σ∈G

σ(α).

Then N(α) is fixed by every element σ ∈ G. So N(α) is rational.
Now N(α) is an algebraic integer, since Galois conjugates σ(α) of algebraic

integers are algebraic integers. So in fact N(α) is an integer. But for α ∈ G, we
know

|σ(α)| =
∣∣∣∣ 1

m

∑
σ(λj)

∣∣∣∣ ≤ 1.

So if α 6= 0, then N(α) = ±1. So |α| = 1.

Lemma. Suppose χ is an irreducible character of G, and C is a conjugacy class
in G such that χ(1) and |C| are coprime. Then for g ∈ C, we have

|χ(g)| = χ(1) or 0.

Proof. Of course, we want to consider the quantity

α =
χ(g)

χ(1)
.

Since χ(g) is the sum of degχ = χ(1) many roots of unity, it suffices to show
that α is an algebraic integer.

By Bézout’s theorem, there exists a, b ∈ Z such that

aχ(1) + b|C| = 1.

So we can write

α =
χ(g)

χ(1)
= aχ(g) + b

χ(g)

χ(1)
|C|.

Since χ(g) and χ(g)
χ(1) |C| are both algebraic integers, we know α is.

Proposition. If in a finite group, the number of elements in a conjugacy class
C is of (non-trivial) prime power order, then G is not non-abelian simple.
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Proof. Suppose G is a non-abelian simple group, and let 1 6= g ∈ G be living in
the conjugacy class C of order pr. If χ 6= 1G is a non-trivial irreducible character
of G, then either χ(1) and |C| = pr are not coprime, in which case p | χ(1), or
they are coprime, in which case |χ(g)| = χ(1) or χ(g) = 0.

However, it cannot be that |χ(g)| = χ(1). If so, then we must have ρ(g) = λI
for some λ. So it commutes with everything, i.e. for all h, we have

ρ(gh) = ρ(g)ρ(h) = ρ(h)ρ(g) = ρ(hg).

Moreover, since G is simple, ρ must be faithful. So we must have gh = hg for all
h. So Z(G) is non-trivial. This is a contradiction. So either p | χ(1) or χ(g) = 0.

By column orthogonality applied to C and 1, we get

0 = 1 +
∑

16=χ irreducible, p|χ(1)

χ(1)χ(g),

where we have deleted the 0 terms. So we get

−1

p
=
∑
χ 6=1

χ(1)

p
χ(g).

But this is both an algebraic integer and a rational number, but not integer.
This is a contradiction.

Theorem (Burside’s paqb theorem). Let p, q be primes, and let |G| = paqb,
where a, b ∈ Z≥0, with a+ b ≥ 2. Then G is not simple.

Proof. Let |G| = paqb. If a = 0 or b = 0, then the result is trivial. Suppose
a, b > 0. We let Q ∈ Sylq(G). Since Q is a p-group, we know Z(Q) is non-trivial.
Hence there is some 1 6= g ∈ Z(Q). By definition of center, we know Q ≤ CG(g).
Also, CG(g) is not the whole of G, since the center of G is trivial. So

|CG(g)| = |G : CG(g)| = pr

for some 0 < r ≤ a. So done.
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15 Representations of compact groups

Theorem. Every one-dimensional (continuous) representation S1 is of the form

ρ : z 7→ zn

for some n ∈ Z.

Lemma. If ψ : (R,+) → (R,+) is a continuous group homomorphism, then
there exists a c ∈ R such that

ψ(x) = cx

for all x ∈ R.

Proof. Given ψ : (R,+) → (R,+) continuous, we let c = ψ(1). We now claim
that ψ(x) = cx.

Since ψ is a homomorphism, for every n ∈ Z≥0 and x ∈ R, we know

ψ(nx) = ψ(x+ · · ·+ x) = ψ(x) + · · ·+ ψ(x) = nψ(x).

In particular, when x = 1, we know ψ(n) = cn. Also, we have

ψ(−n) = −ψ(n) = −cn.

Thus ψ(n) = cn for all n ∈ Z.
We now put x = m

n ∈ Q. Then we have

mψ(x) = ψ(nx) = ψ(m) = cm.

So we must have
ψ
(m
n

)
= c

m

n
.

So we get ψ(q) = cq for all q ∈ Q. But Q is dense in R, and ψ is continuous. So
we must have ψ(x) = cx for all x ∈ R.

Lemma. Continuous homomorphisms ϕ : (R,+)→ S1 are of the form

ϕ(x) = eicx

for some c ∈ R.

Proof. Let ε : (R,+)→ S1 be defined by x 7→ eix. This homomorphism wraps
the real line around S1 with period 2π.

We now claim that given any continuous function ϕ : R → S1 such that
ϕ(0) = 1, there exists a unique continuous lifting homomorphism ψ : R → R
such that

ε ◦ ψ = ϕ, ψ(0) = 0.

(R,+) 0

(R,+) S1

ε

ϕ∃!ψ
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15 Representations of compact groupsII Representation Theory (Theorems with proof)

The lifting is constructed by starting with ψ(0) = 0, and then extending a small
interval at a time to get a continuous map R → R. We will not go into the
details. Alternatively, this follows from the lifting criterion from IID Algebraic
Topology.

We now claim that if in addition ϕ is a homomorphism, then so is its
continuous lifting ψ. If this is true, then we can conclude that ψ(x) = cx for
some c ∈ R. Hence

ϕ(x) = eicx.

To show that ψ is indeed a homomorphism, we have to show that ψ(x+ y) =
ψ(x) + ψ(y).

By definition, we know

ϕ(x+ y) = ϕ(x)ϕ(y).

By definition of ψ, this means

ε(ψ(x+ y)− ψ(x)− ψ(y)) = 1.

We now look at our definition of ε to get

ψ(x+ y)− ψ(x)− ψ(y) = 2kπ

for some integer k ∈ Z, depending continuously on x and y. But k can only be
an integer. So it must be constant. Now we pick our favorite x and y, namely
x = y = 0. Then we find k = 0. So we get

ψ(x+ y) = ψ(x) + ψ(y).

So ψ is a group homomorphism.

Theorem. Every one-dimensional (continuous) representation S1 is of the form

ρ : z 7→ zn

for some n ∈ Z.

Proof. Let ρ : S1 → C× be a continuous representation. We now claim that ρ
actually maps S1 to S1. Since S1 is compact, we know ρ(S1) has closed and
bounded image. Also,

ρ(zn) = (ρ(z))n

for all n ∈ Z. Thus for each z ∈ S1, if |ρ(z)| > 1, then the image of ρ(zn) is
unbounded. Similarly, if it is less than 1, then ρ(z−n) is unbounded. So we must
have ρ(S1) ⊆ S1. So we get a continuous homomorphism

R→ S1

x 7→ ρ(eix).

So we know there is some c ∈ R such that

ρ(eix) = eicx,

Now in particular,
1 = ρ(e2πi) = e2πic.

This forces c ∈ Z. Putting n = c, we get

ρ(z) = zn.
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15 Representations of compact groupsII Representation Theory (Theorems with proof)

Theorem. Let G be a compact Hausdorff topological group. Then there exists
a unique Haar measure on G.

Corollary (Weyl’s unitary trick). Let G be a compact group. Then every
representation (ρ, V ) has a G-invariant Hermitian inner product.

Proof. As for the finite case, take any inner product ( · , · ) on V , then define a
new inner product by

〈v,w〉 =

∫
G

(ρ(g)v, ρ(g)w) dg.

Then this is a G-invariant inner product.

Theorem (Maschke’s theoerm). Let G be compact group. Then every repre-
sentation of G is completely reducible.

Proof. Given a representation (ρ, V ). Choose a G-invariant inner product. If
V is not irreducible, let W ≤ V be a subrepresentation. Then W⊥ is also
G-invariant, and

V = W ⊕W⊥.

Then the result follows by induction.

Theorem (Orthogonality). Let G be a compact group, and V and W be
irreducible representations of G. Then

〈χV , χW 〉 =

{
1 V ∼= W

0 V 6∼= W
.

15.1 Representations of SU(2)

Lemma (SU(2)-conjugacy classes).

(i) Let t ∈ T . Then sts−1 = t−1.

(ii) s2 = −I ∈ Z(SU(2)).

(iii) The normalizer

NG(T ) = T ∪ sT =

{(
a 0
0 ā

)
,

(
0 a
−ā 0

)
: a ∈ C, |a| = 1

}
.

(iv) Every conjugacy class C of SU(2) contains an element of T , i.e. C ∩ T 6= ∅.

(v) In fact,
C ∩ T = {t, t−1}

for some t ∈ T , and t = t−1 if and only if t = ±I, in which case C = {t}.

(vi) There is a bijection

{conjugacy classes in SU(2)} ↔ [−1, 1],

given by

A 7→ 1

2
trA.
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We can see that if

A =

(
λ 0
0 λ̄

)
,

then
1

2
trA =

1

2
(λ+ λ̄) = Re(λ).

Proof.

(i) Write it out.

(ii) Write it out.

(iii) Direct verification.

(iv) It is well-known from linear algebra that every unitary matrix X has an
orthonormal basis of eigenvectors, and hence is conjugate in U(2) to one
in T , say

QXQ† ∈ T.

We now want to force Q into SU(2), i.e. make Q have determinant 1.

We put δ = detQ. Since Q is unitary, i.e. QQ† = I, we know |δ| = 1. So
we let ε be a square root of δ, and define

Q1 = ε−1Q.

Then we have
Q1XQ

†
1 ∈ T.

(v) We let g ∈ G, and suppose g ∈ C. If g = ±I, then C ∩ T = {g}. Otherwise,
g has two distinct eigenvalues λ, λ−1. Note that the two eigenvlaues must
be inverses of each other, since it is in SU(2). Then we know

C =

{
h

(
λ 0
0 λ−1

)
h−1 : h ∈ G

}
.

Thus we find

C ∩ T =

{(
λ 0
0 λ−1

)
,

(
λ−1 0

0 λ

)}
.

This is true since eigenvalues are preserved by conjugation, so if any(
µ 0
0 µ−1

)
,

then {µ, µ−1} = {λ, λ−1}. Also, we can get the second matrix from the
first by conjugating with s.

(vi) Consider the map

1

2
tr : {conjugacy classes} → [−1, 1].

By (v), matrices are conjugate in G iff they have the same set of eigenvalues.
Now

1

2
tr

(
λ 0
0 λ−1

)
=

1

2
(λ+ λ̄) = Re(λ) = cos θ,

47



15 Representations of compact groupsII Representation Theory (Theorems with proof)

where λ = eiθ. Hence the map is a surjection onto [−1, 1].

Now we have to show it is injective. This is also easy. If g and g′ have the
same image, i.e.

1

2
tr g =

1

2
tr g′,

then g and g′ have the same characteristic polynomial, namely

x2 − (tr g)x+ 1.

Hence they have the same eigenvalues, and hence they are similar.

Proposition. For t ∈ (−1, 1), the class Ct ∼= S2 as topological spaces.

Proof. Exercise!

Lemma. A continuous class function f : G→ C is determined by its restriction
to T , and F |T is even, i.e.

f

((
λ 0
0 λ−1

))
= f

((
λ−1 0

0 λ

))
.

Proof. Each conjugacy class in SU(2) meets T . So a class function is determined
by its restriction to T . Evenness follows from the fact that the two elements are
conjugate.

Lemma. If χ is a character of a representation of SU(2), then its restriction
χ|T is a Laurent polynomial, i.e. a finite N-linear combination of functions(

λ 0
0 λ−1

)
7→ λn

for n ∈ Z.

Proof. If V is a representation of SU(2), then Res
SU(2)
T V is a representation

of T , and its character Res
SU(2)
T χ is the restriction of χV to T . But every

representation of T has its character of the given form. So done.

Theorem. The representations ρn : SU(2) → GL(Vn) of dimension n + 1 are
irreducible for n ∈ Z≥0.

Proof. Let 0 6= W ≤ Vn be a G-invariant subspace, i.e. a subrepresentation of
Vn. We will show that W = Vn.

All we know about W is that it is non-zero. So we take some non-zero vector
of W .

Claim. Let

0 6= w =

n∑
j=0

rjx
n−jyj ∈W.

Since this is non-zero, there is some i such that ri 6= 0. The claim is that
xn−iyi ∈W .
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We argue by induction on the number of non-zero coefficients rj . If there is
only one non-zero coefficient, then we are already done, as w is a non-zero scalar
multiple of xn−iyi.

So assume there is more than one, and choose one i such that ri 6= 0. We
pick z ∈ S1 with zn, zn−2, · · · , z2−n, z−n all distinct in C. Now

ρn

((
z

z−1

))
w =

∑
rjz

n−2jxn−jyj ∈W.

Subtracting a copy of w, we find

ρn

((
z

z−1

))
w − zn−2iw =

∑
rj(z

n−2j − zn−2i)xn−jyj ∈W.

We now look at the coefficient

rj(z
n−2j − zn−2i).

This is non-zero if and only if rj is non-zero and j 6= i. So we can use this to
remove any non-zero coefficient. Thus by induction, we get

xn−jyj ∈W

for all j such that rj 6= 0.
This gives us one basis vector inside W , and we need to get the rest.

Claim. W = Vn.

We now know that xn−iyi ∈W for some i. We consider

ρn

(
1√
2

(
1 −1
1 1

))
xn−iyi =

1√
2

(x+ y)n−i(−x+ y)i ∈W.

It is clear that the coefficient of xn is non-zero. So we can use the claim to
deduce xn ∈W .

Finally, for general a, b 6= 0, we apply

ρn

((
a −b̄
b ā

))
xn = (ax+ by)n ∈W,

and the coefficient of everything is non-zero. So basis vectors are in W . So
W = Vn.

Theorem. Every finite-dimensional continuous irreducible representation of G
is one of the ρn : G→ GL(Vn) as defined above.

Proof. Assume ρV : G → GL(V ) is an irreducible representation affording a
character χV ∈ N[z, z−1]ev. We will show that χV = χn for some n. Now we see

χ0 = 1

χ1 = z + z−1

χ2 = z2 + 1 + z−2

...
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form a basis of Q[z, z−1]ev, which is a non-finite dimensional vector space over
Q. Hence we can write

χV =
∑
n

anχn,

a finite sum with finitely many an 6= 0. Note that it is possible that an ∈ Q. So
we clear denominators, and move the summands with negative coefficients to
the left hand side. So we get

mχV +
∑
i∈I

miχi =
∑
j∈J

njχj ,

with I, J disjoint finite subsets of N, and m,mi, nj ∈ N.
We know the left and right-hand side are characters of representations of G.

So we get

mV ⊕
⊕
I

miVi =
⊕
J

njVj .

Since V is irreducible and factorization is unique, we must have V ∼= Vn for some
n ∈ J .

Proposition. Let G = SU(2) or G = S1, and V,W are representations of G.
Then

χV⊗W = χV χW .

Proof. By the previous remark, it is enough to consider the case G = S1. Suppose
V and W have eigenbases e1, · · · , en and f1, · · · , fm respectively such that

ρ(z)ei = zniei, ρ(z)fj = zmj fj

for each i, j. Then
ρ(z)(ei ⊗ fj) = zni+mjei ⊗ fj .

Thus the character is

χV⊗W (z) =
∑
i,j

zni+mj =

(∑
i

zni

)∑
j

zmj

 = χV (z)χW (z).

Proposition (Clebsch-Gordon rule). For n,m ∈ N, we have

Vn ⊗ Vm ∼= Vn+m ⊕ Vn+m−2 ⊕ · · · ⊕ V|n−m|+2 ⊕ V|n−m|.

Proof. We just check this works for characters. Without loss of generality, we
assume n ≥ m. We can compute

(χnχm)(z) =
zn+1 − z−n−1

z − z−1
(zm + zm−2 + · · ·+ z−m)

=

m∑
j=0

zn+m+1−2j − z2j−n−m−1

z − z−1

=

m∑
j=0

χn+m−2j(z).

Note that the condition n ≥ m ensures there are no cancellations in the sum.
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15.2 Representations of SO(3), SU(2) and U(2)

Proposition. There are isomorphisms of topological groups:

(i) SO(3) ∼= SU(2)/{±I} = PSU(2)

(ii) SO(4) ∼= SU(2)× SU(2)/{±(I, I)}

(iii) U(2) ∼= U(1)× SU(2)/{±(I, I)}

All maps are group isomorphisms, but in fact also homeomorphisms. To show
this, we can use the fact that a continuous bijection from a Hausdorff space to a
compact space is automatically a homeomorphism.

Corollary. Every irreducible representation of SO(3) has the following form:

ρ2m : SO(3)→ GL(V2m),

for some m ≥ 0, where Vn are the irreducible representations of SU(2).

Proof. Irreducible representations of SO(3) correspond to irreducible representa-
tions of SU(2) such that −I acts trivially by lifting. But −I acts on Vn as −1
when n is odd, and as 1 when n is even, since

ρ(−I) =


(−1)n

(−1)n−2

. . .

(−1)−n

 = (−1)nI.

Proposition. SO(3) ∼= SU(2)/{±I}.

Proof sketch. Recall that SU(2) can be viewed as the sphere of unit norm
quaternions H ∼= R4.

Let
H0 = {A ∈ H : trA = 0}.

These are the “pure” quaternions. This is a three-dimensional subspace of H. It
is not hard to see this is

H0 = R
〈(

i 0
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

)〉
= R 〈i, j,k〉 ,

where R〈· · ·〉 is the R-span of the things.
This is equipped with the norm

‖A‖2 = detA.

This gives a nice 3-dimensional Euclidean space, and SU(2) acts as isometries
on H0 by conjugation, i.e.

X ·A = XAX−1,

giving a group homomorphism

ϕ : SU(2)→ O(3),
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and the kernel of this map is Z(SU(2)) = {±I}. We also know that SU(2) is
compact, and O(3) is Hausdorff. Hence the continuous group isomorphism

ϕ̄ : SU(2)/{±I} → imϕ

is a homeomorphism. It remains to show that imϕ = SO(3).
But we know SU(2) is connected, and det(ϕ(X)) is a continuous function

that can only take values 1 or −1. So det(ϕ(X)) is either always 1 or always −1.
But det(ϕ(I)) = 1. So we know det(ϕ(X)) = 1 for all X. Hence imϕ ≤ SO(3).

To show that equality indeed holds, we have to show that all possible rotations
in H0 are possible. We first show all rotations in the i, j-plane are implemented
by elements of the form a+ bk, and similarly for any permutation of i, j,k. Since
all such rotations generate SO(3), we are then done. Now consider(

eiθ 0
0 e−iθ

)(
ai b
−b̄ −ai

)(
eiθ 0
0 eiθ

)
=

(
ai e2iθb

−b̄e−2iθ −ai

)
.

So (
eiθ 0
0 e−iθ

)
acts on R〈i, j,k〉 by a rotation in the (j,k)-plane through an angle 2θ. We can
check that (

cos θ sin θ
− sin θ cos θ

)
,

(
cos θ i sin θ
i sin θ cos θ

)
act by rotation of 2θ in the (i,k)-plane and (i, j)-plane respectively. So done.

Proposition. The complete list of irreducible representations of SO(4) is ρm×ρn,
where m,n > 0 and m ≡ n (mod 2).

Proposition. The complete list of irreducible representations of U(2) is

det⊗m ⊗ ρn,

where m,n ∈ Z and n ≥ 0, and det is the obvious one-dimensional representation.
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