
Part III — Combinatorics

Theorems with proof

Based on lectures by B. Bollobas
Notes taken by Dexter Chua

Michaelmas 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

What can one say about a collection of subsets of a finite set satisfying certain conditions
in terms of containment, intersection and union? In the past fifty years or so, a good
many fundamental results have been proved about such questions: in the course we
shall present a selection of these results and their applications, with emphasis on the
use of algebraic and probabilistic arguments.

The topics to be covered are likely to include the following:

– The de Bruijn–Erdös theorem and its extensions.

– The Graham–Pollak theorem and its extensions.

– The theorems of Sperner, EKR, LYMB, Katona, Frankl and Füredi.

– Isoperimetric inequalities: Kruskal–Katona, Harper, Bernstein, BTBT, and their
applications.

– Correlation inequalities, including those of Harris, van den Berg and Kesten, and
the Four Functions Inequality.

– Alon’s Combinatorial Nullstellensatz and its applications.

– LLLL and its applications.

Pre-requisites

The main requirement is mathematical maturity, but familiarity with the basic graph

theory course in Part II would be helpful.
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1 Hall’s theorem III Combinatorics (Theorems with proof)

1 Hall’s theorem

Theorem (Hall, 1935). A bipartite graph G = (X,Y ;E) has a complete match-
ing from X to Y if and only if |Γ(S)| ≥ |S| for all S ⊆ X.

Proof. We may assume G is edge-minimal satisfying Hall’s condition. We show
that G is a complete matching from X to Y . For G to be a complete matching,
we need the following two properties:

(i) Every vertex in X has degree 1

(ii) Every vertex in Y has degree 0 or 1.

We first examine the second condition. Suppose y ∈ Y is such that there
exists edges x1y, x2y ∈ E. Then the minimality of G implies there are sets,
X1, X2 ⊆ X such that xi ∈ Xi such that |Γ(Xi)| = |Xi| and xi is the only
neighbour of y in Xi.

Now consider the set X1 ∩ X2. We know Γ(X1 ∩ X2) ⊆ Γ(X1) ∩ Γ(X2).
Moreover, this is strict, as y is in the RHS but not the LHS. So we have

Γ(X1 ∩X2) ≤ |Γ(Xi) ∩ Γ(X2)| − 1.

But also

|X1 ∩X2| ≤ |Γ(X1 ∩X2)|
≤ |Γ(X1) ∩ Γ(X2)| − 1

= |Γ(X1)|+ |Γ(X2)| − |Γ(X1) ∪ Γ(X2)| − 1

= |X1|+ |X2| − |Γ(X1 ∪X2)| − 1

≤ |X1|+ |X2| − |X1 ∪X2| − 1

= |X1 ∩X2| − 1,

which contradicts Hall’s condition.
One then sees that the first condition is also satisfied — if x ∈ X is a vertex,

then the degree of x certainly cannot be 0, or else |Γ({x})| < |{x}|, and we see
that d(x) cannot be > 1 or else we can just remove an edge from x without
violating Hall’s condition.

Theorem. A has a set of distinct representatives iff for all B ⊆ A, we have∣∣∣∣∣ ⋃
B∈B

B

∣∣∣∣∣ ≥ |B|.
Proof. Define a bipartite graph as follows — we let X = A, and Y =

⋃
i∈[m]Ai.

Then draw an edge from x to Ai if x ∈ Ai. Then there is a complete matching
of this graph iff A has a set of distinct representations, and the condition in the
theorem is exactly Hall’s condition. So we are done by Hall’s theorem.

Theorem. Let G = (X,Y ;E) be a bipartite graph such that d(x) ≥ d(y) for
all x ∈ X and y ∈ Y . Then there is a complete matching from X to Y .
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1 Hall’s theorem III Combinatorics (Theorems with proof)

Proof. Let d be such that d(x) ≥ d ≥ d(y) for all x ∈ X and y ∈ Y . For S ⊆ X
and T ⊆ Y , we let e(S, T ) be the number of edges between S and T . Let S ⊆ X,
and T = Γ(S). Then we have

e(S, T ) =
∑
x∈S

d(x) ≥ d|S|,

but on the other hand, we have

e(S, T ) ≤
∑
y∈T

d(y) ≤ d|T |.

So we find that |T | ≥ |S|. So Hall’s condition is satisfied.

Corollary. If G = (X,Y ;E) is a (k, `)-regular bipartite graph with 1 ≤ ` ≤ k,
then there is a complete matching from X to Y .

Theorem. Let G = (X,Y ;E) be biregular and A ⊆ X. Then

|Γ(A)|
|Y |

≥ |A|
|X|

.

Proof. Suppose G is (k, `)-regular. Then

k|A| = e(A,Γ(A)) ≤ `|Γ(A)|.

Thus we have
|Γ(A)|
|Y |

≥ k|A|
`|Y |

.

On the other hand, we can count that

|E| = |X|k = |Y |`,

and so
k

`
=
|Y |
|X|

.

So we are done.

Corollary. Let G = (X,Y ;E) be biregular and let |X| ≤ |Y |. Then there is a
complete matching of X into Y .

Corollary. Let 1 ≤ r < s ≤ |X| = n. Suppose |n2 − r| ≥ |
n
2 − s|. Then there

exists an injection f : X(r) → X(s) such that A ⊆ f(A) for all A ∈ X(r).
If |n2 − r| ≤ |

n
2 − s|, then there exists an injection g : X(s) → X(r) such that

A ⊇ g(A) for all A ∈ X(s).

Proof. Note that |n2 − r| ≤ |
n
2 − s| iff

(
n
r

)
≥
(
n
s

)
.
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2 Sperner systems III Combinatorics (Theorems with proof)

2 Sperner systems

Theorem (Sperner, 1928). For |X| = n, the maximal size of an antichain in
P(X) is

(
n
bn/2c

)
, witnessed by Xbn/2c.

Proof. If C is a chain and A is an antichain, then |A ∩ C| ≤ 1. So it suffices to
partition P(X) into

m = max
k

(
n

k

)
=

(
n

bn/2c

)
=

(
n

dn/2e

)
many chains.

We can do so using the injections constructed at the end of the previous
section. For i ≥ bn2 c, we can construct injections fi : Xi−1 → Xi such that
A ⊆ fi(A) for all A. By chaining these together, we get m chains ending in
Xb

n
2 c.

Similarly, we can partition X(≤bn/2c) into m chains with each chain ending
in X(bn/2c). Then glue them together.

Theorem (LYM inequality). Let A be an antichain in P(X) with |X| = n.
Then

n∑
r=0

|A ∩X(r)|(
n
r

) ≤ 1.

In particular, |A| ≤ maxr

(
n
r

)
=
(

n
bn/2c

)
, as we already know.

Proof. A chain C0 ⊆ C1 ⊆ · · · ⊆ Cm is maximal if it has n + 1 elements.
Moreover, there are n! maximal chains, since we start with the empty set and
then, given Ci, we produce Ci+1 by picking one unused element and adding it
to Ci.

For every maximal chain C, we have |C ∩ A| ≤ 1. Moreover, every set of k
elements appears in k!(n− k)! maximal chains, by a similar counting argument
as above. So ∑

A∈A
|A|!(n− |A|)! ≤ n!.

Then the result follows.

Theorem. If P is downward expanding and A is an anti-chain, then w(A) ≤ 1.
In particular, |A| ≤ maxi |Si|.

Since each Si is an anti-chain, the largest anti-chain has size maxi |Si|.

Proof. We define the span of A to be

spanA = max
Aj 6=∅

j − min
Ai 6=∅

i.

We do induction on spanA.
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2 Sperner systems III Combinatorics (Theorems with proof)

If spanA = 0, then we are done. Otherwise, let hi = maxAj 6=0 j, and set
Bh−1 = ∂Ah. Then since A is an anti-chain, we know Ah−1 ∩Bh−1 = ∅.

We set A′ = A\Ah∪Bh−1. This is then another anti-chain, by the transitivity
of <. We then have

w(A) = w(A′) + w(Ah)− w(Bh−1) ≤ w(A′) ≤ 1,

where the first inequality uses the downward-expanding hypothesis and the
second is the induction hypothesis.

Proposition. An anti-chain in a regular poset has weight ≤ 1.

Proof. Let M be the number of maximal chains of length (n+ 1), and for each
x ∈ Sk, let m(x) be the number of maximal chains through x. Then

m(x) =

k∏
i=1

ri

n−1∏
i=k

si.

So if x, y ∈ Si, then m(x) = m(y).
Now since every maximal chain passes through a unique element in Si, for

each x ∈ Si, we have

M =
∑
x∈Si

m(x) = |Si|m(x).

This gives the formula

m(x) =
M

|Si|
.

now let A be an anti-chain. Then A meets each chain in ≤ 1 elements. So we
have

M =
∑

maximal chains

1 ≥
∑
x∈A

m(x) =

n∑
i=0

|A ∩ Si| ·
M

|Si|
.

So it follows that ∑ |A ∩ Si|
|Si|

≤ 1.

Theorem (Erdös, 1945). Let xi be all real, |xi| ≥ 1. For A ⊆ [n], let

xA =
∑
i∈A

xi.

Let A ⊆ P(n). Then |A| ≤
(

n
bn/2c

)
.

Proof. We claim that we may assume xi ≥ 1 for all i. To see this, suppose we
instead had x1 = −2, say. Then whether or not i ∈ A determines whether xA
should include 0 or −2 in the sum. If we replace xi with 2, then whether or not
i ∈ A determines whether xA should include 0 or 2. So replacing xi with 2 just
essentially shifts all terms by 2, which doesn’t affect the difference.

But if we assume that xi ≥ 1 for all i, then we are done, since A must be an
anti-chain, for if A,B ∈ A and A ( B, then xB − xA = xB\A ≥ 1.

Theorem. P(n) has a decomposition into symmetric chain.
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2 Sperner systems III Combinatorics (Theorems with proof)

Proof. We prove by induction. In the case n = 1, we simply have to take
{∅, {1}}.

Now suppose P(n − 1) has a symmetric chain decomposition C1 ∪ · · · ∪ Ct.
Given a symmetric chain

Cj = {Ci, Ci+1, . . . , Cn−1−i},

we obtain two chains C(0)j , C(1)j in P(n) by

C(0)j = {Ci, Ci+1, . . . , Cn−1−i, Cn−1−i ∪ {n}}

C(1)j = {Ci ∪ {n}, Ci+1 ∪ {n}, . . . , Cn−2−i ∪ {n}}.

Note that if |Cj | = 1, then C(1)j = ∅, and we drop this. Under this convention, we

note that every A ∈ P(n) appears in exactly one C(ε)j , and so we are done.

Theorem (Kleitman, 1970). Let x1, x2, . . . , xn be vectors in a normed space
with norm ‖xI‖ ≥ 1 for all i. For A ∈ P(n), we set

xA =
∑
i∈A

xi.

Let A ⊆ P(n) be such that ‖xA − xB‖ < 1. Then ‖A‖ ≤
(

n
bn/2c

)
.

Proof. Call F ⊆ P(n) sparse if ‖xE − xF ‖ ≥ 1 for all E,F ∈ F , E 6= F . Note
that if F is sparse, then |F ∩ A| ≤ 1. So if we can find a decomposition of P(n)
into

(
n
bn/2c

)
sparse sets, then we are done.

We call a partition P(n) = F1 ∪ · · · ∪ Ft symmetric if the number of families
with n + 1 − 2i sets is `(n, i), i.e. the “profile” is that of a symmetric chain
decomposition.

Claim. P(n) has a symmetric decomposition into sparse families.

We again induct on n. When n = 1, we can take {∅, {1}}. Now suppose
∆n−1 is a symmetric decomposition of P(n− 1) as F1 ∪ · · · ∪ Ft.

Given Fj , we construct F (0)
j and F (1)

j “as before”. We pick some D ∈ Fj , to
be decided later, and we take

F (0)
j = Fj ∪ {D ∪ {n}}

F (1)
j = {E ∪ {n} : E ∈ Fj \ {D}}.

The resulting set is certainly still symmetric. The question is whether it is sparse,

and this is where the choice of D comes in. The collection F (1)
j is certainly still

sparse, and we must pick a D such that F (0)
j is sparse.

To do so, we use Hahn–Banach to obtain a linear functional f such that
‖f‖ = 1 and f(xn) = ‖xn‖ ≥ 1. We can then pick D to maximize f(xD). Then
we check that if E ∈ Fj , then

f(xD∪{n} − x2) = f(xD)− f(xE) + f(xn).

By assumption, f(xn) ≥ 1 and f(xD) ≥ f(xE). So this is ≥ 1. Since ‖f‖ = 1, it
follows that ‖xD∪{n} − xE‖ ≥ 1.
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3 The Kruskal–Katona theorem III Combinatorics (Theorems with proof)

3 The Kruskal–Katona theorem

Lemma. We have
∂Cij(A) ⊆ Cij(∂A).

In particular, |∂Cij(A)| ≤ |∂A|.

Lemma. Let A ⊆ X(r) and U, V ∈ X(s), U ∩ V = ∅. Suppose for all u ∈ U ,
there exists v such that A is (U \ {u}, V \ {v})-compressed. Then

∂CUV (A) ⊆ CUV (∂A). �

Lemma. A ⊆ X(r) is an initial segment of X(r) in colex if and only if it is
(U, V )-compressed for all U, V disjoint with |U | = |V | and maxV > maxU .

Proof. ⇒ is clear. Suppose A is (U, V ) compressed for all such U, V . If A is not
an initial segment, then there exists B ∈ A and C 6∈ A such that C < B. Then
A is not (C \B,B \ C)-compressed. A contradiction.

Lemma. Given A ∈ X(r), there exists B ⊆ X(r) such that B is (U, V )-
compressed for all |U | = |V |, U ∩ V = ∅, maxV > maxU , and moreover

|B| = |A|, |∂B| ≤ |∂A|. (∗)

Proof. Let B be such that ∑
B∈B

∑
i∈B

2i

is minimal among those B’s that satisfy (∗). We claim that this B will do. Indeed,
if there exists (U, V ) such that |U | = |V |, maxV > maxU and CUV (B) 6= B,
then pick such a pair with |U | minimal. Then apply a (U, V )-compression, which
is valid since given any u ∈ U we can pick any v ∈ V that is not maxV to satisfy
the requirements of the previous lemma. This decreases the sum, which is a
contradiction.

Theorem (Kruskal 1963, Katona 1968). Let A ⊆ X(r), and let C ⊆ X(r) be
the initial segment with |C| = |A|. Then

|∂A| ≥ |∂C|.

Theorem (Lovász, 1979). If A ⊆ X(r) with |A| =
(
x
r

)
for x ≥ 1, x ∈ R, then

|∂A| ≥
(

x

r − 1

)
.

This is best possible if x is an integer.

Proof. Let

A0 = {A ∈ A : 1 6∈ A}
A1 = {A ∈ A : 1 ∈ A}.

For convenience, we write

A1 − 1 = {A \ {1} : A ∈ A1}.
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3 The Kruskal–Katona theorem III Combinatorics (Theorems with proof)

We may assume A is (i, j)-compressed for all i < j. We induct on r and then on
|A|. We have

|A0| = |A| − |A1|.

We note that A1 is non-empty, as A is left-compressed. So |A0| < |A|.
If r = 1 and |A| = 1 then there is nothing to do.
Now observe that ∂A ⊆ A1 − 1, since if A ∈ A, 1 6∈ A, and B ⊆ A is such

that |A \ B| = 1, then B ∪ {1} ∈ A1 since A is left-compressed. So it follows
that

|∂A0| ≤ |A1|.

Suppose |A1| <
(
x−1
r−1
)
. Then

|A0| >
(
x

r

)
−
(
x− 1

r − 1

)
=

(
x− 1

r

)
.

Therefore by induction, we have

|∂A0| >
(
x− 1

r − 1

)
.

This is a contradiction, since |∂A0| ≤ |A1|. Hence |A1| ≥
(
x−1
r−1
)
. Hence we are

done, since

|∂A| ≥ |∂A1| = |A1|+ |∂(A1 − 1)| ≥
(
x− 1

r − 1

)
+

(
x− 1

r − 2

)
=

(
x

r − 1

)
.
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4 Isoperimetric inequalities III Combinatorics (Theorems with proof)

4 Isoperimetric inequalities

Lemma. For A ⊆ Qn, we have |N(Ci(A))| ≤ |N(A)|.

Proof. We have

|N(A)| = |N(A+) ∪A−|+ |N(A−) ∪A+|

Take B = Ci(A). Then

|N(B)| = |N(B+) ∪B−|+ |N(B−) ∪B+|
= max{|N(B+)|, |B−|}+ max{|N(B−)|, |B+|}
≤ max{|N(A+)|, |A−|}+ max{|N(A−)|, |A+|}
≤ |N(A+) ∪Ai|+ |N(A−) ∪A+|
= |N(A)|

Lemma. For any A ⊆ Qn, there is a compressed set B ⊆ Qn such that

|B| = |A|, |N(B)| ≤ |N(A)|.

Lemma. For each n, there exists a unique element z ∈ Qn such that zc is the
successor of z.

Moreover, if B ⊆ Qn is compressed but not an initial segment, then |B| =
2n−1 and B is obtained from taking the initial segment of size 2n−1 and replacing
x with xc.

Proof. For the first part, simply note that complementation is an order-reversing
bijection Qn → Qn, and |Qn| is even. So the 2n−1th element is the only such
element z.

Now if B is not an initial segment, then we can find some x < y such that
x 6∈ B and y ∈ B. Since B is compressed, it must be the case that for each i,
there is exactly one of x and y that contains i. Hence x = yc. Note that this is
true for all x < y such that x 6∈ B and y ∈ B. So if we write out the simplicial
order, then B must look like

· · ·

since any x 6∈ B such that x < y must be given by x = yc, and so there must be
a unique such x, and similarly the other way round. So it must be the case that
y is the successor of x, and so x = z.

Theorem (Harper, 1967). Let A ⊆ Qn, and let C be the initial segment in the
simplicial order with |C| = |A|. Then |N(A)| ≥ |N(C)|. In particular,

|A| =
r∑

i=0

(
n

i

)
implies |N(A)| ≥

r+1∑
i=0

(
n

i

)
.

Theorem. Let A ⊆ Qn be a subset, and let C ⊆ Qn be the initial segment of
length |A| in the binary order. Then |∂eC| ≤ |∂eA|.
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4 Isoperimetric inequalities III Combinatorics (Theorems with proof)

Proof. We induct on n using codimension-1 compressions. Recall that we

previously defined the sets A
(i)
± .

The i-compression of A is the set B ⊆ Qn such that |B(i)
± | = |A

(i)
± |, and B

(i)
±

are initial segments in the binary order. We set Di(A) = B.
Observe that performing Di reduces the edge boundary. Indeed, given any

A, we have

|∂eA| = |∂eA(i)
+ |+ |∂eA

(i)
− |+ |A

(i)
+ ∆A

(i)
i |.

Applying Di clearly does not increase any of those factors. So we are happy.
Now note that if A 6= DiA, then∑

x∈A

∑
i∈x

2i <
∑

x∈DiA

∑
i∈x

2i.

So after applying compressions finitely many times, we are left with a compressed
set.

We now hope that a compressed subset must be an initial segment, but this
is not quite true.

Claim. If A is compressed but not an initial, then

A = B̃ = P(X \ {n}) \ {123 · · · (n− 1)} ∪ {n}.

By direct computation, we have

|∂eB̃| = 2n−1 − 2(n− 2),

and so the initial segment is better. So we are done.
The proof of the claim is the same as last time. Indeed, by definition, we can

find some x < y such that x 6∈ A and y ∈ A. As before, for any i, it cannot be
the case that both x and y contain i or neither contain i, since A is compressed.
So x = yc, and we are done as before.
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5 Sum sets III Combinatorics (Theorems with proof)

5 Sum sets

Theorem (Cauchy–Davenport theorem). Let A and B be non-empty subsets
of Zp with p a prime, and |A|+ |B| ≤ p+ 1. Then

|A+B| ≥ |A|+ |B| − 1.

Proof. We may assume 1 ≤ |A| ≤ |B|. Apply induction on |A|. If |A| = 1, then
there is nothing to do. So assume A ≥ 2.

Since everything is invariant under translation, we may assume 0, a ∈ A with
a 6= 0. Then {a, 2a, . . . , pa} = Zp. So there exists k ≥ 0 such that ka ∈ B and
(k + 1)a 6∈ B.

By translating B, we may assume 0 ∈ B and a 6∈ B.
Now 0 ∈ A ∩B, while a ∈ A \B. Therefore we have

1 ≤ |A ∩B| < |A|.

Hence

|(A ∩B) + (A ∪B)| ≥ |A ∩B|+ |A ∪B| − 1 = |A|+ |B| − 1.

Also, clearly
(A ∩B) + (A ∪B) ⊆ A+B.

So we are done.

Corollary. Let A1, . . . , Ak be non-empty subsets of Zp such that

d∑
i=1

|Ai| ≤ p+ k − 1.

Then

|A1 + . . .+Ak| ≥
k∑

i=1

|Ai| − k + 1.

Theorem (Erdös–Ginzburg–Ziv). Let a1, . . . , a2n−1 ∈ Zn. Then there exists
I ∈ [2n− 1](n) such that ∑

i∈I
ai = 0

in Zn.

Proof. First consider the case n = p is a prime. Write

0 ≤ a1 ≤ a2 ≤ · · · ≤ a2p−1 < p.

If ai = ai+p−1, then there are p terms that are the same, and so we are done
by adding them up. Otherwise, set Ai = {ai, ai+p−1} for i = 1, . . . , p− 1, and
Ap = {a2p−1}, then |Ai| = 2 for i = 1, . . . , p− 1 and |Ap| = 1. Hence we know

|A1 + · · ·+Ap| ≥ (2(p− 1) + 1)− p+ 1 = p.

Thus, every element in Zp is a sum of some p of our terms, and in particular 0 is.
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5 Sum sets III Combinatorics (Theorems with proof)

In general, suppose n is not a prime. Write n = pm, where p is a prime and
m > 1. By induction, for every 2m− 1 terms, we can find m terms whose sum
is a multiple of m.

Select disjoint S1, S2, . . . , S2p−1 ∈ [2n− 1](m) such that∑
j∈Si

aj = mbi.

This can be done because after selecting, say, S1, . . . , S2p−2, we have

(2n− 1)− (2p− 2)m = 2m− 1

elements left, and so we can pick the next one.
We are essentially done, because we can pick j1, . . . , jp such that

∑p
k=1 bik is

a multiple of p. Then
p∑

k=1

∑
j∈Sik

aj

is a sum of mp = n terms whose sum is a multiple of mp.
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6 Projections III Combinatorics (Theorems with proof)

6 Projections

Proposition. Let K be a body in R3. Then

|K|2 ≤ |K12||K13||K23|.

Proof. Suppose first that each section of K is a square, i.e.

K(x) = (0, f(x))× (0, f(x)) dx

for all x and some f . Then

|K| =
∫
f(x)2 dx.

Moreover,

|K12| =
(

sup
x
f(x)

)2

≡M2, |K13| = |K23| =
∫
f(x) dx.

So we have to show that(∫
f(x)2 dx

)2

≤M2

(∫
f(x) dx

)2

,

but this is trivial, because f(x) ≤M for all x.
Let’s now consider what happens when we compress K. For the general case,

define a new body L ⊆ R3 by setting its sections to be

L(x) = (0,
√
|K(x)|)× (0,

√
|K(x)|).

Then |L| = |K|, and observe that

|L12| ≤ sup |K(x)| ≤
∣∣∣⋃K(x)

∣∣∣ = |K12|.

To understand the other two projections, we introduce

g(x) = |K(x)1|, h(x) = |K(x)2|.

Now observe that
|L(x)| = |K(x)| ≤ g(x)h(x),

Since L(x) is a square, it follows that L(x) has side length ≤ g(x)1/2h(x)1/2. So

|L13| = |L23| ≤
∫
g(x)1/2h(x)1/2 dx.

So we want to show that(∫
g1/2h1/2 dx

)2

≤
(∫

g dx

)(∫
h dx

)
.

Observe that this is just the Cauchy–Schwarz inequality applied to g1/2 and
h1/2. So we are done.
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Theorem (Uniform cover inequality). If A1, . . . , Ar is a uniform k-cover of [n],
then

|K|k =

r∏
i=1

|KA|.

Proof. Let A be a k-uniform cover of [k]. Note that A is a multiset. Write

A− = {A ∈ A : n 6∈ A}
A+ = {A \ {n} ∈ A : n ∈ A}

We have |A+| = k, and A+ ∪ A− forms a k-uniform cover of [n− 1].
Now note that if K = Rn and n 6∈ A, then

|KA| ≥ |K(x)A| (1)

for all x. Also, if n ∈ A, then

|KA| =
∫
|K(x)A\{n}| dx. (2)

In the previous proof, we used Cauchy–Schwarz. What we need here is Hölder’s
inequality ∫

fg dx ≤
(∫

fp dx

)1/p(∫
gq dx

)1/q

,

where 1
p + 1

q = 1. Iterating this, we get

∫
f1 · · · fk dx ≤

k∏
i=1

(∫
fki dx

)1/k

.

Now to perform the proof, we induct on n. We are done if n = 1. Otherwise,
given K ⊆ Rn and n ≥ 2, by induction,

|K| =
∫
|K(x)| dx

≤
∫ ∏

A∈A−

|K(x)A|1/k
∏

A∈A+

|K(x)A|1/k dx (by induction)

≤
∏

A∈A−

|KA|1/k
∫ ∏

A∈A+

|K(x)A|1/k dx (by (1))

≤
∏

A≤|A−

|KA|1/k
∏

A∈A+

(∫
|K(x)A|

)1/k

(by Hölder)

=
∏
A∈A
|KA|1/k

∏
A∈A+

|KA∪{n}|1/k. (by (2))

Theorem (Box Theorem (Bollobás, Thomason)). Given a body K ⊆ Rn, i.e.
a non-empty bounded open set, there exists a box L such that |L| = |K| and
|LA| ≤ |KA| for all A ⊆ [n].

15



6 Projections III Combinatorics (Theorems with proof)

Lemma. There are only finitely many irreducible covers of [n].

Proof. Let A and B be covers. We say A < B if A is a “subset” of B, i.e. for
each A ⊆ [n], the multiplicity of A in A is less than the multiplicity in B.

Then note that the set of irreducible uniform k-covers form an anti-chain,
and observe that there cannot be an infinite anti-chain.

Proof of box theorem. For A an irreducible cover, we have

|K|k ≤
∏
A∈A
|KA|.

Also,

|KA| ≤
∏
i∈A
|K{i}|.

Let {xA : A ⊆ [n]} be a minimal array with xA ≤ |KA| such that for each
irreducible k-cover A, we have

|K|k ≤
∏
A∈A

xA (1)

and moreover
xA ≤

∏
i∈A

x{i} (2)

for all A ⊆ [n]. We know this exists since there are only finitely many inequalities
to be satisfied, and we can just decrease the xA’s one by one. Now again by
finiteness, for each xA, there must be at least one inequality involving xA on the
right-hand side that is in fact an equality.

Claim. For each i ∈ [n], there exists a uniform ki-cover Ci containing {i} with
equality

|K|ki =
∏
A∈Ci

xA.

Indeed if xi occurs on the right of (1), then we are done. Otherwise, it occurs
on the right of (2), and then there is some A such that (2) holds with equality.
Now there is some cover A containing A such that (1) holds with equality. Then
replace A in A with {{j} : j ∈ A}, and we are done.

Now let

C =

n⋃
i=1

Ci, C′ = C \ {{1}, {2}, . . . , {n}}, k =

n∑
i=1

ki.

Then

|K|k =
∏
A∈C

xA =

( ∏
A∈C1

xA

)
≥ |K|k−1

n∏
i=1

xi.

So we have

|K| ≥
n∏

i=1

xi.

16



6 Projections III Combinatorics (Theorems with proof)

But we of course also have the reverse inequality. So it must be the case that
they are equal.

Finally, for each A, consider A = {A} ∪ {{i} : i 6∈ A}. Then dividing (1) by∏
i∈A xi gives us ∏

i 6∈A

xi ≤ xA.

By (2), we have the inverse equality. So we have

xA =
∏
i∈A

xi

for all i. So we are done by taking L to be the box with side length xi.

Corollary. If K is a union of translates of the unit cube, then for any (not
necessarily uniform) k-cover A, we have

|K|k ≤
∏
A∈A
|KA|.

Proof. Observe that if B ⊆ A, then |KB | ≤ |KA|. So we can reduce A to a
uniform k-cover.

17
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7 Alon’s combinatorial Nullstellensatz

Theorem (Alon’s combinatorial Nullstellensatz). Let F be a field, and let
S1, . . . , Sn be non-empty finite subsets of F with |Si| = di + 1. Let f ∈
F[X1, . . . , Xn] have degree d =

∑n
i=1 di, and let the coefficient of Xd1

1 · · ·Xdn
n be

non-zero. Then f is not identically zero on S = S1 × · · · × Sn.

Proposition (Division algorithm). Let f, g ∈ R[X] with g monic. Then we can
write

f = hg + r,

where deg h ≤ deg f − deg g and deg r < deg g.

Lemma. Let f ∈ R[X], and for i = 1, . . . , n, let gi(Xi) ∈ R[Xi] ⊆ R[X]
be monic of degree deg gi = degXi

gi = di. Then there exists polynomials
h1, . . . , hn, r ∈ R[X] such that

f =
∑

figi + r,

where

deg hi ≤ deg f − deg di degXi
r ≤ di − 1

degXi
hi ≤ degXi

f − di degXi
r ≤ degXi

f

degXj
hi ≤ degXj

f deg r ≤ deg f

for all i, j.

Proof. Consider f as a polynomial with coefficients in R[X2, . . . , Xn], then divide
by g1 using the division algorithm. So we write

f = h1g1 + r1.

Then we have

degX1
h1 ≤ degX1

f − d1 degX1
r1 ≤ d1 − 1

deg h1 ≤ deg f degXj
r1 ≤ degXj

f

degXj
h1 ≤ degXj

f deg r ≤ deg f.

Then repeat this with f replaced by r1, g1 by g2, and X1 by X2.

Lemma. Let S1, . . . , Sn be non-empty finite subsets of a field F, and let h ∈ F[X]
be such that degXi

h < |Si| for i = 1, . . . , n. Suppose h is identically 0 on
S = S1 × · · · × Sn ⊆ Fn. Then h is the zero polynomial.

Proof. Let di = |Si| − 1. We induct on n. If n = 1, then we are done. For n ≥ 2,
consider h as a one-variable polynomial in F [X1, . . . , Xn−1] in Xn. Then we can
write

h =

dn∑
i=0

gi(X1, . . . , Xn−1)Xi
m.

Fix (x1, . . . , xn−1) ∈ S1 × · · ·Sn−1, and set ci = gi(x1, . . . , xn−1) ∈ F. Then∑dn

i=0 ciX
i
n vanishes on Sn. So ci = gi(x1, . . . , xn−1) = 0 for all (x1, . . . , xn−1) ∈

S1 × · · · × Sn−1. So by induction, gi = 0. So h = 0.

18
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Lemma. For i = 1, . . . , n, let Si be a non-empty finite subset of F, and let

gi(Xi) =
∏
s∈Si

(Xi − s) ∈ F[Xi] ⊆ F [X].

Then if f ∈ F[X] is identically zero on S = S1 × · · · × Sn, then there exists
hi ∈ F[X], deg hi ≤ deg f − |Si| and

f =

n∑
i=1

higi.

Proof. By the division algorithm, we can write

f =

n∑
i=1

higi + r,

where r satisfies degXi
r < deg gi. But then r vanishes on S1 × · · · × Sn, as both

f and gi do. So r = 0.

Theorem (Alon’s combinatorial Nullstellensatz). Let S1, . . . , Sn be non-empty
finite subsets of F with |Si| = di + 1. Let f ∈ F[X] have degree d =

∑n
i=1 di,

and let the coefficient of Xd1
1 · · ·Xdn

n be non-zero. Then f is not identically zero
on S = S1 × · · · × Sn.

Proof. Suppose for contradiction that f is identically zero on S. Define gi(Xi)
and hi as before such that

f =
∑

higi.

Since the coefficient of Xd1
1 · · ·Xdn

n is non-zero in f , it is non-zero in some hjgj .
But that’s impossible, since

deg hj ≤

(
n∑

i=1

di

)
− deg gj =

∑
i 6=j

di − 1,

and so hj cannot contain a Xd1
1 · · · X̂j

dj · · ·Xdn
n term.

Theorem (Chevalley, 1935). Let f1, . . . , fm ∈ Fq[X1, . . . , Xn] be such that

m∑
i=1

deg fi < n.

Then the fi cannot have exactly one common zero.

Proof. Suppose not. We may assume that the common zero is 0 = (0, . . . , 0).
Define

f =

m∏
i=1

(1− fi(X)q−1)− γ
n∏

i=1

∏
s∈F×

q

(Xi − s),

where γ is chosen so that F (0) = 0, namely the inverse of
(∏

s∈F×
q

(−s)
)m

.

Now observe that for any non-zero x, the value of fi(x)q−1 = 1, so f(x) = 0.
Thus, we can set Si = Fq, and they satisfy the hypothesis of the theorem. In

particular, the coefficient of Xq−1
1 · · ·Xq−1

n is γ 6= 0. However, f vanishes on Fn
q .

This is a contradiction.
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Theorem (Warning). Let f(X) = f(X1, . . . , Xn) ∈ Fq[X] have degree < n.
Then N(f), the number of zeroes of f is a multiple of p.

Proof. We have

1− f(x)q−1 =

{
1 f(x) = 0

0 otherwise
.

Thus, we know

N(f) =
∑
x∈Fn

q

(1− f(x)q−1) = −
∑
x∈Fn

q

f(x)q−1 ∈ Fq.

Further, we know that if k ≥ 0, then

∑
x∈Fn

q

xk =

{
−1 k = q − 1

0 otherwise
.

So let’s write f(x)q−1 as a linear combination of monomials. Each monomial
has degree < n(q − 1). So there is at least one k such that the power of Xk in
that monomial is < q − 1. Then the sum over Xk vanishes for this monomial.
So each monomial contributes 0 to the sum.

Theorem (Cauchy–Davenport theorem). Let p be a prime and A,B ⊆ Zp be
non-empty subsets with |A|+ |B| ≤ p+ 1. Then |A+B| ≥ |A|+ |B| − 1.

Proof. Suppose for contradiction that A+B ⊆ C ⊆ Zp, and |C| = |A|+ |B| − 2.
Let’s come up with a polynomial that encodes the fact that C contains the sum
A+B. We let

f(X,Y ) =
∏
c∈C

(X + Y − c).

Then f vanishes on A×B, and deg f = |C|.
To apply the theorem, we check that the coefficient of X |A|−1Y |B|−1 is

( |C|
|A|−1

)
,

which is non-zero in Zp, since C < p. This contradicts Alon’s combinatorial
Nullstellensatz.

Theorem (Erdös–Ginzburg–Ziv). Let p be a prime and a1, . . . , a2p+1 ∈ Zp.
Then there exists I ∈ [2p− 1](p) such that∑

i∈I
ai = 0 ∈ Zp.

Proof. Define

f1(X1, . . . , X2p−1) =

2p−1∑
i=1

Xp−1
i .

f2(X1, . . . , X2p−1) =

2p−1∑
i=1

aiX
p−1
i .

Then by Chevalley’s theorem, we know there cannot be exactly one common
zero. But 0 is one common zero. So there must be another. Take this solution,
and let I = {i : xi 6= 0}. Then f1(X) = 0 is the same as saying |I| = p, and
f2(X) = 0 is the same as saying

∑
i∈I ai = 0.
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Theorem. Let A,B ⊆ Zp be such that 2 ≤ |A| < |B| and |A| + |B| ≤ p + 2.

Then A
·
+B ≥ |A|+ |B| − 2.

Proof. Suppose not. Define

f(X,Y ) = (X − Y )
∏
c∈C

(X + Y − c),

where A
·
+B ⊆ C ⊆ Zp and |C| = |A|+ |B| − 3.

Then deg g = |A|+ |B| − 2, and the coefficient of X |A|−1Y |B|−1 is(
|A|+ |B| − 3

|A| − 2

)
−
(
|A|+ |B| − 3

|A| − 1

)
6= 0.

Hence by Alon’s combinatorial Nullstellensatz, f(x, y) is not identically zero on
A×B. A contradiction.

Corollary (Erdös–Heilbronn conjecture). If A,B ⊆ Zp, non-empty and |A|+
|B| ≤ p+ 3, and p is a prime, then |A

·
+B| ≥ |A|+ |B| − 3.

Proof. We may assume 2 ≤ |A| ≤ |B|. Pick a ∈ A, and set A′ = A \ {a}. Then

|A
·
+B| ≥ |A′

·
+B| ≥ |A′|+ |B| − 2 = |A|+ |B| − 3.

Theorem. If 2n+ 1 is a prime, then this can be done.

Proof. We may wlog assume the host is at 0. We want to partition Zp \{0} = Z×p
into n pairs {xi, xi + di}. Consider the polynomial ring Zp[X1, . . . , Xn] = Zp[X].
We define

f(x) =
∏
i

Xi(Xi+di)
∏
i<j

(Xi−Xj)(Xi+di−Xj)(Xi−Xj−dj)(Xi+di−Xj−dj).

We want to show this is not identically zero on Zn
p

First of all, we have

deg f = 4

(
n

2

)
+ 2n = 2n2.

So we are good. The coefficient of X2n
1 · · ·X2n

n is the same as that in

∏
X2

i

∏
i<j

(Xi −Xj)
4 =

∏
X2

i

∏
i6=j

(Xi −Xj)
2 =

∏
X2n

i

∏
i6=j

(
1− Xi

Xj

)2

.

This, we are looking for the constant term in

∏
i6=j

(
1− Xi

Xj

)2

.

By a question on the example sheet, this is(
2n

2, 2, . . . , 2

)
6= 0 in Zp.
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Theorem. If b1, . . . , bp ∈ Zp are such that
∑
bi = 0, then there exists numer-

ations a1, . . . , ap and b1, . . . , bp of the elements of Zp such that for each i, we
have

ai + bi = ci.

Proof. It suffices to show that for all (bi), there are distinct a1, · · · , ap−1 such
that ai + bi 6= aj + bj for all i 6= j. Consider the polynomial∏

i<j

(Xi −Xj)(Xi + bi −Xj − bj).

The degree is

2

(
p− 1

2

)
= (p− 1)(p− 2).

We then inspect the coefficient of Xp−2
1 · · ·Xp−2

p−1 , and checking that this is
non-zero is the same as above.
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