
Part III — Percolation and Random Walks on
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Based on lectures by P. Sousi
Notes taken by Dexter Chua

Michaelmas 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

A phase transition means that a system undergoes a radical change when a continuous
parameter passes through a critical value. We encounter such a transition every day
when we boil water. The simplest mathematical model for phase transition is percolation.
Percolation has a reputation as a source of beautiful mathematical problems that are
simple to state but seem to require new techniques for a solution, and a number of
such problems remain very much alive. Amongst connections of topical importance
are the relationships to so-called Schramm–Loewner evolutions (SLE), and to other
models from statistical physics. The basic theory of percolation will be described in
this course with some emphasis on areas for future development.

Our other major topic includes random walks on graphs and their intimate connection
to electrical networks; the resulting discrete potential theory has strong connections
with classical potential theory. We will develop tools to determine transience and
recurrence of random walks on infinite graphs. Other topics include the study of
spanning trees of connected graphs. We will present two remarkable algorithms to
generate a uniform spanning tree (UST) in a finite graph G via random walks, one
due to Aldous-Broder and another due to Wilson. These algorithms can be used to
prove an important property of uniform spanning trees discovered by Kirchhoff in the
19th century: the probability that an edge is contained in the UST of G, equals the
effective resistance between the endpoints of that edge.

Pre-requisites

There are no essential pre-requisites beyond probability and analysis at undergraduate

levels, but a familiarity with the measure-theoretic basis of probability will be helpful.
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0 Introduction

This course is naturally divided into two parts — percolation, and random
walks on graphs. Percolation is one of the simplest models that experience phase
transition — an abrupt change in quantitative feature due to a continuous change
of a parameter. More sophisticated examples of percolation the boiling of water
and the loss of long-range correlation in magnets when temperature increases.

But we are not physicists. So let’s talk about percolation. For reasons that
become clear later, consider an n× (n+ 1) lattice connected by edges:

We now fix some p ∈ [0, 1], and for each edge in the graph, we either keep it
or remove it with probability p. There are many questions we may ask. For
example, we may ask for the probability that there is a left-to-right crossing of
open edges.

For example, we have fn(0) = 0 and fn(1) = 1.
An interesting choice of p to consider is p = 1

2 . We can argue that fn( 1
2 )

must be 1
2 , by symmetry. More precisely, consider the dual lattice:

Note that this lattice is isomorphic to the original lattice we were thinking about,
by applying a rotation. Now each edge in the dual lattice crosses exactly one edge
in the original lattice, and we can set the edge to be open iff the corresponding
edge in the original lattice is open. This gives rise to a percolation on the dual
lattice with p = 1

2 as well.
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Now notice that that there is a left-right crossing of open edges in the original
lattice iff there is no top-bottom crossing in the dual graph. But since the dual
and original lattices are isomorphic, it follows that the probability that there is
a left-right crossing in the original lattice is equal to the probability that there
is no left-right crossing in the original lattice. So both of these must be 1

2 .
The ability to talk about the dual graph is a very important property that

is only true in 2 dimensions. In general, there are many things known for 2
dimensions via the dual, which do not generalize to higher dimensions.

The other topic we are going to discuss is random walks in graphs. In IB
Markov chains, and maybe IA Probability, we considered random walks on the
integer lattice Zd. Here we shall consider random walks on any graph. We
shall mostly think about finite graphs, but we will also talk about how certain
results can be extended to infinite graphs. It turns out a rather useful way of
thinking about this is to think of the graph as representing an electrical network.
Then many concepts familiar from high school physics translate to interesting
properties about the graph, and importing well-known (and elementary) results
from electrical networks helps us understand graphs better.
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1 Percolation

1.1 The critical probability

There are two models of percolation — bond percolation and site percolation. In
this course, we will focus on bond percolation, but we will look at site percolation
in the example sheets.

The very basic set up of percolation theory involves picking a graph G =
(V,E), where V is the set of vertices and E is the set of edges. We also pick a
percolation probability p ∈ [0, 1]. For each edge e ∈ E, we keep it with probability
p and throw it with probability 1− p. In the first case, we say the edge is open,
and in the latter, we say it is closed .

More precisely, we define the probability space to be Ω = {0, 1}E , where 0
denotes a closed edge and 1 denotes an open one (in the case of site percolation,
we have Ω = {0, 1}V ). We endow Ω with the σ-algebra generated by cylinder
sets

{ω ∈ Ω : ω(e) = xe for all e ∈ A},

where A is a finite set and xe ∈ {0, 1} for all e. In other words, this is the
product σ-algebra. As probability measure, we take the product measure Pp, i.e.
every edge is 1 with probability p and 0 with probability 1− p. We will write
ηp ∈ {0, 1}E for the state of the system.

Now what can we say about the graph resulting from this process? One
question we may ask is whether we can connect two points in the graphs via the
edges that remain. To further the discussion, we introduce some notation.

Notation. We write x↔ y if there is an open path of edges from x to y.

Notation. We write C(x) = {y ∈ V : y ↔ x}, the cluster of x.

Notation. We write x↔∞ if |C(x)| =∞.

From now on, we shall take G = Ld = (Zd, E(Zd)), the d-dimensional integer
lattice. Then by translation invariance, |C(x)| has the same distribution as |C(0)|
for all x. We now introduce a key piece of notation:

Definition (θ(p)). We define θ(p) = Pp(|C(0)| =∞).

Most of the questions we ask surround this θ(p). We first make the most
elementary observations:

Example. θ(0) = 0 and θ(1) = 1.

A natural question to ask is then if we can find p ∈ (0, 1) such that θ(p) > 0.
But even before answering that question, we can ask a more elementary one —
is θ an increasing function of p?

Intuitively, it must be. And we can prove it. The proof strategy is known as
coupling . We have already seen coupling in IB Markov Chains, where we used it
to prove the convergence to the invariant distribution under suitable conditions.
Here we are going to couple all percolation processes for different values of P .

Lemma. θ is an increasing function of p.
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Proof. We let (U(e))e∈E(Zd) be iid U [0, 1] random variables. For each p ∈ [0, 1],
we define

ηp(e) =

{
1 U(e) ≤ p
0 otherwise

Then P(ηp(e) = 1) = P(U(e) < p) = p. Since the U(e) are independent, so are
ηp. Thus ηp has the law of bond percolation with probability p.

Moreover, if p ≤ q, then ηp(e) ≤ ηq(e). So the result follows.

Note that this is not only useful as a theoretical tool. If we want to simulate
percolation with different probabilities p, we can simply generate a set of U [0, 1]
variables, and use it to produce a percolation for all p.

If we wish, we can provide an abstract definition of what coupling is, but the
detailed definition is not of much practical use:

Definition (Coupling). Let µ and ν be two probability measures on (potentially)
different probability spaces. A coupling is a pair of random variables (X,Y )
defined on the same probability space such that the marginal distribution of X
is µ and the marginal distribution of Y is ν.

With the lemma, we can make the definition

Definition (Critical probability). We define pc(d) = sup{p ∈ [0, 1] : θ(p) = 0}.

Recall we initially asked whether θ(p) can be non-zero for p ∈ (0, 1). We
can now rephrase and strengthen this question by asking for the value of pc(d).
There are a lot more questions we can ask about pc and θ(p).

For example, we know that θ(p) is a C∞ function on (pc, 1]. However, we
do not know if θ is continuous at pc in d = 3. We will see soon that pc = 1

2 in
d = 2, but the exact value of pc is not known in higher dimensions.

Let’s start actually proving things about pc. We previously noted that

Proposition. pc(1) = 1.

The first actually interesting theorem is the following:

Theorem. For all d ≥ 2, we have pc(d) ∈ (0, 1).

We shall break this up into two natural parts:

Lemma. For d ≥ 2, pc(d) > 0.

Proof. Write Σn for the number of open self-avoiding paths of length n starting
at 0. We then note that

Pp(|C(0)| =∞) = Pp(∀n ≥ 1 : Σn ≥ 1) = lim
n→∞

Pp(Σn ≥ 1) ≤ lim
n→∞

Ep[Σn].

We can now compute Ep[Σn]. The point is that expectation is linear, which
makes this much easier to compute. We let σn be the number of self-avoiding
paths of length n from 0. Then we simply have

Ep[Σn] = σnp
n.
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We can bound σn by 2d · (2d− 1)n−1, since we have 2d choices of the first step,
and at most 2d− 1 choices in each subsequent step. So we have

Ep[Σn] ≤ 2d(2d− 1)n−1pn =
2d

2d− 1
(p(2d− 1))n.

So if p(2d− 1) < 1, then θ(p) = 0. So we know that

pc(d) ≥ 1

2d− 1
.

Before we move on to the other half of the theorem, we talk a bit more about
self-avoiding paths.

Definition (σn). We write σn for the number of self-avoiding paths of length n
starting from 0.

In the proof, we used the rather crude bound

σn ≤ 2d · (2d− 1)n−1.

More generally, we can make the following bound:

Lemma. We have σn+m ≤ σnσm.

Proof. A self-avoiding path of length n+m can be written as a concatenation of
self-avoiding paths of length n starting from 0 and another one of length m.

Taking the logarithm, we know that log σn is a subadditive sequence. It turns
out this property alone is already quite useful. It is an exercise in analysis to
prove the following lemma:

Lemma (Fekete’s lemma). If (an) is a subadditive sequence of real numbers,
then

lim
n→∞

an
n

= inf
{ak
k

: k ≥ 1
}
∈ [−∞,∞).

In particular, the limit exists.

This allows us to define

Definition (λ and κ). We define

λ = lim
n→∞

log σn
n

, κ = eλ.

κ is known as the connective constant .

Then by definition, we have

σn = enλ(1+o(1)) = κn+o(n).

as n→∞.
Thus, asymptotically, the growth rate of σn is determined by κ. It is natural

to then seek for the value of κ, but unfortunately we don’t know the value of
κ for the Euclidean lattice. A bit more on the positive side, the value for the
hexagonal lattice has been found recently:
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Theorem (Duminil-Copin, Smirnov, 2010). The hexagonal lattice has

κhex =

√
2 +
√

2.

We might want to be a bit more precise about how σn grows. For d ≥ 5, we
have the following theorem:

Theorem (Hara and Slade, 1991). For d ≥ 5, there exists a constant A such
that

σn = Aκn(1 +O(n−ε))

for any ε < 1
2 .

We don’t really know what happens when d < 5, but we have the following
conjecture:

Conjecture.

σn ≈


n11/32κn d = 2

nγκn d = 3

(log n)1/4κn d = 4

One can also instead try to bound σn from above. We have the following
classic theorem:

Theorem (Hammersley and Welsh, 1962). For all d ≥ 2, we have

σn ≤ Cκn exp(c′
√
n)

for some constants C and c′.

In fact, a better bound was recently found:

Theorem (Hutchcroft, 2017). For d ≥ 2, we have

σn ≤ Cκn exp(o(
√
n)).

This will be proved in the example sheet.
What would be a good way to understand self-avoiding walks? Fixing an n,

there are only finitely many self-avoiding walks of length n. So we can sample
such a self-avoiding walk uniformly at random. In general, we would expect
the total displacement of the walk to be ∼

√
n. Thus, what we can try to do

is to take n→∞ while simultaneously shrinking space by a factor of 1√
n

. We

would then hope that the result converges toward some Brownian motion-like
trajectory. If we can characterize the precise behaviour of this scaling limit ,
then we might be able to say something concrete about κ and the asymptotic
behaviour of σn.

But we don’t really know what the scaling limit is. In the case d = 2, it is
conjectured to be SLE( 8

3 ). Curiously, it was proven by Gwynne and Miller in
2016 that if we instead looked at self-avoiding walks on a random surface, then
the scaling limit is SLE( 8

3 ).
That’s enough of a digression. Let’s finish our proof and show that pc(d) < 1.

A first observation is that it suffices to show this for d = 2. Indeed, since Zd
embeds into Zd+1 for all d, if we can find an infinite cluster in Zd, then the same
is true for Zd+1. Thus, it is natural to restrict to the case of d = 2, where duality
will be prove to be an extremely useful tool.
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Definition (Planar graph). A graph G is called planar if it can be embedded
on the plane in such a way that no two edges cross.

Definition (Dual graph). Let G be a planar graph (which we call the primal
graph). We define the dual graph by placing a vertex in each face of G, and
connecting 2 vertices if their faces share a boundary edge.

Example. The dual of Z2 is isomorphic to Z2

The dual lattice will help us prove a lot of properties for percolation in Z2.

Lemma. pc(d) < 1 for all d ≥ 2.

Proof. It suffices to show this for d = 2. Suppose we perform percolation on Z2.
Then this induces a percolation on the dual lattice by declaring an edge of the
dual is open if it crosses an open edge of Z2, and closed otherwise.

Suppose |C(0)| <∞ in the primal lattice. Then there is a closed circuit in
the dual lattice, given by the “boundary” of C(0). Let Dn be the number of
closed dual circuits of length n that surround 0. Then the union bound plus
Markov’s inequality tells us

Pp(|C(0)| <∞) = Pp(∃n ≥ Dn ≥ 1) ≤
∞∑
n=4

Ep[Dn],

using the union bound and Markov’s inequality.
It is a simple exercise to show that

Exercise. Show that the number of dual circuits of length n that contain 0 is
at most n · 4n.

From this, it follows that

Pp(|C(0)| <∞) ≤
∞∑
n=4

n · 4n(1− p)n.

Thus, if p is sufficiently near 1, then Pp(|C(0)| <∞) is bounded away from 1.

By definition, if p < pc(d), then 0 is almost surely not contained in an infinite
cluster. If p > pc(d), then there is a positive probability that 0 is contained
in an infinite cluster. However, it is of course not necessarily the case that
0 is connected to ∞ with probability 1. In fact, there is at least probability
(1− p)2d that 0 is not connected to ∞, since 0 cannot be connected to ∞ if all
its neighbouring edges are closed. However, it is still possible that there is some
infinite cluster somewhere. It’s just that it does not contain 0.

Proposition. Let A∞ be the event that there is an infinite cluster.
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(i) If θ(p) = 0, then Pp(A∞) = 0.

(ii) If θ(p) > 0, then Pp(A∞) = 1.

Proof.

(i) We have

Pp(A∞) = Pp(∃x : |C(x)| =∞) ≤
∑
x∈Zd

Pp(|C(x)| =∞) =
∑

θ(p) = 0.

(ii) We need to apply the Kolmogorov 0-1 law . Recall that if X1, X2, . . . are
independent random variables, and Fn = σ(Xk : k ≥ n), F∞ =

⋂
n≥0 Fn,

Then F∞ is trivial, i.e. for all A ∈ F∞, P(A) ∈ {0, 1}.
So we order the edges of Zd as e1, e2, . . . and denote their states

w(e1), w(e2), . . . .

These are iid random variables. We certainly have Pp(A∞) ≥ θ(p) > 0.
So if we can show that A∞ ∈ F∞, then we are done. But this is clear,
since changing the states of a finite number of edges does not affect the
occurrence of A∞.

The next follow up questions is how many infinite clusters do we expect to
get?

Theorem (Burton and Keane). If p > pc, then there exists a unique infinite
cluster with probability 1.

This proof is considerably harder than the ones we have previously done. We
might think we can use the Kolmogorov 0-1 law, but we can’t, since changing
a finite number of edges can break up or join together infinite clusters, so the
event that there are k infinite clusters for k > 0 is not in F∞. However, we can
exploit the fact that N is translation invariant.

Exercise. Let A be an event that is translation invariant. Then Pp(A) = 0 or 1
almost surely.

Proof. Let N be the number of infinite clusters. Then by the lemma, we know N
is constant almost surely. So there is some k ∈ N∪{∞} such that Pp(N = k) = 1.
First of all, we know that k 6= 0, since θ(p) > 0. We shall first exclude 2 ≤ k <∞,
and then exclude k =∞.

Assume that k <∞. We will show that Pp(n = 1) > 0, and hence it must
be the case that Pp(n = 1) = 1.

To bound this probability, we let B(n) = [−n, n]d ∩ Zd (which we will
sometimes write as Bn), and let ∂B(n) be its boundary. We know that

Pp(all infinite clusters intersect ∂B(n))→ 1

as n→∞. This is since with probability 1, there are only finitely many clusters
by assumption, and for each of these configurations, all infinite clusters intersect
∂B(n) for sufficiently large n.
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In particular, we can take n large enough such that

Pp(all infinite clusters intersect ∂B(n)) ≥ 1

2
.

We can then bound

Pp(N = 1) ≥ Pp(all infinite clusters intersect ∂B(n)

and all edges in B(n) are open).

Finally, note that the two events in there are independent, since they involve
different edges. But the probability that all edges in B(n) are open is just
pE(B(n)). So

Pp(N = 1) ≥ 1

2
pE(B(n)) > 0.

So we are done.
We now have to show that k 6=∞. This involves the notion of a trifurcation.

The idea is that we will show that if k =∞, then the probability that a vertex
is a trifurcation is positive. This implies the expected number of trifurcations
is ∼ nd. We will then show deterministically that the number of trifurcations
inside B(n) must be ≤ |∂B(n)|, and so there are O(nd−1) trifurcations, which is
a contradiction.

We say a vertex x is a trifurcation if the following three conditions hold:

(i) x is in an infinite open cluster C∞;

(ii) There exist exactly three open edges adjacent to x;

(iii) C∞ \ {x} contains exactly three infinite clusters and no finite ones.

This is clearly a translation invariant notion. So

Pp(0 is a trifurcation) = Pp(x is a trifurcation)

for all x ∈ Zd.

Claim. Pp(0 is a trifurcation) > 0.

We need to use something slightly different from B(n). We define S(n) =
{x ∈ Zd : ‖x‖1 ≤ n}.
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The crucial property of this is that for any x1, x2, x3 ∈ ∂S(n), there exist three
disjoint self-avoiding paths joining xi to 0 (exercise!). For each triple x1, x2, x3,
we arbitrarily pick a set of three such paths, and define the event

J(x1, x2, x3) = {all edges on these 3 paths are open

and everything else inside S(n) is closed}.

Next, for every possible infinite cluster in Zd \ S(n) that intersects ∂S(n) at at
least one point, we pick a designated point of intersection arbitrarily.

Then we can bound

Pp(0 is a trifurcation) ≥ Pp(∃C1
∞, C2

∞, C3
∞ ⊆ Zd \ S(n)

infinite clusters which intersect ∂S(n) at x1, x2, x3, and J(x1, x2, x3)).

Rewrite the right-hand probability as

Pp(J(x1, x2, x3) | ∃C1
∞, C2

∞, C3
∞ ⊆ Z intersecting ∂S(n))

× Pp(∃C1
∞, C2

∞, C3
∞ ⊆ Zd \ ∂S(n))

We can bound the first term by

min(p, 1− p)E(S(n)).

To bound the second probability, we have already assumed that Pp(N =∞) = 1.
So Pp(∃C1

∞, C2
∞, C3

∞ ⊆ Zd \ S(n) intersecting ∂S(n)) → 1 as n → ∞. We can
then take n large enough such that the probability is ≥ 1

2 . So we have shown
that c ≡ Pp(0 is a trifurcation) > 0.

Using the linearity of expectation, it follows that

Ep[number of trifurcations inside B(n))] ≥ c|B(n)| ∼ nd.

On the other hand, we can bound the number of trifurcations in B(n) by |∂B(n)|.
To see this, suppose x1 is a trifurcation in B(n). By definition, there exists
3 open paths to ∂B(n). Fix three such paths. Let x2 be another trifurcation.
It also has 3 open paths to the ∂B(n), and its paths to the boundary could
intersect those of x1. However, they cannot create a cycle, by definition of a
trifurcation. For simplicity, we add the rule that when we produce the paths for
x2, once we intersect the path of x1, we continue following the path of x1.

Exploring all trifurcations this way, we obtain a forest inside B(n), and the
boundary points will be the leaves of the forest. Now the trifurcations have
degree 3 in this forest. The rest is just combinatorics.

Exercise. For any tree, the number of degree 3 vertices is always less than the
number of leaves.

1.2 Correlation inequalities

In this section, we are going to prove some useful inequalities and equalities,
and use them to prove some interesting results about θ(p) and the decay of
Pp(0↔ ∂Bn).
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To motivate our first inequality, suppose we have 4 points x, y, u, v, and we
want to ask for the conditional probability

Pp(x↔ y | u↔ v).

Intuitively, we expect this to be greater than Pp(x ↔ y), since u ↔ v tells us
there are some open edges around, which is potentially helpful. The key property
underlying this intuition is that having more edges is beneficial to both of the
events. To quantify this, we need the notion of an increasing random variable.

Again, let G = (V,E) be a graph and Ω = {0, 1}E . We shall assume that E
is countable.

Notation (≤). Given ω, ω′ ∈ Ω, we write ω ≤ ω′ if ω(e) ≤ ω′(e) for all e ∈ E.

This defines a partial order on Ω.

Definition (Increasing random variable). A random variable X is increasing if
X(ω) ≤ X(ω′) whenever ω ≤ ω′, and is decreasing if −X is increasing.

Definition (Increasing event). An event A is increasing (resp. decreasing) if
the indicator 1(A) is increasing (resp. decreasing)

Example. {|C(0)| =∞} is an increasing event.

An immediate consequence of the definition is that

Theorem. If N is an increasing random variable and p1 ≤ p2, then

Ep1 [N ] ≤ Ep2 [N ],

and if an event A is increasing, then

Pp1(A) ≤ Pp2(A).

Proof. Immediate from coupling.

What we want to prove is the following result, which will be extremely useful.

Theorem (Fortuin–Kasteleyn–Ginibre (FKG) inequality). Let X and Y be
increasing random variables with Ep[X2],Ep[Y 2] <∞. Then

Ep[XY ] ≥ Ep[X]Ep[Y ].

In particular, if A and B are increasing events, then

Pp(A ∩B) ≥ Pp(A)Pp(B).

Equivalently,
Pp(A | B) ≥ Pp(A).

Proof. The plan is to first prove this in the case where X and Y depend on a
finite number of edges, and we do this by induction. Afterwards, the desired
result can be obtained by an application of the martingale convergence theorem.
In fact, the “real work” happens when we prove it for X and Y depending on
a single edge. Everything else follows from messing around with conditional
probabilities.
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If X and Y depend only on a single edge e1, then for any ω1, ω2 ∈ {0, 1}, we
claim that

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0.

Indeed, X and Y are both increasing. So if ω1 > ω2, then both terms are
positive; if ω < ω2, then both terms are negative, and there is nothing to do if
they are equal.

In particular, we have∑
ω1,ω2∈{0,1}

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2))Pp(ω(e1) = ω1)Pp(ω(e1) = ω2) ≥ 0.

Expanding this, we find that the LHS is 2(Ep[XY ] − Ep[X]Ep[Y ]), and so we
are done.

Now suppose the claim holds for X and Y that depend on n < k edges. We
shall prove the result when they depend on k edges e1, . . . , ek. We have

Ep[XY ] = Ep[Ep[XY | ω(e1), . . . , ω(ek−1)]].

Now after conditioning on ω(e1), . . . , ω(ek−1), the random variables X and Y
become increasing random variables of ω(ek). Applying the first step, we get

Ep[XY | ω(e1), . . . , ω(ek−1)]

≥ Ep[X | ω(e1), . . . , ω(ek−1)]Ep[Y | ω(e1), . . . , ω(ek−1)]. (∗)

But Ep[X | ω(e1), . . . , ω(ek−1)] is a random variable depending on the edges
e1, . . . , ek−1, and moreover it is increasing. So the induction hypothesis tells us

Ep
[
Ep[X | ω(e1), . . . , ω(ek−1)]Ep[Y | ω(e1), . . . , ω(ek−1)]

]
≥ Ep

[
Ep[X | ω(e1), . . . , ω(ek−1)]

]
Ep
[
Ep[Y | ω(e1), . . . , ω(ek−1)]

]
Combining this with (the expectation of) (∗) then gives the desired result.

Finally, suppose X and Y depend on the states of a countable set of edges
e1, e2, . . .. Let’s define

Xn = Ep[X | ω(e1), . . . , ω(en)]

Yn = Ep[Y | ω(e1), . . . , ω(en)]

Then Xn and Yn are martingales, and depend only on the states of only finitely
many edges. So we know that

Ep[XnYn] ≥ Ep[Xn]Ep[Yn] = Ep[X]Ep[Y ].

By the L2-martingale convergence theorem, Xn → X, Yn → Y in L2 and almost
surely. So taking the limit n→∞, we get

Ep[XY ] ≥ Ep[X]Ep[Y ].

What we want to consider next is the notion of disjoint occurrence. For
example, we want to able to ask the probability that there exists two disjoint
paths connecting a pair of points.

14
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To formulate this disjointness, suppose we have an event A, and let ω ∈ A.
To ask whether this occurrence of A depends only on some set S ⊆ E of edges,
we can look at the set

[ω]S = {ω′ ∈ Ω : ω′(e) = ω(e) for all e ∈ S}.

If [ω]S ⊆ A, then we can rightfully say this occurrence of A depends only on
the edges in S. Note that this depends explicitly and importantly on ω, i.e. the
“reason” A happened. For example, if A = {x ↔ y}, and ω ∈ A, then we can
take S to be the set of all edges in a chosen path from x to y in the configuration
of ω. This choice will be different for different values of ω.

Using this, we can define what it means for two events to occur disjointly.

Definition (Disjoint occurrence). Let F be a set and Ω = {0, 1}F . If A and B
are events, then the event that A and B occurs disjointly is

A ◦B = {ω ∈ Ω : ∃S ⊆ F s.t. [ω]S ⊆ A and [ω]F\S ⊆ B}.

Theorem (BK inequality). Let F be a finite set and Ω = {0, 1}F . Let A and
B be increasing events. Then

Pp(A ◦B) ≤ Pp(A)Pp(B).

This says if A and B are both events that “needs” edges to occur, then requir-
ing that they occur disjointly is more difficult than them occurring individually.

The proof is completely magical. There exist saner proofs of the inequality,
but they are rather longer.

Proof (Bollobás and Leader). We prove by induction on the size n of the set F .
For n = 0, it is trivial.

Suppose it holds for n− 1. We want to show it holds for n. For D ⊆ {0, 1}F
and i = 0, 1, set

Di = {(ω1, . . . , ωn−1) : (ω1, . . . , ωn−1, i) ∈ D}.

Let A,B ⊆ {0, 1}F , and C = A ◦B. We check that

C0 = A0 ◦B0, C1 = (A0 ◦B1) ∪ (A1 ◦B0).

Since A and B are increasing, A0 ⊆ A1 and B0 ⊆ B1, and Ai and Bi are also
increasing events. So

C0 ⊆ (A0 ◦B1) ∩ (A1 ◦B0)

C1 ⊆ A1 ◦B1.

By the induction hypothesis, we have

Pp(C0) = Pp(A0 ◦B0) ≤ Pp(A0)Pp(B0)

Pp(C1) ≤ Pp(A1 ◦B1) ≤ Pp(A1)Pp(B1)

Pp(C0) + Pp(C1) ≤ Pp((A0 ◦B1) ∩ (A1 ◦B0)) + Pp((A ◦B1) ∪ (A1 ◦B0))

= Pp(A0 ◦B1) + Pp(A1 ◦B0)

≤ Pp(A0)Pp(B1) + Pp(A1)Pp(B0).

15
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Now note that for any D, we have

Pp(D) = pPp(D1) + (1− p)Pp(D0).

By some black magic, we multipy the first inequality by (1− p)2, the second by
p2 and the third by p(1− p). This gives

pPp(C1)+(1−p)Pp(C0) ≤ (pPp(A1)+(1−p)Pp(A0))(pPp(B1)+(1−p)Pp(B0)).

Expand and we are done.

It turns out the increasing hypothesis is not necessary:

Theorem (Reimer). For all events A,B depending on a finite set, we have
Pp(A ◦B) ≤ Pp(A)Pp(B).

But the proof is much harder, and in all the case where we want to apply
this, the variables are increasing.

As an application of the BK inequality, we first prove a preliminary result
about the decay of Pp(0↔ ∂B(n)). To prove our result, we will need a stronger
condition than p < pc. Recall that we defined

θ(p) = Pp(|C(0)| =∞).

We also define
χ(p) = Ep[|C(0)|].

If χ(p) is finite, then of course θ(p) = 0. However, the converse need not hold.

Theorem. If χ(p) <∞, then there exists a positive constant c such that for all
n ≥ 1,

Pp(0↔ ∂B(n)) ≤ e−cn.

Later, we will show that in fact this holds under the assumption that p < pc.
However, that requires a bit more technology, which we will develop after this
proof.

The idea of the proof is that if we want a path from, say, 0 to B(2n), then
the path must hit a point on ∂B(n). So there is a path from 0 to a point on
∂B(n), and a path from that point to ∂B(2n). Moreover, these two paths are
disjoint, which allows us to apply the BK inequality.

Proof. Let

Xn =
∑

x∈∂B(n)

1(0↔ x).

Now consider

∞∑
n=0

E[Xn] =
∑
n

∑
x∈∂B(n)

Pp(0↔ x) =
∑
x∈Zd

Pp(0↔ x) = χ(p).

Since χ(p) is finite, we in particular have Ep[Xn]→ 0 as n→∞. Take m large
enough such that Ep[Xm] < δ < 1.

16
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Now we have

Pp(0↔ ∂B(m+ k)) = Pp(∃x ∈ ∂B(m) : 0↔ x and x↔ ∂B(m+ k) disjointly)

≤
∑

x∈∂B(m)

Pp(0↔ x)Pp(x↔ ∂B(m+ k)) (BK)

≤
∑

x∈∂B(m)

Pp(0↔ x)Pp(0↔ ∂B(k)) (trans. inv.)

≤ Pp(0↔ B(k))Ep[Xm].

So for any n > m, write n = qm+ r, where r ∈ [0,m− 1]. Then iterating the
above result, we have

Pp(0↔ ∂B(n)) ≤ Pp(0↔ B(mq)) ≤ δq ≤ δ−1+ n
m ≤ e−cn.

To replace the condition with the weaker condition p < pc, we need to
understand how θ(p) changes with p. We know θ(p) is an increasing function in
p. It would be great if it were differentiable, and even better if we could have an
explicit formula for dθ

dp .
To do so, suppose we again do coupling, and increase p by a really tiny bit.

Then perhaps we would expect that exactly one of the edges switches from being
closed to open. Thus, we want to know if the state of this edge is pivotal to the
event |C(0)| =∞, and this should determine the rate of change of θ.

Definition (Pivotal edge). Let A be an event and ω a percolation configuration.
The edge e is pivotal for (A,ω) if

1(ω ∈ A) 6= 1(ω′ ∈ A),

where ω′ is defined by

ω′(f) =

{
ω(f) f 6= e

1− ω(f) f = e
.

The event that e is pivotal for A is defined to be the set of all ω such that e is
pivotal for (A,ω).

Note that whether or not e is pivotal for (A,ω) is independent of ω(e).

Theorem (Russo’s formula). Let A be an increasing event that depends on the
states of a finite number of edges. Then

d

dp
Pp(A) = Ep[N(A)],

where N(A) is the number of pivotal edges for A.

Proof. Assume that A depends the states of m edges e1, . . . , em. The idea is to
let each ei be open with probability pi, whree the {pi} may be distinct. We then
vary the pi one by one and see what happens.

Writing p̄ = (p1, . . . , pm), we define

f(p1, . . . , pm) = Pp̄(A),

17
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Now f is the sum of the probability of all configurations of {e1, . . . , e−m} for
which A happens, and is hence a finite sum of polynomials. So in particular, it
is differentaible.

We now couple all percolation process. Let (X(e) : e ∈ Ld) be iid U [0, 1]
random variables. For a vector p̄ = (p(e) : e ∈ Ld), we write

ηp̄(e) = 1(X(e) ≤ p(e)).

Then we have Pp̄(A) = P(ηp̄ ∈ A).
Fix an edge f and let p̄′ = (p′(e)) be such that p′(e) = p(e) for all e 6= f , and

p′(f) = p(f) + δ for some δ > 0. Then

Pp̄′(A)− Pp̄(A) = P(ηp̄′ ∈ A)− P(ηp̄ ∈ A)

= P(ηp̄′ ∈ A, ηp̄ ∈ A) + P(ηp̄′ ∈ A, ηp̄ ∈ A)− P(ηp̄ ∈ A).

But we know A is increasing, so P(ηp̄′ ∈ A, ηp̄ ∈ A) = P(ηp̄ ∈ A). So the first
and last terms cancel, and we have

Pp̄′(A)− Pp̄(A) = P(ηp̄′ ∈ A, ηp̄ 6∈ A).

But we observe that we simply have

P(ηp̄′ ∈ A, ηp̄ 6∈ A) = δ · Pp̄(f is pivotal for A).

Indeed, we by definition of pivotal edges, we have

P(ηp̄′ ∈ A, ηp̄ 6∈ A) = Pp̄(f is pivotal for A, p(f) < X(f) ≤ p(f) + δ).

Since the event {f is pivotal for A} is independent of the state of the edge f ,
we obtain

Pp̄(f is pivotal, p(f) < X(f) ≤ p(f) + δ) = Pp̄(f is pivotal) · δ.

Therefore we have

∂

∂p(f)
Pp̄(A) = lim

δ→0

Pp̄′(A)− Pp̄(A)

δ
= Pp̄(f is pivotal for A).

The desired result then follows from the chain rule:

d

dp
Pp(A) =

m∑
i=1

∂

∂p(ei)
Pp̄(A)

∣∣∣∣∣
p̄=(p,...,p)

=

m∑
i=1

Pp(ei is pivotal for A)

= Ep[N(A)].

If A depends on an infinite number of edges, then the best we can say is that

lim inf
δ↓0

Pp+δ(A)− Pp(A)

δ
≥ Ep[N(A))].

To see this, again set B(n) = [−n, n]d ∩ Zd. Define p̄n by

p̄n(e) =

{
p e 6∈ B(n)

p+ δ e ∈ B(n)
.

18
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Then since a is increasing, we know

Pp+δ(A)− Pp(A)

δ
≥ Pp̄n(A)− Pp(A)

δ
.

We can then apply the previous claim, take successive differences, and take
n→∞.

Corollary. Let A be an increasing event that depends on m edges. Let p ≤ q ∈
[0, 1]. Then Pq(A) ≤ Pp(A)

(
q
p

)m
.

Proof. We know that {f is pivotal for A} is independent of the state of f , and
so

Pp(ω(f) = 1, f is pivotal for A) = pPp(f is pivotal for A).

But since A is increasing, if ω(f) = 1 and f is pivotal for A, then A occurs.
Conversely, if f is pivotal and A occurs, then ω(f) = 1.

Thus, by Russo’s formula, we have

d

dp
Pp(A) = Ep[N(A)]

=
∑
e

Pp(e is pivotal for A)

=
∑
e

1

p
Pp(ω(e) = 1, e is pivotal for A)

=
∑
e

1

p
Pp(e is pivotal | A)Pp(A)

= Pp(A)
1

p
Ep[N(A) | A].

So we have
d
dpPp(A)

Pp(A)
=

1

p
Ep[N(A) | A].

Integrating, we find that

log
Pq(A)

Pp(A)
=

∫ q

p

1

u
Eu[N(A) | A] du.

Bounding Eu[N(A) | A] ≤ m, we obtain the desired bound.

With Russo’s formula, we can now prove the desired theorem.

Theorem. Let d ≥ 2 and Bn = [−n, n]d ∩ Zd.

(i) If p < pc, then there exists a positive constant c for all n ≥ 1, Pp(0 ↔
∂Bn) ≤ e−cn.

(ii) If p > pc, then

θ(p) = Pp(0↔∞) ≥ p− pc
p(1− pc)

.
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This was first proved by Aizenman and Barsky who looked at the more
general framework of long-range percolation. Menshikov gave an alternative
proof by analyzing the geometry of pivotal edges. The proof we will see is by
Duminil-Copin and Tassion. Recall that we defined

χ(p) = Ep[|C(0)|].

We saw that if χ(p) <∞, then Pp(0↔ ∂Bn) ≤ e−cn. We now see that χ(p) <∞
iff p < pc.

The strategy of the proof is to define a new percolation probability p̃c, whose
definition makes it easier to prove the theorem. Once we have established the
two claims, we see that (i) forces p̃c ≤ pc, and (ii) forces p̃c ≥ pc. So they must
be equal.

Proof (Duminil-Copin and Tassion). If S ⊆ V is finite, we write

∂S = {(x, y) ∈ E : x ∈ S, y 6∈ S}.

We write x
S↔ y if there exists an open path of edges from x to y all of whose

end points lie in S.
Now suppose that 0 ∈ S. We define

ϕp(S) = p
∑

(x,y)∈∂S

Pp(0
S↔ x).

Define

p̃c = sup{p ∈ [0, 1] : exists a finite set S with 0 ∈ S and ϕp(S) < 1}.

Claim. It suffices to prove (i) and (ii) with pc replaced by p̃c.

Indeed, from (i), if p < p̃c, then Pp(0 ↔ ∂Bn) ≤ e−cn. So taking the limit
n → ∞, we see θ(p) = 0. So p̃c ≤ pc. From (ii), if p > p̃c, then θ(p) > 0. So
pc ≤ p̃c. So pc = p̃c.

We now prove (i) and (ii):

(i) Let p < p̃c. Then there exists a finite set S containing 0 with ϕp(S) < 1.
Since S is finite, we can pick L large enough so that S ⊆ BL−1. We will
prove that Pp(0↔ ∂BkL) ≤ (ϕp(S))k−1 for k ≥ 1.

Define C = {x ∈ S : 0
S↔ x}. Since S ⊆ BL−1, we know S ∩ ∂BkL = ∅.

Now if we have an open path from 0 to ∂BkL, we let x be the last element
on the path that lies in C. We can then replace the path up to x by a path
that lies entirely in S, by assumption. This is then a path that lies in C up
to x, then takes an edge on ∂S, and then lies entirely outside of Cc. Thus,

Pp(0↔ ∂BkL) ≤
∑
A⊆S
0∈A

∑
(x,y)∈∂A

Pp(0
A↔ x, (x, y) open, C = A, y

AC↔ ∂BkL).

Now observe that the events {C = A, 0
S↔ x}, {(x, y) is open} and {y Ac↔

∂BkL} are independent. So we obtain

Pp(0↔ ∂BkL) ≤
∑

A⊆S,0∈A

∑
(x,y)∈∂S

p Pp(0
S↔ x, C = A) Pp(y

Ac↔ ∂BkL).
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Since we know that y ∈ BL, we can bound

Pp(y
Ac↔ ∂BkL) ≤ Pp(0↔ ∂B(k−1)L).

So we have

Pp(0↔ ∂BkL) ≤ p Pp(0↔ ∂B(k−1)L)
∑

A⊆S,0∈A

∑
(x,y)∈∂S

Pp(0
S↔ x, C = A)

= Pp(0↔ ∂B(k−1)L) p
∑

(x,y)∈∂S

Pp(0
S↔ x)

= Pp(0↔ ∂B(k−1)L)ϕp(S).

Iterating, we obtain the deseired result.

(ii) We want to use Russo’s formula. We claim that it suffices to prove that

d

dp
Pp(0↔ ∂Bn) ≥ 1

p(1− p)
inf

S⊆Bn,0∈S
ϕp(S)(1− Pp(0↔ ∂Bn)).

Indeed, if p > p̃c, we integrate from p̃c to p, use in this range ϕp(S) ≥ 1,
and then take the limit as n→∞.

The event {0↔ ∂Bn} is increasing and only dependson a finite number of
edges. So we can apply Russo’s formula

d

dp
Pp(0↔ ∂Bn) =

∑
e∈Bn

Pp(e is pivotal for {0↔ ∂Bn})

Since being pivotal and being open/closed are independent, we can write
this as

=
∑
e∈Bn

1

1− p
Pp(e is pivotal for {0↔ ∂Bn}, e is closed)

=
∑
e∈Bn

1

1− p
Pp(e is pivotal for {0↔ ∂Bn}, 0 6↔ ∂Bn)

Define S = {x ∈ Bn : x 6↔ ∂Bn}. Then {0 6↔ ∂Bn} implies 0 ∈ S. So

d

dp
Pp(0↔ ∂Bn) =

1

1− p
∑
e∈Bn

∑
A⊆Bn,0∈A

Pp(e is pivotal, S = A)

Given that S = A, an edge e = (x, y) is pivotal iff e ∈ ∂A and 0
A↔ x. So

we know

d

dp
Pp(0↔ ∂Bn) =

1

1− p
∑

A⊆Bn,0∈A

∑
(x,y)∈∂A

Pp(0
A↔ x, S = A).

Observe that {0 A↔ x} and {S = A} are independent, since to determine if
S = A, we only look at the edges on the boundary of A. So the above is
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equal to

1

1− p
∑

A⊆Bn,0∈A

∑
(x,y)∈∂A

Pp(0
A↔ x)Pp(S = A)

=
1

p(1− p)
∑

A⊆Bn,0∈A

ϕp(A)Pp(S = A)

≥ 1

p(1− p)
inf

S⊆Bn,0∈S
ϕP (S)Pp(0 6↔ ∂Bn),

as desired.

We might ask if Pp(0 ↔ ∂Bn) ≤ e−cn is the best convergence rate when
p < pc, but we cannot do better, since Pp(0↔ ∂Bn) ≥ pn.

Also, if p < pc, then we can easily bound

Pp(|C(0)| ≥ n) ≤ Pp(0↔ ∂Bn1/d) ≤ exp(−cn1/d).

However, this is not a good bound. In fact, n1/d can be replaced by n, but we
will not prove it here. This tells us the largest cluster in Bn will have size of
order log n with high probability.

1.3 Two dimensions

We now focus on 2 dimensions. As discussed previously, we can exploit duality to
prove a lot of things specific to two dimensions. In particular, we will show that,
at p = pc = 1

2 , certain probabilities such as P 1
2
(0↔ ∂B(n)) exhibit a power law

decay. This is in contrast to the exponential decay for subcritical percolation
(and being bounded away from zero for supercritical percolation).

First we establish that pc is actually 1
2 .

Theorem. In Z2, we have θ
(

1
2

)
= 0 and pc = 1

2 .

It is conjectured that for all d ≥ 2, we have θ(pc(d)) = 0. It is known to be
true only in d = 2 and d ≥ 11.

This was proved first by Harris, Kesten, Russo, Seymour, Welsh in several
iterations.

Proof. First we prove that θ
(

1
2

)
= 0. This will imply that pc ≥ 1

2 .

Suppose not, and θ
(

1
2

)
> 0. Recall that B(n) = [−n, n]2, and we define

C(n) = [−(n− 1), (n− 1)]2 +
(

1
2 ,

1
2

)
in the dual lattice. The appearance of the −1 is just a minor technical inconve-
nience. For the same n, our B(n) and C(n) look like

B(n)C(n)B(n)
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We claim that for large n, there is a positive probability that there are open
paths from the left and right edges of B(n) to ∞, and also there are closed
paths from the top and bottom edges of C(n) to ∞. But we know that with
probability 1, there is a unique infinite cluster in both the primal lattice and
the dual lattice. To connect up the two infinite open paths starting from the
left and right edges of B(n), there must be an open left-right crossing of B(n).
To connect up the two infinite closed paths starting from the top and bottom
of C(n), there must be a closed top-bottom crossing. But these cannot both
happen, since this would require an open primal edge crossing a closed dual edge,
which is impossible.

To make this an actual proof, we need to show that these events do happen
with positive probability. We shall always take p = 1

2 , and will not keep repeating
it.

First note that since there is, in particular, an infinite cluster with probability
1, we have

P(∂B(n)↔∞)→ 1.

So we can pick n large enough such that

P(∂B(n)↔∞), P(∂C(n)↔∞) ≥ 1− 1

84
.

Let A`/Ar/At/Ab be the events that the left/right/top/bottom side of B(n) is
connected to ∞ via an open path of edges. Similarly, let D` be the event that
the left of C(n) is connected to ∞ via a closed path, and same for Dr, Dr, Db.

Of course, by symmetry, for i, j ∈ {`, r, t, b}, we have P(Ai) = P(Aj). Using
FKG, we can bound

P(∂Sn 6↔ ∞) = P(Ac` ∩Acr ∩Act ∩Acb) ≥ (P(Ac`))
4 = (1− P(A`))

4
.

Thus, by assumption on n, we have

(1− P(A`))
4 ≤ 1

84
,

hence

P(A`) ≥
7

8
.

Of course, the same is true for other Ai and Dj .
Then if G = A` ∩Ar ∩Dt ∩Db, which is the desired event, then we have

P(Gc) ≤ P(Ac`) + P(Acr) + P(Dc
t ) + P(Dc

b) ≤
1

2
.

So it follows that

P(G) ≥ 1

2
,

which, as argued, leads to a contradiction.
So we have pc ≥ 1

2 . It remains to prove that pc ≤ 1
2 . Suppose for contradiction

that pc >
1
2 . Then p = 1

2 is in the subcritical regime, and we expect exponential
decay. Thus, (again with p = 1

2 fixed) there exists a c > 0 such that for all n ≥ 1,

P(0↔ ∂B(n)) ≤ e−cn.

Consider Cn = [0, n+ 1]× [0, n], and define An to be the event that there exists
a left-right crossing of Cn by open edges.

Again consider the dual box Dn = [0, n]× [−1, n] +
(

1
2 ,

1
2

)
.
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Cn

Dn

Define Bn to be the event that there is a top-bottom crossing of Dn by closed
edges of the dual.

As before, it cannot be the case that An and Bn both occur. In fact, An and
Bn partition the whole space, since if An does not hold, then every path from
left to right of Cn is blocked by a closed path of the dual. Thus, we know

P(An) + P(Bn) = 1.

But also by symmetry, we have P(An) = P(Bn). So

P(An) =
1

2
.

On the other hand, for any point on the left edge, the probability of it reaching
the right edge decays exponentially with n. Thus,

P(An) ≤ n(n+ 1)P(0↔ ∂Bn) ≤ (n+ 1)e−cn

which is a contradiction. So we are done.

So we now know that pc = 1
2 . We now want to prove that

P 1
2
(0↔ ∂B(n)) ≤ An−α

for some A,α. To prove this, we again consider the dual lattice. Observe that if
we have a closed dual circuit around the origin, then this prevents the existence
of an open path from the origin to a point far far away. What we are going to
do is to construct “zones” in the dual lattice like this:

The idea is to choose these zones in a way such that the probability that each
zone contains a closed circuit around the origin is ≥ ζ for some fixed ζ. Thus, if
B(n) contains m many of these zones, then the probability that 0 is connected
to ∂B(n) is bounded above by (1− ζ)m. We would then be done if we can show
that m ∼ log n.

The main strategy to bounding these probabilities is to use FKG. For example,
if we want to bound the probability that there is a closed circuit in a region
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then we cut it up into the pieces

If we can bound the probability of there being a left-to-right crossing of a
horizontal piece, and hence by symmetry the probability of there being a top-to-
bottom crossing of a vertical piece, then FKG gives us a bound on the probability
of there being a closed circuit.

For convenience of notation, we prove these bounds for open paths in the
primal lattice. We make the following definitions:

B(k`, `) = [−`, (2k − 1)`]× [−`, `]
B(`) = B(`, `) = [−`, `]2

A(`) = B(3`) \B(`)

LR(k`, `) = {there exists left-right crossing of B(k`, `) of open edges}
LR(`) = LR(`, `)

O(`) = {there exists open circuit in A(`) that contains 0 in its interior}.

We first note that we have already proven the following:

Proposition. P 1
2
(LR(`)) ≥ 1

2 for all `.

Proof. We have already seen that the probability of there being a left-right
crossing of [0, n+ 1]× [0, n] is at least 1

2 . But if there is a left-right crossing of
[0, n+ 1]× [0, n], then there is also a left-right crossing of [0, n]× [0, n]!

For a general p, Russo–Symour–Welsh (RSW) lets us bound Pp(O(`)) by
Pp(LR(`)):

Theorem (Russo–Symour–Welsh (RSW) theorem). If Pp(LR(`)) = α, then

Pp(O(`)) ≥
(
α
(
1−
√

1− α
)4)12

.

A large part of the proof is done by the cut-and-paste argument we sketched
above. However, to successfully do cut-and-paste, it turns out we need bounds
on the probability of a left-right crossing on something that is not a square. The
key, non-trivial estimate is the following:

Lemma. If Pp(LR(`)) = α, then

Pp
(
LR

(
3
2`, `

))
≥ (1−

√
1− α)3.

To prove this, we need a result from the first example sheet:
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Lemma (nth root trick). If A1, . . . , An are increasing events all having the same
probability, then

Pp(A1) ≥ 1−

(
1− Pp

(
n⋃
i=1

Ai

))1/n

.

Proof sketch. Observe that the proof of FKG works for decreasing events as well,
and then apply FKG to Aci .

We can now prove our initial lemma.

Proof sketch. Let A be the set of left-right crossings of B(`) = [−`, `]2. Define a
partial order on A by π1 ≤ π2 if π1 is contained in the closed bounded region of
B(`) below π2.

Note that given any configuration, if the set of open left-right crossings is
non-empty, then there exists a lowest one. Indeed, since A must be finite, it
suffices to show that meets exist in this partial order, which is clear.

For a left-right crossing π, let (0, yπ) be the last vertex on the vertical axis
where π intersects, and let πr be the path of the path that connects (0, yπ) to
the right.

O

(0, yπ)
πr

Let

A− = {π ∈ A : yπ ≤ 0}
A+ = {π ∈ A : yπ ≥ 0}

Letting B(`)′ = [0, 2`] × [−`, `], our goal is to find a left-right crossing of the
form

O

More precisely, we want the following paths:

(i) Some π ∈ A−

(ii) Some top-bottom crossing of B(`′) that crosses πr.

(iii) Some left-right crossing of B(`′) that starts at the positive (i.e. non-
negative) y axis.
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To understand the probabilities of these events happening, we consider the
“mirror” events and then apply the square root trick.

Let π′r be the reflection of πr on {(`, k) : k ∈ Z}. For any π ∈ A, we define

Vπ = {all edges of π are open}
Mπ = {exists open crossing from top of B(`)′ to πr ∪ π′r}
M−π = {exists open crossing from top of B(`)′ to πr}
M+
π = {exists open crossing from top of B(`)′ to π′r}
L+ = {exists open path in A+}
L− = {exists open path in A−}
Lπ = {π is the lowest open LR crossing of B(`)}
N = {exists open LR crossing of B(`)′}

N+ = {exists open LR crossing in B(`)′ starting from positive vertical axis}
N− = {exists open LR crossing in B(`)′ starting from negative vertical axis}

In this notation, our previous observation was that⋃
π∈A−

(Vπ ∩M−π )

︸ ︷︷ ︸
G

∩N+ ⊆ LR
(

3

2
`, `

)

So we know that

Pp
(
LR

(
3

2
`, `

))
≥ Pp(G ∩N ′) ≥ Pp(G)Pp(N+),

using FKG.
Now by the “square root trick”, we know

Pp(N+) ≥ 1−
√

1− Pp(N+ ∪N−).

Of course, we have Pp(N+ ∪N−) = Pp(LR(`)) = α. So we know that

Pp(N+) ≥ 1−
√

1− α.

We now have to understand G. To bound its probability, we try to bound it by
the union of some disjoint events. We have

Pp(G) = Pp

 ⋃
π∈A−

(Vπ ∩M−π )


≥ Pp

 ⋃
π∈A−

(M−π ∩ Lπ)


=
∑
π∈A−

Pp(M−π | Lπ)Pp(Lπ).

Claim.
Pp(M−π | Lπ) ≥ 1−

√
1− α.
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Note that if π intersects the vertical axis in one point, then Pp(M−π | Lπ) =
Pp(M−π | Vπ), since L−π tells us what happens below π, and this does not affect
the occurrence of M−π .

Since M−π and Vπ are increasing events, by FKG, we have

Pp(M−π | Vπ) ≥ Pp(M−π ) ≥ 1−
√

1− Pp(M−π ∪M+
π ) = 1−

√
1− Pp(Mπ).

Since Pp(Mπ) ≥ Pp(LR(`)) = α, the claim follows.
In the case where π is more complicated, we will need an extra argument,

which we will not provide.
Finally, we have

Pp(G) ≥
∑
π∈A−

Pp(Lπ)(1−
√

1− α) = (1−
√

1− α)Pp(L−).

But again by the square root trick,

Pp(L−) ≥ 1−
√

1− Pp(L+ ∪ L−) = 1−
√

1− α,

and we are done.

We now do the easy bit to finish off the theorem:

Lemma.

Pp(LR(2`, `)) ≥ Pp(LR(`))

(
Pp
(
LR

(
3

2
`, `

)))2

Pp(LR(3`, `)) ≥ Pp(LR(`)) (Pp (LR (2`, `)))
2

Pp(O(`)) ≥ Pp(LR(3`, `))4

Proof. To prove the first inequality, consider the box [0, 4`]× [−`, `].

3``

We let

LR1 = {exists left-right crossing of [0, 3`]× [−`, `]}
LR2 = {exists left-right crossing of [`, 4`]× [−`, `]}
TB1 = {exists top-bottom crossing of [`, 3`]× [−`, `]}.

Then by FKG, we find that

Pp(LR(2`, `)) ≥ Pp(LR1 ∩ LR2 ∩ TB1) ≥ Pp(LR1)Pp(LR2)Pp(TB1).

The others are similar.
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Theorem. There exists positive constants α1, α2, α3, α4, A1, A2, A4 such that

P 1
2
(0↔ ∂B(n)) ≤ A1n

−α1

P 1
2
(|C(0)| ≥ n) ≤ A2n

−α2

E(|C(0)|α3) ≤ ∞

Moreover, for p > pc = 1
2 , we have

θ(p) ≤ A4

(
p− 1

2

)α4

.

It is an exercise on the example sheet to prove that P 1
2
(0 ↔ B(n)) ≥ 1

2
√
n

using the BK inequality. So the true decay of P 1
2
(0↔ ∂B(n)) is indeed a power

law.

Proof.

(i) We first prove the first inequality. Define dual boxes

B(k)d = B(k) +

(
1

2
,

1

2

)
.

The dual annuli A(`)d are defined by

A(`)d = B(3`)d \B(`)d.

We let O(`)d be the event that there is a closed dual circuit in A(`)d
containing

(
1
2 ,

1
2

)
. Then RSW tells us there is some ζ ∈ (0, 1) such that

P 1
2
(O(`)d) ≥ ζ,

independent of `. Then observe that

P 1
2
(0↔ ∂B(3k + 1)) ≤ Pp(O(3r)d does not occur for all r < k).

Since the annuli (A(3r)d) are disjoint, the events above are independent.
So

P 1
2
(0↔ ∂B(3k + 1)) ≤ (1− ζ)k,

and this proves the first inequality.

(ii) The second inequality follows from the first inequality plus the fact that
|C(0)| ≥ n implies 0↔ ∂B(g(n)), for some function g(n) ∼

√
n.

(iii) To show that E 1
2
[|C(0)|α3 ] <∞ for some α3, we observe that this expecta-

tion is just ∑
n

P 1
2
(|C(0)|α3 ≥ n).

(iv) To prove the last part, note that

θ(p) = Pp(|C(0)| =∞) ≤ Pp(0↔ ∂Bn)
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for all n. By the corollary of Russo’s formula, and since {0↔ ∂Bn} only
depends on the edges in Bn, which are ≤ 18n2, we get that

P 1
2
(0↔ ∂Bn) ≥

(
1

2p

)18n2

Pp(0↔ ∂Bn).

So
θ(p) ≤ (2p)18n2

P 1
2
(0↔ ∂Bn) ≤ A1(2p)18n2

n−α1 .

Now take n = b(log 2p)−1/2c. Then as p↘ 1
2 , we have

n ∼ 1

(2p− 1)
1
2

.

Substituting this in, we get

θ(p) ≤ C
(
p− 1

2

)α1/2

.

By similar methods, we can prove that

Theorem. When d = 2 and p > pc, there exists a positive constant c such that

Pp(0↔ ∂B(n), |C(0)| <∞) ≤ e−cn.

It is natural to ask if we have a similar result in higher dimensions. In higher
dimensions, all the techniques in Z2 don’t work.

Higher dimensions

In d ≥ 3, define the slab

Sk = Z2 × {0, 1, . . . , k}d−2.

Then Sk ⊆ Sk+1 ⊆ Zd.
In general, for a graph G, we let pc(G) be the critical probability of bond

percolation in G. Then we have

pc(Sk) ≥ pc(Sk+1) ≥ pc.

So the sequence (pc(Sk)) must converge to a limit. Call this limit

pslabc = lim
k→∞

pc(Sk).

We know that pslabc ≥ pc.
A lot of the results we can prove for Z2 can be proven for pslabc instead of pc.

So the natural question is how pslabc is related to pc, and in particular, if they
are equal. This has been an open question for a long time, until Grimmett and
Marstrand proved it.

Theorem (Grimmett–Marstrand). Let F be an infinite-connected subset of Zd
with pc(F ) < 1. Then for all η > 0, there exists k ∈ N such that

pc(2kF +Bk) ≤ pc + η.

In particular, for all d ≥ 3, pslabc = pc.
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We shall not prove the theorem, but we shall indicate how the “in particular”
part works.

We take F = Z2 × {0}d−2. Then

2kF +Bk = Z2 × ([−k, k]d−2 ∩ Zd−2),

a translate of S2k. So pc(S2k) = pc(2kF +Bk)→ pc as k →∞.
A consequence of Grimmett-Marstrand is that

Theorem. If d ≥ 3 and p > pc, then there exists c > 0 such that

Pp(0↔ ∂B(n), |C(0)| <∞) ≤ e−cn.

1.4 Conformal invariance and SLE in d = 2

Instead of working on Z2, we will now work on the triangular lattice T. We
consider site percolation. So every vertex is open (black) with probability p and
closed (white) with probability 1− p, independently for different vertices.

Like for Z2, we can show that p = pc(T) = 1
2 .

Let D be an open simply connected domain in R2 with ∂D a Jordan curve.
Let a, b, c ∈ ∂D be 3 points labeled in anti-clockwise order. Consider the triangle
T with vertices A = 0, B = 1 and C = eiπ/3. By the Riemann mapping theorem,
there exists a conformal map ϕ : D → T that maps a 7→ A, b 7→ B, c 7→ C.

Moreover, this can be extended to ∂D such that ϕ : D̄ → T̄ is a homeomor-
phism. If x is in the arc bc, then it will be mapped to X = ϕ(x) on the edge
BC of T .

Focus on the case p = 1
2 . We can again put a triangular lattice inside D,

with mesh size δ. We let ac↔ bx to mean the event that there is an open path
in D joining the arc ac to bx.

Then by RSW (for T), we get that

Pδ(ac↔ bx) ≥ c > 0,

independent of δ. We might ask what happens when δ → 0. In particular, does
it converge, and what does it converge to?

Cardy, a physicist studying conformal field theories, conjectured that

lim
δ→0

Pδ(ac↔ bx) = |BX|.

He didn’t really write it this way, but expressed it in terms of hypergeometric
functions. It was Carlesson who expressed it in this form.

In 2001, Smirnov proved this conjecture.

Theorem (Smirnov, 2001). Suppose (Ω, a, b, c, d) and (Ω′, a′, b′, c′, d′) are con-
formally equivalent. Then

P(ac↔ bd in Ω) = P(a′c′ ↔ b′d′ in Ω′).

This says percolation at criticality on the triangular lattice is conformally
invariant.

We may also take the dual of the triangular lattice, which is the hexagonal
lattice. Colour a hexagon black if the center is black, and similarly for whites.
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Suppose we impose the boundary condition on the upper half plane that the
hexagons are black when x > 0, y = 0, and white when x < 0, y = 0.

Starting at (x, y) = (0, 0), we explore the interface between the black and
white by always keeping a black to our right and white on our right. We can
again take the limit δ → 0. What is this exploration path going to look like in
the limit δ → 0? It turns out this is an SLE(6) curve.

To prove this, we use the fact that the exploration curve satisfies the locality
property, namely that if we want to know where we will be in the next step, we
only need to know where we currently are.
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2 Random walks

2.1 Random walks in finite graphs

We shall consider weighted random walks on finite graphs. Let G = (V,E) be a
finite connected graph. We assign a conductances/weights to the edges (c(e))e∈E .
Here c is a function of the edges, so we require c(xy) = c(yx).

In the weighted random walk on G, the probability of going from x to y
(assuming x ∼ y) is

P(x, y) =
c(x, y)

c(x)
, c(x) =

∑
z∼x

c(x, z).

If we put c(e) = 1 for all e, then this is just a simple random walk, with

P(x, y) =

{
1

deg x y ∼ x
0 otherwise

.

The weighted random walk is reversible with respect to π(x) = c(x)
cG

, where
cG =

∑
x c(x), because

π(x)P (x, y) =
c(x)

cG
· c(x, y)

c(x)
= π(y)P(y, x).

Conversely, every reversible Markov chain can be represented as a random walk
on a weighted graph — place an edge {x, y} if P(x, y) > 0. By reversibility,
P(x, y) > 0 iff P(y, x) = 0. Define weights

c(x, y) = π(x)P(x, y)

for all x ∼ y.
One way to understand random walks on weighted graphs is to think of them

as currents in electrical networks. We set the resistance on the edges by

r(e) =
1

c(e)
.

Naturally, we would like to talk about currents flowing through the circuit.

Definition (Flow). A flow θ on G is a function defined on oriented edges which
is anti-symmetric, i.e. θ(x, y) = −θ(y, x).

Not every flow can be thought of as a current. We fix two distinguished
vertices a and z, called the source and the sink respectively. We think of current
as entering the network through a and exiting through z. Through any other
vertex, the amount of current going in should equal the amount of current going
out.

Definition (Divergence). The divergence of a flow θ is

div θ(x) =
∑
y∼x

θ(x, y).
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By the antisymmetry property, we have∑
x

div θ(x) =
∑
x

∑
y∼x

θ(x, y) =
∑
x∼y

θ(x, y) = 0.

Definition (Flow from a to z). A flow θ from a to z is a flow such that

(i) div θ(x) = 0 for all x 6∈ {a, z}. (Kirchhoff’s node law)

(ii) div θ(a) ≥ 0.

The strength of the flow from a to z is ‖θ‖ = div θ(a).We say this is a unit flow
if ‖θ‖ = 1.

Since
∑

div θ(x) = 0, a flow from a to z satisfies div θ(z) = −div θ(a).
Now if we believe in Ohm’s law, then the voltage difference across each edge

is I(x, y)r(x, y). So we have

W (x) = W (y) + r(x, y)I(x, y)

for all y. We know that if we sum I(x, y) over all y, then the result vanishes. So
we rewrite this as

c(x, y)W (x) = c(x, y)W (y) + I(x, y).

Summing over all y, we find that the voltage satisfies

W (x) =
∑
x∼y

c(x, y)

c(x)
W (y) =

∑
x∼y

P(x, y)W (y).

Definition (Harmonic function). Let P be a transition matrix on Ω. We call h
harmonic for P at the vertex x if

h(x) =
∑
y

P(x, y)h(y).

We now take this as a definition of what a voltage is.

Definition (Voltage). A voltage W is a function on Ω that is harmonic on
Ω \ {a, z}.

The first theorem to prove is that given any two values W (a) and W (z), we
can find a unique voltage with the prescribed values at a and z.

More generally, if B ⊆ Ω, and X is a Markov chain with matrix P , then we
write

τB = min{t ≥ 0 : Xt ∈ B},

Proposition. Let P be an irreducible matrix on Ω and B ⊆ Ω, f : B → R a
function. Then

h(x) = Ex[f(XτB )]

is the unique extension of f which is harmonic on Ω \B.
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Proof. It is obvious that h(x) = f(x) for x ∈ B. Let x 6∈ B. Then

h(x) = Ex[f(XτB )]

=
∑
y

P(x, y)Ex[f(XτB ) | X1 = y]

=
∑
y

P(x, y)Ey[f(XτB )]

=
∑
Y

P(x, y)h(y)

So h is harmonic.
To show uniqueness, suppose h′ be another harmonic extension. Take g =

h− h′. Then g = 0 on B. Set

A =

{
x : g(x) = max

y∈Ω\B
g(y)

}
,

and let x ∈ A \B. Now since g(x) is the weighted average of its neighbours, and
g(y) ≤ g(x) for all neighbours y of x, it must be the case that g(x) = g(y) for
all neighbours of y.

Since we assumed G is connected, we can construct a path from x to the
boundary, where g vanishes. So g(x) = 0. In other words, max g = 0. Similarly,
min g = 0. So g = 0.

Given a voltage, Ohm’s law defines a natural flow, called the current flow.

Definition (Current flow). The current flow associated to the voltage W is

I(x, y) =
W (x)−W (y)

r(x, y)
= c(x, y)(W (x)−W (y)).

The current flow has an extra property, namely that it satisfies the cycle law .
For any cycle e1, e2, . . . , en, we have

n∑
i=1

r(ei)I(ei) = 0.

Proposition. Let θ be a flow from a to z satisfying the cycle law for any cycle.
Let I the current flow associated to a voltage W . If ‖θ‖ = ‖I‖, then θ = I.

Proof. Take f = θ − I. Then f is a flow which satisfies Kirchhoff’s node law
at all vertices and the cycle law for any cycle. We want to show that f = 0.
Suppose not. The we can find some e1 such that f(ei) > 0. But∑

y∼x
f(x, y) = 0

for all x, so there must exist an edge e2 that e1 leads to such that f(e2) > 0.
Continuing this way, we will get a cycle of ordered edges where f > 0, which
violates the cycle law.
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Let W0 be a voltage with W0(a) = 1 and W0(z) = 0, and let I0 be the current
associated to W0. Then any other voltage W can be written as

W (x) = (W (a)−W (z))W0(x) +W (z).

So, noting that W0(a) = 1, we have

W (a) = W (x) = (W (a)−W (z))(W0(a)−W0(x)).

Thus, if I is the current associated to W , then

‖I‖ =
∑
x∼a

I(a, x) =
∑
x∼a

W (a)−W (x)

r(a, x)
= (W (a)−W (z))‖I0‖.

So we know that
W (a)−W (z)

‖I‖
=

1

‖I0‖
,

and in particular does not depend on W .

Definition (Effective resistance). The effective resistance Reff(a, z) of an electric
network is defined to be the ratio

Reff(a, z) =
W (a)−W (z)

‖I‖

for any voltage W with associated current I. The effective conductance is
Ceff(a, z) = Reff(a, z)−1.

Proposition. Take a weighted random walk on G. Then

Pa(τz < τ+
a ) =

1

c(a)Reff(a, z)
,

where τ+
a = min{t ≥ 1 : Xt = a}.

Proof. Let
f(x) = Px(τz < τa).

Then f(a) = 0 and f(z) = 1. Moreover, f is harmonic on Ω \ {a, z}. Let W be
a voltage. By uniqueness, we know

f(x) =
W (a)−W (x)

W (a)−W (z)
.

So we know

Pa(τz < τ+
a ) =

∑
x∼a

P(a, x)f(x)

=
∑
x∼a

c(a, x)

c(a)

W (a)−W (x)

W (a)−W (z)

=
1

c(a)(W (a)−W (z))

∑
x∼a

I(a, x)

=
‖I‖

c(a)(W (a)−W (z))

=
1

c(a)Reff(a, z)
.
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Definition (Green kernel). Let τ be a stopping time. We define the Green
kernel to be

Gτ (a, x) = Ea

[ ∞∑
t=0

1(Xt = x, t < τ)

]
.

This is the expected number of times we hit x before τ occurs.

Corollary. For any reversible chain and all a, z, we have

Gτz (a, a) = c(a)Reff(a, z).

Proof. By the Markov property, the number of visits to a starting from a until
τz is the geometric distribution Geo(Pa(τz < τ+

a )). So

Gτz (a, a) =
1

Pa(τz < τ+
a )

= c(a)Reff(a, z).

Practically, to compute the effective resistance, it is useful to know some
high school physics. For example, we know that conductances in parallel add:

c1

c2

=
c1 + c2

Thus, if e1 and e2 are two edges with the same endvertices, then we we can
replace them by a single edge of conductance the sum of the conductances. We
can prove that this actually works by observing that the voltages and currents
remain unchanged outside of e1, e2, and we check that Kirchhoff’s and Ohm’s
law are satisfied with

I(e) = I(e1) + I(e2).

Similarly, resistances in series add. Let v be a node of degree 2 and let v1 and
v2 be its 2 neighbours. Then we can replace these 2 edges by a single edge of
resistance r1 + r2. Again, to justify this, we check Kirchoff’s and Ohm’s law with

I(v1v2) = I(v1v) + I(vv2).

r1 r2

v1 v v2
=

r1 + r2

We can also glue 2 vertices of the same potential, keeping all other edges.
Current and potential are unchanged since current doesn’t flow if there is the
same potential.

Exercise. Let T be a finite connected tree, and a, z two vertices. Then Reff(a, z)
is the graph distance between a and z.

It turns out it is not convenient to work with our definition of effective
resistance. Instead, we can use the well known result from high school physics
P = IV = I2R. For any flow, we define
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Definition (Energy). Let θ be a flow on G with conductances (c(e)). Then the
energy is

E(θ) =
∑
e

(θ(e))2r(e).

Here we sum over unoriented edges.

Note that given any flow, we can always increase the energy by pumping
more and more current along a cycle. Thus, we might expect the lowest energy
configuration to be given by the flows satisfying the cycle law, and if we focus
on unit flows, the following should not be surprising:

Theorem (Thomson’s principle). Let G be a finite connected graph with con-
ductances (c(e)). Then for any a, z, we have

Reff(a, z) = inf{E(θ) : θ is a unit flow from a to z}.

Moreover, the unit current flow from a to z is the unique minimizer.

Proof. Let i be the unit current flow associated to potential ϕ. Let j be another
unit flow a→ z. We need to show that E(j) ≥ E(i) with equality iff j = i.

Let k = j − i. Then k is a flow of 0 strength. We have

E(j) = E(i+ k) =
∑
e

(i(e) + k(e))2r(e) = E(i) + E(k) + 2
∑
e

i(e)k(e)r(e).

It suffices to show that the last sum is zero. By definition, we have

i(x, y) =
ϕ(x)− ϕ(y)

r(x, y)
.

So we know∑
e

i(e)k(e)r(e) =
1

2

∑
x

∑
y∼x

(ϕ(x)− ϕ(y))k(x, y)

=
1

2

∑
x

∑
y∼x

ϕ(x)k(x, y) +
1

2

∑
x

∑
y∼x

ϕ(x)k(x, y).

Now note that
∑
y∼x k(x, y) = 0 for any x since k has zero strength. So this

vanishes.
Thus, we get

E(j) = E(i) + E(k),

and so E(j) ≥ E(i) with equality iff E(k) = 0, i.e. k(e) = 0 for all e.

Using this characterization, it is then immediate that

Theorem (Rayleigh’s monotonicity principle). Let G be a finite connected
graph and (r(e))e and (r′(e))e two sets of resistances on the edges such that
r(e) ≤ r′(e) for all e. Then

Reff(a, z; r) ≤ Reff(a, z; r′).

for all a, z ∈ G.
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Proof. By definition of energy, for any current i, we have

E(i; r) ≤ E(i; r′).

Then take the infimum and conclude by Thompson.

Corollary. Suppose we add an edge to G which is not adjacent to a. This
increases the escape probability

Pa(τz < τ+
a ).

Proof. We have

Pa(τz < τ+
z ) =

1

c(a)Reff(a, z)
.

We can think of the new edge as an edge having infinite resistance in the old
graph. By decreasing it to a finite number, we decrease Reff .

Definition (Edge cutset). A set of edges Π is an edge-cutset separating a from
z if every path from a to z uses an edge of Π.

Theorem (Nash–Williams inequality). Let (Πk) be disjoint edge-cutsets sepa-
rating a from z. Then

Reff(a, z) ≥
∑
k

(∑
e∈Πk

c(e)

)−1

.

The idea is that if we combine all paths in each Πk to a single path with
conductance

∑
e∈Πk

c(e), then every path has to use all of these edges, so we
can bound the effective resistance.

Proof. By Thompson, it suffices to prove that for any unit flow θ from a to z,
we have ∑

e

(θ(e))2r(e) ≥
∑
k

(∑
e∈Πk

c(e)

)−1

.

Certainly, we have ∑
e

(θ(e))2r(e) ≥
∑
k

∑
e∈Πk

(θ(e))2r(e).

We now use Cauchy–Schwarz to say(∑
e∈Πk

(θ(e))2r(e)

)(∑
e∈Πk

c(e)

)
≥

(∑
e∈Πk

|θ(e)|
√
r(e)c(e)

)2

=

(∑
e∈Πk

|θ(e)|

)2

.

The result follows if we show that the final sum is ≥ 1.
Let F be the component of G \ Πk containing a. Let F ′ be the set of all

edges that start in F and land outside F . Then we have

1 =
∑
x∈F

div θ(x) ≤
∑
e∈F ′
|θ(e)| ≤

∑
e∈Πk

|θ(e)|.
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Corollary. Consider Bn = [1, n]2 ∩ Z2. Then

Reff(a, z) ≥ 1

2
log(n− 1).

There is also an upper bound of the form Reff(a, z) ≤ c log n. So this is
indeed the correct order. The proof involves constructing an explicit flow with
this energy.

Proof. Take

Πk = {(v, u) ∈ Bn : ‖v‖∞ = k − 1, ‖u‖∞ = k}.

Then
|Πk| = 2(k − 1),

and so

Reff (a, z) ≥
−1∑
k=1

1

|Πk|
≥ 1

2
log(n− 1).

We shall need the following result:

Proposition. Let X be an irreducible Markov chain on a finite state space. Let
τ be a stopping time such that Pa(Xτ = a) = 1 and Ea[τ ] < ∞ for some a in
the state space. Then

Gτ (a, x) = π(x)Ea[τ ].

A special case of this result was proven in IB Markov Chain, where τ was
taken to be the first return time to a. The proof of this is very similar, and we
shall not repeat it.

Using this, we can prove the commute-time identity.

Theorem (Commute time identity). Let X be a reversible Markov chain on a
finite state space. Then for all a, b, we have

Ea[τb] + Eb[τa] = c(G)Reff(a, b),

where
c(G) = 2

∑
e

c(e).

Proof. Let τa,b be the first time we hit a after we hit b. Then Pa(Xτa,b = a) = 1.
By the proposition, we have

Gτa,b(a, a) = π(a)Ea[τa,b].

Since starting from a, the number of times we come back to A by τa,b is the
same as up to time τb, we get

Gτa,b(a, a) = Gτb(a, a) = c(a)Reff(a, b).

Combining the two, we get

π(a)Ea[τa,b] = c(a)Reff(a, b).

Thus, the result follows.

In particular, from the commute-time identity, we see that the effective
resistance satisfies the triangle inequality, and hence defines a metric on any
graph.
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2.2 Infinite graphs

Finally, let’s think a bit about how we can develop the same theory for infinite
graphs.

Let G be an infinite connected weighted graph with conductances (c(e))e.
Let 0 be a distinguished vertex. Let (Gk = (Vk, Ek))k be an exhaustion of G by
finite graphs, i.e.

– Vk ⊆ Vk+1 for all k;

– 0 ∈ Vk for all k;

–
⋃
k Vk = V ;

– Ek is the set of edges of E with both end points in Vk.

Let G∗n be the graph obtained by gluing all the vertices of V \Vn into a single
point zn and setting

c(x, zn) =
∑

z∈V \Vn

c(x, z)

for all x ∈ Vn. Now observe that Reff(0, zn;G∗n) is a non-decreasing function of
n (Rayleigh). So the limit as n→∞ exists. We set

Reff(0,∞) = lim
n→∞

Reff(0, zn;Gn∗).

This is independent of the choice of exhaustion by Rayleigh.
Now we have

P0(τ+
0 =∞) = lim

n→∞
P0(τzn < τ+

0 ) =
1

c(0)Reff(0, zn;G∗n)
=

1

c(0)Reff(0,∞)
.

Definition (Flow). Let G be an infinite graph. A flow θ from 0 to ∞ is an
anti-symmetric function on the edges such that div θ(x) = 0 for all x 6= 0.

Theorem. Let G be an infinite connected graph with conductances (c(e))e.
Then

(i) Random walk on G is recurrent iff Reff(0,∞) =∞.

(ii) The random walk is transient iff there exists a unit flow i from 0 to ∞ of
finite energy

E(i) =
∑
e

(i(e))2r(e).

Proof. The first part is immediate since

P0(τ+
0 =∞) =

1

c(0)Reff(0,∞)
.

To prove the second part, let θ be a unit flow from 0 to ∞ of finite energy.
We want to show that the effective resistance is finite, and it suffices to extend
Thompson’s principle to infinite graphs.

Let in be the unit current flow from 0 to zn in G∗n. Let vn(x) be the associated
potential. Then by Thompson,

Reff(0, zn;G∗n) = E(in).

41



2 Random walks III Percolation and Random Walks on Graphs

Let θn be the restriction of θ to G∗n. Then this is a unit flow on G∗n from 0 to
zn. By Thompson, we have

E(in) ≤ E(θn) ≤ E(θ) <∞.

So
Reff(0,∞) = lim

n→∞
E(in).

So by the first part, the flow is transient.
Conversely, if the random walk is transient, we want to construct a unit flow

from 0 to ∞ of finite energy. The idea is to define it to be the limit of (in)(x, y).
By the first part, we know Reff(0,∞) = lim E(in) < ∞. So there exists

M > 0 such that E(in) ≤M for all n. Starting from 0, let Yn(x) be the number
of visits to x up to time τzn . Let Y (x) be the total number of visits to x. Then
Yn(x)↗ Y (x) as n→∞ almost surely.

By monotone convergence, we get that

E0[Yn(x)]↗ E0[Y (x)] <∞,

since the walk is transient. On the other hand, we know

E0[Yn(x)] = Gτzn (0, x).

It is then easy to check that
Gτzn (0,x)

c(x) is a harmonic function outside of 0 and

zn with value 0 at zn. So it has to be equal to the voltage vn(x). So

vn(x) =
Gτzn (0, x)

c(x)
.

Therefore there exists a function v such that

lim
n→∞

c(x)vn(x) = c(x)v(x).

We define

i(x, y) = c(x, y)(v(x)− v(y)) = lim
n→∞

c(x, y)(vn(x)− vn(y)) = lim
n→∞

in(x, y).

Then by dominated convergence, we know E(i) ≤M , and also i is a flow from 0
to ∞.

Note that this connection with electrical networks only works for reversible
Markov chains.

Corollary. Let G′ ⊆ G be connected graphs.

(i) If a random walk on G is recurrent, then so is random walk on G′.

(ii) If random walk on G′ is transient, so is random walk on G.

Theorem (Polya’s theorem). Random walk on Z2 is recurrent and transient on
Zd for d ≥ 3.
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Proof sketch. For d = 2, if we glue all vertices at distance n from 0, then

Reff(0,∞) ≥
n−1∑
i=1

1

8i− 4
≥ c · log n

using the parallel and series laws. So Reff(0,∞) =∞. So we are recurrent.
For d = 3, we can construct a flow as follows — let S be the sphere of radius

1
4 centered at the origin. Given any edge e, take the unit square centered at
the midpoint me of e and has normal e. We define |θ(e)| to be the area of the
radial projection on the sphere, with positive sign iff 〈me, e〉 > 0.

One checks that θ satisfies Kirchoff’s node law outside of 0. Then we find
that

E(θ) ≤ C
∑
n

n2 ·
(

1

n2

)2

<∞,

since there are ∼ n2 edges at distance n, and the flow has magnitude ∼ 1
n2 .

Another proof sketch. We consider a binary tree Tρ with edges joining generation
to n+ 1 having resistance ρn for ρ to be determined. Then

Reff(Tρ) =

∞∑
n=1

(ρ
2

)n
,

and this is finite when ρ < 2.
Now we want to embed this in Z3 in such a way that neighbours in Tρ

of generation n and n + 1 are separated by a path of length of order ρn. In
generation n of Tρ, there are 2n vertices. On the other hand, the number of
vertices at distance n in Z3 will be of order (ρn)2. So we need (ρn)2 ≥ 2n. So
we need ρ >

√
2. We can then check that

Reff(0,∞;Z3) ≤ c ·Reff(Tρ) <∞.

Note that this method is rather robust. We only need to be able to embed
our Tρ into Z3. Using a similar method, Grimmett, Kesten and Zhang (1993)
showed that simple random walk on a supercritical bond percolation is transient
for d ≥ 3.

43



3 Uniform spanning trees III Percolation and Random Walks on Graphs

3 Uniform spanning trees

3.1 Finite uniform spanning trees

The relation between uniform spanning trees and electrical networks was discov-
ered by Kirchoff in 1850’s. Of course, he was not interested in uniform spanning
tress, but in electrical networks themselves. One of the theorems we will prove is

Theorem (Foster’s theorem). Let G = (V,E) be a finite weighted graph on n
vertices. Then ∑

e∈E
Reff(e) = n− 1.

We can prove this using the commute-time formula, but there is a one-line
proof using this connection between electrical networks and uniform spanning
trees.

Definition (Spanning tree). Let G = (V,E) be a finite connected graph. A
spanning tree T of G is a connected subgraph of G which is a tree (i.e. there are
no cycles) and contains all the vertices in G.

Let T be the set of all spanning trees of G. Pick T ∈ T uniformly at random.
We call it the uniform spanning tree. We shall prove the following theorem:

Theorem. Let e 6= f ∈ E. Then

P(e ∈ T | f ∈ T ) ≤ P(e ∈ T ).

It is tempting to ask a very similar question — if we instead considered all
spanning forests, do we get the same result? Intuitively, we should, but it turns
out this is an open question. So let’s think about trees instead.

In order to prove this, we need the following result:

Theorem (Kirchoff). Let T be a uniform spanning tree, e an edge. Then

P(e ∈ T ) = Reff(e)

Of course, this immediately implies Foster’s theorem, since every tree has
n− 1 edges.

Notation. Fix two vertices s, t of G. For all every edge e = (a, b), define
N (s, a, b, t) to be the set of spanning tress of G whose unique path from s to t
passes along the edge (a, b) in the direction from a to b. Write

N(s, a, b, t) = |N (s, a, b, t)|,

and N the total number of spanning trees.

Theorem. Define, for every edge e = (a, b),

i(a, b) =
N(s, a, b, t)−N(s, b, a, t)

N
.

Then i is a unit flow from s to t satisfying Kirchoff’s node law and the cycle law.
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Note that from the expression for i, we know that

i(a, b) = P(T ∈ N (s, a, b, t))− P(T ∈ N (s, b, a, t)).

Proof. We first show that i is a flow from s to t. It is clear that i is anti-symmetric.
To check Kirchoff’s node law, pick a 6∈ {s, t}. We need to show that∑

x∼a
i(a, x) = 0.

To show this, we count how much each spanning tree contributes to the sum. In
each spanning tree, the unique path from s to t may or may not contain a. If
it does not contain a, it contributes 0. If it contains A, then there is one edge
entering a and one edge leaving a, and it also contributes 0. So every spanning
tree contributes exactly zero to the sum.

So we have to prove that i satisfies the cycle law. Let C = (v1, v2, . . . , vn+1 =
v1) be a cycle. We need to show that

n∑
i=1

i(vi, vi+1) = 0.

To prove this, it is easier to work with “bushes” instead of trees. An s/t bush is
a forest that consists of exactly 2 trees, Ts and Tt, such that s ∈ Ts and t ∈ Tt.
Let e = (a, b) be an edge. Define B(s, a, b, t) to be the set of s/t bushes such
that a ∈ Ts and b ∈ Tt.

We claim that |B(s, a, b, t)| = N(s, a, b, t). Indeed, given a bush in B(s, a, b, t),
we can add the edge e = (a, b) to get a spanning tree whose unique path from s
to t passes through e, and vice versa.

Instead of considering the contribution of each tree to the sum, we count the
contribution of each bush to the set. Then this is easy. Let

F+ = |{(vj , vj+1) : B ∈ B(s, vj , vj+1, t)}
F− = |{(vj , vj+1) : B ∈ B(s, vj+1, vj , t)}

Then the contribution of B is
F+ − F−

N
.

By staring it at long enough, since we have a cycle, we realize that we must have
F+ = F−. So we are done.

Finally, we need to show that i is a unit flow. In other words,∑
x∼s

i(s, x) = 1.

But this is clear, since each spanning tree contributes 1
N to i(s, x), and there are

N spanning trees.

We can now prove the theorem we wanted to prove.

Theorem. Let e 6= f ∈ E. Then

P(e ∈ T | f ∈ T ) ≤ P(e ∈ T ).
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Proof. Define the new graph G.f to be the graph obtained by gluing both
endpoints of f to a single vertex (keeping multiple edges if necessary). This
gives a correspondence between spanning trees of G containing f and spanning
trees of G.f . But

P(e ∈ T | f ∈ T ) =
number of spanning trees of G.f containing e

number of spanning trees of G.f
.

But this is just P(e ∈ UST of G.f), and this is just Reff(e;G.f). So it suffices to
show that

Reff(e;G.f) ≤ Reff(e;G).

But this is clear by Rayleigh’s monotone principle, since contracting f is the
same as setting the resistance of the edge to 0.

In practice, how can we generate a uniform spanning tree? One way to do so
is Wilson’s method .

Definition (Loop erasure). Let x = 〈x1, . . . xn〉 be a finite path in the graph
G. We define the loop erasure as follows: for any pair i < j such that xi = xj ,
remove xi+1, xi+2, . . . , xj , and keep repeating until no such pairs exist.

To implement Wilson’s algorithm, distinguish a root vertex of G, called r,
and take an ordering of V . Set T0 = {r}. Define Ti inductively as follows: take
the first vertex in the ordering is not in Ti. We start a simple random walk from
this vertex, and run until it hits Ti, and erase the loops. Then set Ti+1 to be
the union of Ti with this (loop-erased) path. Repeat until all vertices are used.

Theorem (Wilson). The resulting tree is a uniform spanning tree.

Note that in particular, the choice of ordering is irrelevant to the resulting
distribution.

To prove this theorem, it is convenient to have a good model of how the
simple random walk on G is generated. Under any vertex G, place an infinite
number of cards that contain iid instructions, i.e. each card tells us to which
neighbour we jump. Different vertices have independent stacks. Whenever we
are at a vertex x, look at the top card underneath it and go to the neighbour it
instructs. Then throw away the top card and continue.

Given stacks of cards under the vertices of the graph, by revealing the top
card of each vertex, we get a directed graph, where directed edges are of the
form (x, y), where y is the instruction on the top card under x.

If there is no directed cycle, then we stop, and we have obtained a spanning
tree. If there is a directed cycle, then we remove the top cards from all vertices
on the cycle. We call this procedure cycle popping . Then we look at the top
cards again and remove cycles and cards used.

We first prove a deterministic lemma about cycle popping.

Lemma. The order in which cycles are popped is irrelevant, in the sense that
either the popping will never stop, or the same set of cycles will be popped, thus
leaving the same spanning tree lying underneath.

Proof. Given an edge (x, Six), where Six is the ith instruction under x, colour
(x, Six) with colour i. A colour is now coloured, but not necessarily with the
same colour.
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Suppose C is a cycle that can be popped in the order C1, C2, . . . , Cn, with
Cn = C. Let C ′ be any cycle in the original directed graph. We claim that
either C ′ does not intersect C1, . . . , Cn, or C ′ = Ck for some k, and C ′ does not
intersect C1, . . . Ck−1. Indeed, if they intersect, let x ∈ C ′ ∩ Ck, where k is the
smallest index where they intersect. Then the edge coming out of x will have
colour 1. Then S1

x is also in the intersection of C ′ and Ck, and so the same is
true for the edge coming out of S1

x. Continuing this, we see that we must have
Ck = C ′. So popping Ck, C1, . . . , Ck−1, Ck+1, . . . , Cn gives the same result as
popping C1, . . . , Cn.

Thus, by induction, if C is a cycle that is popped, then after performing a
finite number of pops, C is still a cycle that can be popped. So either there is
an infinite number of cycles that can be popped, so popping can never stop, or
every cycle that can be popped will be popped, thus in this case giving the same
spanning tree.

Using this, we can prove that Wilson’s method gives the correct distribution.
In Wilson’s algorithm, we pop cycles by erasing loops in the order of cycle
creation. This procedure will stop will probability 1. With this procedure, we
will reveal a finite set of coloured cycles O lying over a spanning tree. Let X
be the set of all (O, T ), where O is the set of coloured cycles lying on top of T ,
which arise from running the random walks.

Now if we can get to (O, T ), then we could also get to (O, T ′) for any other
spanning spanning tree T ′, since there is no restriction on what could be under
the stacks. So we can write

X = X1 ×X2,

where X1 is a certain set of finite sets of coloured cycles, and X2 is the set of all
spanning trees.

Define a function Ψ on the set of cycles by

Ψ(C) =
∏
e∈C

p(e), p(e) =
c(e)

c(e−)
,

where e = (e−, e+), and c(e−) is the sum of the conductances of all edges with
vertex e−.

More generally, if O is a set of cycles, then we write

Ψ(O) =
∏
C∈O

Ψ(C).

Then

P(get (O, T ) using Wilson’s algorithm) =
∏

e∈
⋃
C∈O C∪T )

p(e) = Ψ(O) ·Ψ(T ).

Since this probability factorizes, it follows that the distribution of O is indepen-
dent of T , and the probability of getting T is proportional to Ψ(T ). So T has
the distribution of a uniform spanning tree.

Corollary (Cayley’s formula). The number of labeled unrooted trees on n-
vertices is equal to nn−2.

Proof. Exercise.
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How can we generalize Wilson’s algorithm to infinite graphs? If the graph is
recurrent, then we can still use the same algorithm, and with probability one,
the algorithm terminates. If we have a transient graph, then we can still perform
the same algorithm, but it is not clear what the resulting object will be.

The Aldous–Broder algorithm is another way of generating a uniform spanning
tree. Run a random walk that visits all vertices at least once. For every vertex
other than the root, take the edge the walk crossed the first time it visited the
vertex, and keep the edge in the spanning tree. It is an exercise to prove that
this does give a uniform spanning tree. Again, this algorithm works only on a
recurrent graph. A generalization to transient graphs was found by Hutchcroft.

3.2 Infinite uniform spanning trees and forests

Since recurrent graphs are boring, let G be an infinite transient graph. Then a
“naive” way to define a uniform spanning tree is by exhaustions.

Let Gn be an exhaustion of G by finite graphs. Define GWn (where W stands
for “wired”) to be the graph Gn, where all of the vertices of G \Gn are glued to
a single vertex zn. The “free” Gn is just Gn considered as a subgraph. It turns
out the wired one is much easier to study.

Let µn be the uniform spanning tree measure on GWn . Let B be a finite set
of edges B = {e1, . . . , en}. Then for T a UST of GWn , we have

µn(B ⊆ T ) =

m∏
k=1

µ(ek ∈ T | ej ∈ T for all j < k)

=

n∏
k=1

Reff(ek;GWn /{ej : j < k}),

where GWn /{ej : j < k} is the graph obtained from GWn by contracting the edges
{ej : j < k}.

We want to show that µn as a sequence of measures converges. So we want
to understand how Reff(ek;GWn /{ej : j < k}) changes when we replace n with
n + 1. By Rayleigh’s monotonicity principle, since GWn can be obtained from
GWn+1 by contracting more edges, we know the effective resistance increases when
we replace n with n+ 1. So we know that

µn(B ⊆ T ) ≤ µn+1(B ⊆ T ).

So (µn(B ⊆ T )) is an increasing sequence. So we can define

µ(B ⊆ F) = lim
n→∞

µn(B ⊆ T ),

and F is our uniform forest. We can then extend the definition of µ to cylinder
events

{F : B1 ⊆ F , B2 ∩ F = ∅}

with B1, B2 finite sets of edges, using inclusion-exclusion:

µ(B1 ⊆ F , B2 ∩ F = ∅) =
∑
S⊆B2

µ(B1 ∪ S ⊆ F)(−1)|S|.
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Then by commuting limits, we find that in fact

µ(B1 ⊆ F , B2 ∩ F = ∅) = lim
n→∞

µn(B1 ⊆ T,B2 ∩ T = ∅).

If A is a finite union or intersection of cylinder sets of this form, then we have

µ(A) = lim
n→∞

µn(A).

So this gives a consistent family of measures.
By Kolmogorov’s theorem, we get a unique probability measure µ supported

on the forests of G. µ is called the wired uniform spanning forest . One can
also consider the free uniform spanning forest , where we do the same thing but
without gluing, however, this is more complicated and we will not study it.

We can adapt Wilson’s algorithm to generate uniform spanning forests. This
is called Wilson’s method rooted at infinity (BKPS, 2001).

Let G be a transient graph, and start with F0 = ∅. Pick an ordering of the
vertices of V = {x1, x2, . . .}. Inductively, from xn, we start a simple random
walk until the first time it hits Fn−1 if it does. If it doesn’t, then run indefinitely.
Call this (possibly infinite) path Pn. Since G is transient, Pn will visit every
vertex finitely many times with probability 1. So it makes sense to define the
loop erasure of Pn. Call it LE(Pn). We set

Fn = Fn−1 ∪ LE(Pn),

and take
F =

⋃
n

Fn.

As before, the order of V that we take does not affect the final distribution.

Proposition. Let G be a transient graph. The wired uniform spanning forest
is the same as the spanning forest generated using Wilson’s method rooted at
infinity.

Proof. Let e1, . . . , eM be a finite set of edges. Let T (n) be the uniform spanning
tree on GWn . Let F be the limiting law of T (n). Look at GWn and generate T (n)
using Wilson’s method rooted at zn. Start the random walks from u1, u2, . . . , uL
in this order, where (ui) are all the end points of the e1, . . . , eM (L could be less
than 2M if the edges share end points).

Start the first walk from u1 and wait until it hits zn; Then start from the
next vertex and wait until it hits the previous path. We use the same infinite
path to generate all the walks, i.e. for all i, let (Xk(ui))k≥0 be a simple random
walk on G started from ui. When considering GWn , we stop these walks when
they exit Gn, .e. if they hit zn. In this way, we couple all walks together and all
the spanning trees.

Let τni be the first time the ith walk hits the tree the previous i− 1 walks
have generated in GWn . Now

P(e1, . . . , eM ∈ T (n)) = P

e1, . . . , eM ∈
L⋃
j=1

LE(Xk(uj)) : k ≤ τjn

 .

Let τj be the stopping times corresponding to Wilson’s method rooted at infinity.
By induction on j, we have τnj → τj as n → ∞, and by transience, we have

LE(Xk(uj) : k ≤ τkj )→ LE(Xk(uj) : k ≤ τj). So we are done.
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Theorem (Pemantle, 1991). The uniform spanning forest on Zd is a single tree
almost surely if and only if d ≤ 4.

Note that the above proposition tells us

Proposition (Pemantle). The uniform spanning forest is a single tree iff starting
from every vertex, a simple random walk intersects an independent loop erased
random walk infinitely many times with probability 1. Moreover, the probability
that x and y are in the same tree of the uniform spanning forest is equal to the
probability that simple random walk started from x intersects an independent
loop-erased random walk started from y.

To further simplify the theorem, we use the following theorem of Lyons, Peres
and Schramm:

Theorem (Lyons, Peres, Schramm). Two independent simple random walks
intersect infinitely often with probability 1 if one walks intersects the loop erasure
of the other one infinitely often with probability 1.

Using these, we can now prove the theorem we wanted. Note that proving
things about intersection, rather than collisions, tends to be higher, because any
attempts to, say, define the first intersection time would inherently introduce an
asymmetry.

We prove half of Pemantle’s theorem.

Theorem. The uniform spanning forest is not a tree for d ≥ 5 with probability
1.

Proof of Pemantle’s theorem. Let X,Y be two independent simple random walks
in Zd. Write

I =

∞∑
t=0

∞∑
s=0

1(Xt = Ys).

Then we have

Ex,y[I] =
∑
t

∑
s

Px−y(Xt+s = 0) ≈
∑

t=‖x−y‖

tPx−y(Xt = 0).

It is an elementary exercise to show that

Px(Xt = 0) ≤ c

td/2
,

so

Px(Xt = 0) ≤
∑

t=‖x−y‖

1

td/2−1
.

For d ≥ 5, for all ε > 0, we take x, y such that

Ex,y[I] < ε.

Then
P(USF is connected) ≤ Px,y(I > 0) ≤ Ex,y[I] < ε.

Since this is true for every ε, it follows that P(USF is connected) = 0.
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Index

B(n), 10
Bn, 10
E, 5
Reff(0,∞), 41
V , 5
Ld, 5
χ(p), 16
ηp, 5
κ, 7
λ, 7
≤, 13
C(x), 5
σn, 7
θp, 5
nth root trick, 26
pslabc , 30
s/t bush, 45
x↔ y, 5

Aldous–Broder algorithm, 48

BK inequality, 15
bond percolation, 5

Cayley’s formula, 47
closed edge, 5
cluster, 5
commute time identity, 40
connective constant, 7
coupling, 5, 6
Critical probability, 6
current flow, 35
cutset, 39
cycle law, 35
cycle popping, 46
cylinder sets, 5

decreasing event, 13
decreasing random variable, 13
disjoint occurrence, 15
divergence, 33
dual graph, 9

edge
closed, 5
open, 5

edge cutset, 39
edges, 5

effective conductance, 36
Effective resistance, 36
energy, 38
event

decreasing, 13
increasing, 13

exhaustion, 41

Fekete’s lemma, 7
FKG inequality, 13
flow, 33, 34, 41
Foster’s theorem, 44
free uniform spanning forest, 49

graph, 5
dual, 9
planar, 9
primal, 9

Green kernel, 37
Grimmett–Marstrand theorem, 30

harmonic function, 34

increasing event, 13
increasing random variable, 13

Kirchhoff’s node law, 34
Kolmogorov 0-1 law, 10

loop erasure, 46

monotonicity principle, 38

Nash–Williams inequality, 39

Ohm’s law, 35
open edge, 5

percolation probability, 5
pivotal edge, 17
planar graph, 9
Polya’s theorem, 42
primal graph, 9

random variable
decreasing, 13
increasing, 13

Rayleigh’s monotonicity principle,
38

RSW, 25
Russo–Symour–Welsh, 25
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scaling limit, 8
self-avoiding paths, 6, 7
sink, 33
site percolation, 5, 31
slab percolation, 30
source, 33
spanning tree, 44
strength, 34
subadditive sequence, 7

Thomson’s principle, 38
tree, 44

trifurcation, 11

uniform spanning tree, 44
unit flow, 34

vertices, 5
voltage, 34

Wilson’s method, 46
Wilson’s method rooted at infinity,

49
wired uniform spanning forest, 49
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