
Part III — Analysis of Partial Differential
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Theorems with proof

Based on lectures by C. Warnick
Notes taken by Dexter Chua

Michaelmas 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

This course serves as an introduction to the mathematical study of Partial Differential
Equations (PDEs). The theory of PDEs is nowadays a huge area of active research,
and it goes back to the very birth of mathematical analysis in the 18th and 19th
centuries. The subject lies at the crossroads of physics and many areas of pure and
applied mathematics.

The course will mostly focus on four prototype linear equations: Laplace’s equation,
the heat equation, the wave equation and Schrödinger’s equation. Emphasis will be
given to modern functional analytic techniques, relying on a priori estimates, rather
than explicit solutions, although the interaction with classical methods (such as the
fundamental solution and Fourier representation) will be discussed. The following basic
unifying concepts will be studied: well-posedness, energy estimates, elliptic regularity,
characteristics, propagation of singularities, group velocity, and the maximum principle.
Some non-linear equations may also be discussed. The course will end with a discussion
of major open problems in PDEs.

Pre-requisites

There are no specific pre-requisites beyond a standard undergraduate analysis back-

ground, in particular a familiarity with measure theory and integration. The course

will be mostly self-contained and can be used as a first introductory course in PDEs for

students wishing to continue with some specialised PDE Part III courses in the Lent

and Easter terms.
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2 The Cauchy–Kovalevskaya theoremIII Analysis of PDEs (Theorems with proof)

2 The Cauchy–Kovalevskaya theorem

2.1 The Cauchy–Kovalevskaya theorem

Theorem (Picard–Lindelöf theorem). Suppose that there exists r,K > 0 such
that Br(u0) ⊆ U , and

‖f(x)− f(y)‖ ≤ K‖x− u0‖

for all x, y ∈ Br(u0). Then there exists an ε > 0 depending on K, r and a unique
C1 function u : (−ε, ε)→ U solving the Cauchy problem.

Proof sketch. If u is a solution, then by the fundamental theorem of calculus,
we have

u(t) = u0 +

∫ t

0

f(u(s)) ds.

Conversely, if u is a C0 solution to this integral equation, then it solves the
ODE. Crucially, this only requires u to be C0. Indeed, if u is C0 and satisfies
the integral equation, then u is automatically C1. So we can work in a larger
function space when we seek for u.

Thus, we have reformulated our initial problem into an integral equation. In
particular, we reformulated it in a way that assumes less about the function. In
the case of PDEs, this is what is known as a weak formulation.

Returning to the proof, we have reformulated our problem as looking for a
fixed point of the map

B : w 7→ u0 +

∫ t

0

f(w(s)) ds

acting on
C = {w : [−ε, ε]→ Br/2(u0) : w is continuous}.

This is a complete metric space when we equip it with the supremum norm (in
fact, it is a closed ball in a Banach space).

We then show that for ε small enough, this map B : C → C is a contraction
map. There are two parts — to show that it actually lands in C, and that it is
a contraction. If we managed to show these, then by the contraction mapping
theorem, there is a unique fixed point, and we are done.

Theorem (Cauchy–Kovalevskaya for ODEs). The series

u(t) =

∞∑
k=0

uk
tk

k!
.

converges to the Picard–Lindelöf solution of the Cauchy problem if f is real
analytic in a neighbourhood of u0.

Lemma.

(i) If g � f and g converges for |x| < r, then f converges for |x| < r.

(ii) If f(x) =
∑
α fαx

α converges for x < r and 0 < s
√
n < r, then f has a

majorant which converges on |x| < s.
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2 The Cauchy–Kovalevskaya theoremIII Analysis of PDEs (Theorems with proof)

Proof.

(i) Given x, define x̃ = (|x1|, |x2|, . . . , |xn|). We then note that∑
α

|fαxα| =
∑
α

|fα|x̃α ≤
∑
α

gαx̃
α = g(x̃).

Since |x̃| = |x| < r, we know g converges at x̃.

(ii) Let 0 < s
√
n < r and set y = s(1, 1, . . . , 1). Then we have

|y| = s
√
n < r.

So by assumption, we know ∑
α

fαy
α

converges. A convergent series has bounded terms, so there exists C such
that

|fαyα| ≤ C

for all α. But yα = s|α|. So we know

|fα| ≤
C

s|α|
≤ C

s|α|
|α|!
α!

.

But then if we set

g(x) =
Cs

s− (x1 + · · ·+ xn)
= C

∑
α

|α|!
s|α|α!

xα,

we are done, since this converges for |x| < s√
n

.

Theorem (Cauchy–Kovalevskaya theorem). Given the above assumptions, there
exists a real analytic function u =

∑
α uαx

α solving the PDE in a neighbourhood
of the origin. Moreover, it is unique among real analytic functions.

Lemma. For k = 1, . . . ,m and α a multi-index in Nn, there exists a polynomial
qkα in the power series coefficients of B and c such that any analytic solution to
the PDE must be given by

u =
∑
α

qα(B, c)xα,

where qα is the vector with entries qkα.
Moreover, all coefficients of qα are non-negative.

Proof. We construct the polynomials qkα by induction on αn. If αn = 0, then
since u = 0 on {xn = 0}, we conclude that we must have

uα =
Dαu(0)

α!
= 0.

For αn = 1, we note that whenever xn = 0, we have uxj = 0 for j = 1, . . . , n− 1.
So the PDE reads

uxn(x′, 0) = c(0, x′).
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Differentiating this relation in directions tangent to xn = 0, we find that if
α = (α′, 1), then

Dαu(0) = Dα′c(0, 0).

So qkα is a polynomial in the power series coefficients of c, and has non-negative
coefficients.

Now suppose αn = 2, so that α = (α′, 2). Then

Dαu = Dα′(uxn)xn

= Dα′

∑
j

Bjuxj + c


xn

= Dα′

∑
j

(
Bjuxj ,xn +

∑
p

(
Bupuxj

)
upxn

)
+
∑
p

cupu
p
xn


We don’t really care what this looks like. The point is that when we evaluate at 0,
and expand all the terms out, we get a polynomial in the derivatives of Bj and c,
and also Dβu with βn < 2. The derivatives of Bj and c are just the coefficients
of the power series expansion of Bj and c, and by the induction hypothesis, we
can also express the Dβu in terms of these power series coefficients. Thus, we
can use this to construct qα. By inspecting what the formula looks like, we see
that all coefficients in qα are non-negative.

We see that we can continue doing the same computations to obtain all qα.

Lemma. If B̃j � Bj and c̃� c, then

qkα(B̃, c̃) > qkα(B, c).

for all α. In particular, ũ� u.

Lemma. For any C and r, define

h(z, x′) =
Cr

r − (x1 + · · ·+ xn−1)− (z1 + · · ·+ zm)

If B and c are given by

B∗j (z, x′) = h(z, x′)

1 · · · 1
...

. . .
...

1 · · · 1

 , c∗(z, x′) = h(z, x′)

1
...
1

 ,

then the power series

u =
∑
α

qα(B, c)xα

converges in a neighbourhood of the origin.

Proof. We define

v(x) =
1

mn

(
r − (x1 + · · ·+ xn−1)−

√
(r − (x1 + · · ·+ xn−1))2 − 2mnCrxn

)
,
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2 The Cauchy–Kovalevskaya theoremIII Analysis of PDEs (Theorems with proof)

which is real analytic around the origin, and vanishes when xn = 0. We then
observe that

u(x) = v(x)

1
...
1


gives a solution to the corresponding PDE, and is real analytic around the origin.
Hence it must be given by that power series, and in particular, the power series
must converge.

2.2 Reduction to first-order systems
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3 Function spaces III Analysis of PDEs (Theorems with proof)

3 Function spaces

3.1 The Hölder spaces

3.2 Sobolev spaces

Theorem. LP (U) is a Banach space with the Lp norm.

Lemma. Suppose v, ṽ ∈ L1
loc(U) are both αth weak derivatives of u ∈ L1

loc(U),
then v = ṽ almost everywhere.

Proof. For any φ ∈ C∞c (U), we have∫
U

(v − ṽ)φ dx = (−1)|α|
∫
U

(u− u)Dαφ dx = 0.

Therefore v − ṽ = 0 almost everywhere.

Theorem. For each k = 0, 1, . . . and 1 ≤ p ≤ ∞, the space W k,p(U) is a Banach
space.

Proof. Homogeneity and positivity for the Sobolev norm are clear. The triangle
inequality follows from the Minkowski inequality.

For completeness, note that

‖Dαu‖Lp(U) ≤ ‖u‖Wk,p(U)

for |α| ≤ k.
So if (ui)

∞
i=1 is Cauchy in W k,p(U), then (Dαui)

∞
i=1 is Cauchy in Lp(U) for

|α| ≤ k. So by completeness of Lp(U), we have

Dαui → uα ∈ Lp(U)

for some uα. It remains to show that uα = Dαu, where u = u(0,0,...,0). Let
φ ∈ C∞c (U). Then we have

(−1)|α|
∫
U

ujD
αφ dx =

∫
U

Dαujφ dx

for all j. We send j →∞. Then using Dαuj → uα in Lp(U), we have

(−1)|α|
∫
U

uDαφ dx =

∫
U

uαφ dx.

So Dαu = uα ∈ Lp(U) and we are done.

3.3 Approximation of functions in Sobolev spaces

Theorem. Let f ∈ L1
loc(U). Then

(i) fε ∈ C∞(Uε).

(ii) fε → f almost everywhere as ε→ 0.

(iii) If in fact f ∈ C(U), then fε → f uniformly on compact subsets.
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3 Function spaces III Analysis of PDEs (Theorems with proof)

(iv) If 1 ≤ p < ∞ and f ∈ Lploc(U), then fε → f in Lploc(U), i.e. we have
convergence in Lp on any V b U .

Lemma. Assume u ∈W k,p(U) for some 1 ≤ p <∞, and set

uε = ηε ∗ u on Uε.

Then

(i) uε ∈ C∞(Uε) for each ε > 0

(ii) If V b U , then uε → u in W k,p(V ).

Proof.

(i) As above.

(ii) We claim that
Dαuε = ηε ∗Dαu

for |α| ≤ k in Uε.

To see this, we have

Dαuε(x) = Dα

∫
U

ηε(x− y)u(y) dy

=

∫
U

Dα
xηε(x− y)u(y) dy

=

∫
U

(−1)|α|Dα
y ηε(x− y)u(y) dy

For a fixed x ∈ Uε, ηε(x − · ) ∈ C∞c (U), so by the definition of a weak
derivative, this is equal to

=

∫
U

ηε(x− y)Dαu(y) dy

= ηε ∗Dαu.

It is an exercise to verify that we can indeed move the derivative past the
integral.

Thus, if we fix V b U . Then by the previous parts, we see that Dαuε →
Dαu in Lp(V ) as ε→ 0 for |α| ≤ k. So

‖uε − u‖pWk.p(V )
=
∑
|α|≤k

‖Dαuε −Dαu‖pLp(V ) → 0

as ε→ 0.

Theorem (Global approximation). Let 1 ≤ p <∞, and U ⊆ Rn be open and
bounded. Then C∞(U) ∩W k,p(U) is dense in W k,p(U).

Proof. For i ≥ 1, define

Ui =
{
x ∈ U | dist(x, ∂U) > 1

i

}
Vi = Ui+3 − Ūi+1

Wi = Ui+4 − Ūi.
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3 Function spaces III Analysis of PDEs (Theorems with proof)

We clearly have U =
⋃∞
i=1 Ui, and we can choose V0 b U such that U =

⋃∞
i=0 Vi.

Let {ζi}∞i=0 be a partition of unity subordinate to {Vi}. Thus, we have
0 ≤ ζi ≤ 1, ζi ∈ C∞c (Vi) and

∑∞
i=0 ζi = 1 on U .

Fix δ > 0. Then for each i, we can choose εi sufficiently small such that

ui = ηεi ∗ ζiu

satisfies suppui ⊆Wi and

‖ui − ζiu‖Wk.p(U) = ‖ui − ζiu‖Wk.p(Wi) ≤
δ

2i+1
.

Now set

v =

∞∑
i=0

ui ∈ C∞(U).

Note that we do not know (yet) that v ∈W k.p(U). But it certainly is when we
restrict to some V b U .

In any such subset, the sum is finite, and since u =
∑∞
i=0 ζiu, we have

‖v − u‖Wk,p(V ) ≤
∞∑
i=0

‖ui − ζiu‖Wk.p(V ) ≤ δ
∞∑
i=0

2−(i+1) = δ.

Since the bound δ does not depend on V , by taking the supremum over all V ,
we have

‖v − u‖Wk.p(U) ≤ δ.

So we are done.

Theorem (Smooth approximation up to boundary). Let 1 ≤ p < ∞, and
U ⊆ Rn be open and bounded. Suppose ∂U is C0,1. Then C∞(Ū) ∩W k,p(U) is
dense in W k,p(U).

Proof. Previously, the reason we didn’t get something in C∞(Ū) was that we
had to glue together infinitely many mollifications whose domain collectively
exhaust U , and there is no hope that the resulting function is in C∞(Ū). In the
current scenario, we know that U locally looks like

x0

The idea is that given a u defined on U , we can shift it downwards by some ε.
It is a known result that translation is continuous, so this only changes u by a
tiny bit. We can then mollify with a ε̄ < ε, which would then give a function
defined on U (at least locally near x0).

So fix some x0 ∈ ∂U . Since ∂U is C0,1, there exists r > 0 such that
γ ∈ C0,1(Rn−1) such that

U ∩Br(x0) = {(x′, xn) ∈ Br(x′) | xn > γ(x′)}.

Set
V = U ∩Br/2(x0).

11



3 Function spaces III Analysis of PDEs (Theorems with proof)

Define the shifted function uε to be

uε(x) = u(x+ εen).

Now pick ε̄ sufficiently small such that

vε,ε̄ = ηε̄ ∗ uε
is well-defined. Note that here we need to use the fact that ∂U is C0,1. Indeed,
we can see that if the slope of ∂U is very steep near a point x:

ε

then we need to choose a ε̄ much smaller than ε. By requiring that γ is 1-Hölder
continuous, we can ensure there is a single choice of ε̄ that works throughout V .
As long as ε̄ is small enough, we know that vε,ε̄ ∈ C∞(V̄ ).

Fix δ > 0. We can now estimate

‖vε,ε̃ − u‖Wk.p(V ) = ‖vε,ε̃ − uε + uε − u‖Wk,p(V )

≤ ‖vε,ε̃ − uε‖Wk,p(V ) + ‖uε − u‖Wk.p(V ).

Since translation is continuous in the Lp norm for p < ∞, we can pick ε > 0
such that ‖uε − u‖Wk.p(V ) <

δ
2 . Having fixed such an ε, we can pick ε̃ so small

that we also have ‖vε,ε̃ − uε‖Wk.p(V ) <
δ
2 .

The conclusion of this is that for any x0 ∈ ∂U , we can find a neighbourhood
V ⊆ U of x0 in U such that for any u ∈ W k,p(U) and δ > 0, there exists
v ∈ C∞(V̄ ) such that ‖u− v‖Wk,p(V ) ≤ δ.

It remains to patch all of these together using a partition of unity. By the
compactness of ∂U , we can cover ∂U by finitely many of these V , say V1, . . . , VN .
We further pick a V0 such that V0 b U and

U =

N⋃
i=0

Vi.

We can pick approximations vi ∈ C∞(V̄i) for i = 0, . . . , N (the i = 0 case is given
by the previous global approximation theorem), satisfying ‖vi − u‖Wk,p(Vi) ≤ δ.
Pick a partition of unity {ζi}Ni=0 of Ū subordinate to {Vi}. Define

v =

N∑
i=0

ζivi.

Clearly v ∈ C∞(Ū), and we can bound

‖Dαv −Dαu‖Lp(U) =

∥∥∥∥∥Dα
N∑
i=0

ζivi −Dα
N∑
i=0

ζiu

∥∥∥∥∥
Lp(U)

≤ Ck
N∑
i=0

‖vi − u‖Wk.p(Vi)

≤ Ck(1 +N)δ,
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where Ck is a constant that solely depends on the derivatives of the partition of
unity, which are fixed. So we are done.

3.4 Extensions and traces

Theorem (Extension of W 1.p functions). Suppose U is open, bounded and ∂U
is C1. Pick a bounded V such that U b V . Then there exists a bounded linear
operator

E : W 1,p(U)→W 1.p(Rn)

for 1 ≤ p <∞ such that for any u ∈W 1,p(U),

(i) Eu = u almost everywhere in U

(ii) Eu has support in V

(iii) ‖Eu‖W 1,p(Rn) ≤ C‖u‖W 1,p(U), where the constant C depends on U, V, p
but not u.

Proof. First note that C1(Ū) is dense in W 1,p(U). So it suffices to show that
the above theorem holds with W 1,p(U) replaced with C1(Ū), and then extend
by continuity.

We first show that we can do this locally, and then glue them together using
partitions of unity.

Suppose x0 ∈ ∂U is such that ∂U near x0 lies in the plane {xn = 0}. In
other words, there exists r > 0 such that

B+ = Br(x
0) ∩ {xn ≥ 0} ⊆ Ū

B− = Br(x
0) ∩ {xn ≤ 0} ⊆ Rn \ U.

The idea is that we want to reflect u|B+
across the xn = 0 boundary to get a

function on B−, but the derivative will not be continuous if we do this. So we
define a “higher order reflection” by

ū(x) =

{
u(x) x ∈ B+

−3u(x′,−xn) + 4
(
ux′,−xn2

)
x ∈ B−

xn

u

−x −x2 x

13
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We see that this is a continuous function. Moreover, by explicitly computing the
partial derivatives, we see that they are continuous across the boundary. So we
know ū ∈ C1(Br(x

0)).
We can then easily check that we have

‖ū‖W 1,p(Br(x0)) ≤ C‖u‖W 1,p(B+)

for some constant C.
If ∂U is not necessarily flat near x0 ∈ ∂U , then we can use a C1 diffeomor-

phism to straighten it out. Indeed, we can pick r > 0 and γ ∈ C1(Rn−1) such
that

U ∩Br(p) = {(x′, xn) ∈ Br(p) | xn > γ(x′)}.

We can then use the C1-diffeomorphism Φ : Rn → Rn given by

Φ(x)i = xi i = 1, . . . , n− 1

Φ(x)n = xn − γ(x1, . . . , xn)

Then since C1 diffeomorphisms induce bounded isomorphisms between W 1,p,
this gives a local extension.

Since ∂U is compact, we can take a finite number of points x0
i ∈ ∂W , sets

Wi and extensions ui ∈ C1(Wi) extending u such that

∂U ⊆
N⋃
i=1

Wi.

Further pick W0 b U so that U ⊆
⋃N
i=0Wi. Let {ζi}Ni=0 be a partition of unity

subordinate to {Wi}. Write

ū =

N∑
i=0

ζiūi

where ū0 = u. Then ū ∈ C1(Rn), ū = u on U , and we have

‖ū‖W 1,p(Rn) ≤ C‖u‖W 1,p(U).

By multiplying ū by a cut-off, we may assume supp ū ⊆ V for some V c U .
Now notice that the whole construction is linear in u. So we have constructed

a bounded linear operator from a dense subset of W 1,p(U) to W 1,p(V ), and there
is a unique extension to the whole of W 1,p(U) by the completeness of W 1,p(V ).
We can see that the desired properties are preserved by this extension.

Theorem (Trace theorem). Assume U is bounded and has C1 boundary. Then
there exists a bounded linear operator T : W 1,p(U) → Lp(∂U) for 1 ≤ p < ∞
such that Tu = u|∂U if u ∈W 1,p(U) ∩ C(Ū).

Proof. It suffices to show that the restriction map defined on C∞ functions is a
bounded linear operator, and then we have a unique extension to W 1,p(U). The
gist of the argument is that Stokes’ theorem allows us to express the integral of
a function over the boundary as an integral over the whole of U . In fact, the
proof is indeed just the proof of Stokes’ theorem.
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3 Function spaces III Analysis of PDEs (Theorems with proof)

By a general partition of unity argument, it suffices to show this in the case
where U = {xn > 0} and u ∈ C∞Ū with suppu ⊆ BR(0) ∩ Ū . Then∫

Rn−1

|u(x′, 0)|p dx′ =

∫
Rn−1

∫ ∞
0

∂

∂xn
|u(x′, xn)|p dxn dx′

=

∫
U

p|u|p−1uxn sgnu dxn dx′.

We estimate this using Young’s inequality to get∫
Rn−1

|u(x′, 0)|p dx′ ≤ Cp
∫
U

|u|p + |uxn |p dU ≤ Cp‖u‖pW 1,p(U).

So we are done.

3.5 Sobolev inequalities

Lemma. Let n ≥ 2 and f1, . . . , fn ∈ Ln−1(Rn−1). For 1 ≤ i ≤ n, denote

x̃i = (x1, . . . , xi−1, xi+1, . . . , xn),

and set
f(x) = f1(x̃1) · · · fn(x̃n).

Then f ∈ L1(Rn) with

‖f‖L1(Rn) ≤
n∏
i=1

‖fi‖Ln−1(Rn−1).

Proof. We proceed by induction on n.
If n = 2, then this is easy, since

f(x1, x2) = f1(x2)f2(x1).

So ∫
R2

|f(x1, x2)| dx =

∫
|f1(x2)| dx2

∫
|f2(x1)| dx1

= ‖f1‖L1(R1)‖f2‖L1(R1).

Suppose that the result is true for n ≥ 2, and consider the n+ 1 case. Write

f(x) = fn+1(x̃n+1)F (x),

where F (x) = f1(x̃1) · · · fn(x̃n). Then by Hölder’s inequality, we have∫
x1,...,xn

|f( · , xn+1)| dx ≤ ‖fn+1‖Ln(Rn)‖F ( · , xn+1)‖Ln/(n−1)(Rn).

We now use the induction hypothesis to

f
n/(n−1)
1 ( · , xn+1)f

n/(n−1)
2 ( · , xn+1) · · · fn/(n−1)

n ( · , xn+1).

15



3 Function spaces III Analysis of PDEs (Theorems with proof)

So

∫
x1,...,xn

|f( · , xn+1)| dx ≤ ‖fn+1‖Ln(Rn)

(
n∏
i=1

‖f
n
n−1

i ( · , xn)‖Ln−1(Rn−1)

)n−1
n

= ‖fn+1‖Ln(Rn)

n∏
i=1

‖fi( · , xm)‖Ln(Rn−1).

Now integrate over xn+1. We get

‖f‖L1(Rn+1) ≤ ‖fn+1‖Ln(Rn)

∫
xn+1

n∏
i=1

‖fi( · , xn+1)‖Ln(Rn−1) dxn.

≤ ‖fn+1‖Ln(Rn+1)

n∏
i=1

(∫
xn+1

‖fi( · , xn+1)‖nLn(Rn−1) dxn+1

)1/n

= ‖fn+1‖Ln(Rn)

n∏
i=1

‖fi‖Ln(Rn).

Theorem (Gagliardo–Nirenberg–Sobolev inequality). Assume n > p. Then we
have

W 1,p(Rn) ⊆ Lp
∗
(Rn),

where
p∗ =

np

n− p
> p,

and there exists c > 0 depending on n, p such that

‖u‖Lp∗ (Rn) ≤ c‖u‖W 1,p(Rn).

In other words, W 1,p(Rn) is continuously embedded in Lp
∗
(Rn).

Proof. Assume u ∈ C∞c (Rn), and consider p = 1. Since the support is compact,

u(x) =

∫ xi

−∞
uxi(x1, . . . , xi−1, yi, xi+1, . . . , xn) dyi.

So we know that

|u(x)| ≤
∫ ∞
−∞
|Du(x1, . . . , xi−1, yi, xi+1, . . . , xn)| dyi ≡ fi(x̃i).

Thus, applying this once in each direction, we obtain

|u(x)|n/(n−1) ≤
n∏
i=1

fi(x̃i)
1/(n−1).

If we integrate and then use the lemma, we see that

(
‖u‖Ln/(n−1)(Rn)

)n/(n−1) ≤ C
n∏
i=1

‖f1/(n−1)
i ‖Ln−1(Rn−1) = ‖Du‖n/(n−1)

L1(Rn) .

16



3 Function spaces III Analysis of PDEs (Theorems with proof)

So
‖u‖Ln/(n−1)(Rn) ≤ C‖Du‖L1(Rn).

Since C∞c (Rn) is dense in W 1,1(Rn), the result for p = 1 follows.
Now suppose p > 1. We apply the p = 1 case to

v = |u|γ

for some γ > 1, which we choose later. Then we have

Dv = γ sgnu · |u|γ−1Du.

So (∫
Rn
|u|

γn
n−1 dx

)n−1
n

≤ γ
∫
Rn
|u|γ−1|Du| dx

≤ γ
(∫

Rn
|u|(γ−1) p

p−1 dx

) p−1
p
(∫

Rn
|Du|p dx

) 1
p

.

We choose γ such that
γn

n− 1
=

(γ − 1)p

p− 1
.

So we should pick

γ =
p(n− 1)

n− p
> 1.

Then we have
γn

n− 1
=

np

n− p
= p∗.

So (∫
Rn
|u|p

∗
dx

)n−1
n

≤ p(n− 1)

n− p

(∫
Rn
|u|p

∗
dx

) p−1
p

‖Du‖Lp(Rn).

So (∫
Rn
|u|p

∗
dx

)1/p∗

≤ p(n− 1)

n− p
‖Du‖Lp(Rn).

This argument is valid for u ∈ C∞c (Rn), and by approximation, we can extend
to W 1,p(Rn).

Corollary. Suppose U ⊆ Rn is open and bounded with C1-boundary, and
1 ≤ p < n. Then if p∗ = np

n−p , we have

W 1,p(U) ⊆ Lp
∗
(U),

and there exists C = C(U, p, n) such that

‖u‖Lp∗ (U) ≤ C‖u‖W 1,p(U).

Proof. By the extension theorem, we can find ū ∈W 1,p(Rn) with ū = u almost
everywhere on U and

‖ū‖W 1,p(Rn) ≤ C‖u‖W 1,p(U).

Then we have

‖u‖Lp∗ (U) ≤ ‖ū‖Lp∗ (Rn) ≤ c‖ū‖W 1,p(Rn) ≤ C̃‖u‖W 1,p(U).

17
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Corollary. Suppose U is open and bounded, and suppose u ∈ W 1,p
0 (U). For

some 1 ≤ p < n, then we have the estimates

‖u‖Lq(U) ≤ C‖Du‖Lp(U)

for any q ∈ [1, p∗]. In particular,

‖u‖Lp(U) ≤ C‖Du‖Lp(U).

Proof. Since u ∈W 1,p
0 (U), there exists u0 ∈ C∞c (U) converging to u in W 1,p(U).

Extending um to vanish on U c, we have

um ∈ C∞c (Rn).

Applying Gagliardo–Nirenberg–Sobolev, we find that

‖um‖Lp∗ (Rn) ≤ C‖Dum‖Lp(Rn).

So we know that
‖um‖Lp∗ (U) ≤ C‖Dum‖Lp(U).

Sending m→∞, we obtain

‖u‖Lp∗ (U) ≤ C‖Du‖Lp(U).

Since U is bounded, by Hölder, we have(∫
U

|u|q dx

)1/q

≤
(∫

U

1 dx

)1/rq (∫
U

|u|qs ds

)1/sq

≤ C‖u‖Lp∗ (U)

provided q ≤ p∗, where we choose s such that qs = p∗, and r such that
1
r + 1

s = 1.

Theorem (Morrey’s inequality). Suppose n < p < ∞. Then there exists a
constant C depending only on p and n such that

‖u‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn)

for all u ∈ C∞c (Rn) where C = C(p, n) and γ = 1− n
p < 1.

Proof. We first prove the Hölder part of the estimate.
Let Q be an open cube of side length r > 0 and containing 0. Define

ū =
1

|Q|

∫
Q

u(x) dx.

Then

|ū− u(0)| =
∣∣∣∣ 1

|Q|

∫
Q

[u(x)− u(0)] dx

∣∣∣∣
≤ 1

|Q|

∫
Q

|u(x)− u(0)| dx.

18
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Note that

u(x)− u(0) =

∫ 1

0

d

dt
u(tx) dt =

∑
i

∫ 1

0

xi
∂u

∂xi
(tx) dt.

So

|u(x)− u(0)| ≤ r
∫ 1

0

∑
i

∣∣∣∣ ∂u∂xi (tx)

∣∣∣∣ dt.

So we have

|ū− u(0)| ≤ r

|Q|

∫
Q

∫ 1

0

∑
i

∣∣∣∣ ∂u∂xi (tx)

∣∣∣∣ dt dx

=
r

|Q|

∫ 1

0

t−n

(∫
tQ

∑
i

∣∣∣∣ ∂u∂xi (y)

∣∣∣∣ dy

)
dt

≤ r

|Q|

∫ 1

0

t−n

(
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(tQ)

|tQ|1/p
′

)
dt.

where 1
p + 1

p′ = 1.

Using that |Q| = rn, we obtain

|ū− u(0)| ≤ cr1−n+ n
p′ ‖Du‖Lp(Rn)

∫ 1

0

t
−n+ n

p′ dt

≤ c

1− n/p
r1−n/p‖Du‖Lp(Rn).

Note that the right hand side is decreasing in r. So when we take r to be very
small, we see that u(0) is close to the average value of u around 0.

Indeed, suppose x, y ∈ Rn with |x− y| = r
2 . Pick a box containing x and y

of side length r. Applying the above result, shifted so that x, y play the role of
0, we can estimate

|u(x)− u(y)| ≤ |u(x)− ū|+ |u(y)− ū| ≤ C̃r1−n/p‖Du‖Lp(Rn).

Since r < ‖x− y‖, it follows that

|u(x)− u(y)|
|x− y|1−n/p

≤ C · 21−n/p‖Du‖Lp(Rn).

So we conclude that [u]C0,γ(Rn) ≤ C‖Du‖Lp(Rn).
Finally, to see that u is bounded, any x ∈ Rn belongs to some cube Q of side

length 1. So we have

|u(x)| ≤ |u(x)− ū+ ū| ≤ |ū|+ C‖Du‖Lp(Rn).

But also

|ū| ≤
∫
Q

|u(x)| dx ≤ ‖u‖Lp(Rn)‖1‖Lp(Q) = ‖u‖Lp(Rn).

So we are done.

Corollary. Suppose u ∈ W 1,p(U) for U open, bounded with C1 boundary.
Then there exists u∗ ∈ C0,γ(U) such that u = u∗ almost everywhere and
‖u∗‖C0,γ(U) ≤ C‖u‖W 1,p(U).
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4 Elliptic boundary value problems

4.1 Existence of weak solutions

Theorem (Lax–Milgram theorem). Let H be a real Hilbert space with inner
product ( · , · ). Suppose B : H ×H → R is a bilinear mapping such that there
exists constants α, β > 0 so that

– |B[u, v]| ≤ α‖u‖‖v‖ for all u, v ∈ H (boundedness)

– β‖u‖2 ≤ B[u, u] (coercivity)

Then if f : H → R is a bounded linear map, then there exists a unique u ∈ H
such that

B[u, v] = 〈f, v〉
for all v ∈ H.

Proof. By the Riesz representation theorem, we may assume that there is some
w such that

〈f, v〉 = (u, v).

For each fixed u ∈ H, the map

v 7→ B[u, v]

is a bounded linear functional on H. So by the Riesz representation theorem,
we can find some Au such that

B[u, v] = (Au, v).

It then suffices to show that A is invertible, for then we can take u = A−1w.

– Since B is bilinear, it is immediate that A : H → H is linear.

– A is bounded, since we have

‖Au‖2 = (Au,Au) = B[u,Au] ≤ α‖u‖‖Au‖.

– A is injective and has closed image. Indeed, by coercivity, we know

β‖u‖2 ≤ B[u, u] = (Au, u) ≤ ‖Au‖‖u‖.

Dividing by ‖u‖, we see that A is bounded below, hence is injective and
has closed image (since H is complete).

(Indeed, injectivity is clear, and if Aum → v for some v, then ‖um− un‖ ≤
1
β ‖Aum − Aun‖ → 0 as m,n → ∞. So (un) is Cauchy, and hence has a

limit u. Then by continuity, Au = v, and in particular, v ∈ imA)

– Since imA is closed, we know

H = imA⊕ imA⊥.

Now let w ∈ imA⊥. Then we can estimate

β‖w‖2 ≤ B[w,w] = (Aw,w) = 0.

So w = 0. Thus, in fact imA⊥ = {0}, and so A is surjective.
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Theorem (Energy estimates for B). Suppose aij = aji, bi, c ∈ L∞(U), and
there exists θ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2

for almost every x ∈ U and ξ ∈ Rn. Then if B is defined by

B[u, v] =

∫
U

∑
ij

vxia
ijuxj +

∑
i

biuxiv + cuv

 dx,

then there exists α, β > 0 and γ ≥ 0 such that

(i) |B[u, v]| ≤ α‖u‖H1(U)‖v‖H1(U) for all u, v ∈ H1
0 (U)

(ii) β‖u‖2H1(U) ≤ B[u, u] + γ‖u‖2L2(U).

Moreover, if bi ≡ 0 and c ≥ 0, then we can take γ.

Proof.

(i) We estimate

|B[u, v]| ≤
∑
i,j

‖aij‖L∞(U)

∫
U

|Du||Dv| dx

+
∑
i

‖b‖C∞(U)

∫
U

|Du||v| dx

+ ‖c‖L∞(U)

∫
U

|u||v| dx

≤ c1‖Du‖L2(U)‖Dv‖L2(u) + c2‖Du‖L2(U)‖v‖L2(U)

+ c3‖u‖L2(U)‖v‖L2(u)

≤ α‖u‖H1(U)‖v‖H1(U)

for some α.

(ii) We start from uniform ellipticity. This implies

θ

∫
U

|Du|2 dx ≤
∫
U

n∑
i,j=1

aij(x)uxiuxj dx

= B[u, u]−
∫
U

n∑
i=1

biuxiu+ cu2 dx

≤ B[u, u] +

n∑
i=1

‖bi‖L∞(U)

∫
|Du||u| dx

+ ‖c‖L∞(U)

∫
U

|u|2 dx.

Now by Young’s inequality, we have∫
U

|Du||u| dx ≤ ε
∫
U

|Du|2 dx+
1

4ε

∫
U

|u|2 dx
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for any ε > 0. We choose ε small enough so that

ε

n∑
i=1

‖bi‖L∞(U) ≤
θ

2
.

So we have

θ

∫
U

|Du|2 dx ≤ B[u, u] +
θ

2

∫
U

|Du|2 dx+ γ

∫
U

|u|2 dx

for some γ. This implies

θ

2
‖Du‖2L2(U) ≤ B[u, u] + γ‖u‖2L2(U)

We can add θ
2‖u‖

2
L2(U) on both sides to get the desired bound on ‖u‖H1(U).

To get the “moreover” statement, we see that under these conditions, we have

θ

∫
|Du|2 dx ≤ B[u, u].

Then we apply the Poincaré’s inequality , which tells us there is some C > 0
such that for all u ∈ H1

0 (U), we have

‖u‖L2(U) ≤ C‖Du‖L2(U).

Theorem. Let U,L be as above. There is a γ ≥ 0 such that for any µ ≥ γ and
any f ∈ L2(U), there exists a unique weak solution to

Lu+ µu = f on U

u = 0 on ∂U.

Moreover, we have
‖u‖H1(U) ≤ C‖f‖L2(U)

for some C = C(L,U) ≥ 0.
Again, if bi ≡ 0 and c ≥ 0, then we may take γ = 0.

Proof. Take γ from the previous theorem when applied to L. Then if µ ≥ γ and
we set

Bµ[u, v] = B[u, v] + µ(u, v)L2(U),

This is the bilinear form corresponding to the operator

Lµ = L+ µ.

Then by the previous theorem, Bµ satisfies boundedness and coercivity. So if we
fix any f ∈ L2, and think of it as an element of H1

0 (U)∗ by

〈f, v〉 = (f, u)L2(U) =

∫
U

fv dx,

then we can apply Lax–Milgram to find a unique u ∈ H1
0 (U) satisfying Bµ[u, v] =

〈f, v〉 = (f, v)L2(U) for all v ∈ H1
0 (U). This is precisely the condition for u to be

a weak solution.
Finally, the G̊arding inequality tells us

β‖u‖2H1(U) ≤ Bµ[u, u] = (f, u)L2(U) ≤ ‖f‖L2(U)‖u‖L2(U).

So we know that
β‖u‖H1(U) ≤ ‖f‖L2(U).
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4.2 The Fredholm alternative

Theorem (Fredholm alternative). Consider the problem

Lu = f, u|∂U = 0. (∗)

For L a uniformly elliptic operator on an open bounded set U with C1 boundary,
either

(i) For each f ∈ L2(U), there is a unique weak solution u ∈ H1
0 (U) to (∗); or

(ii) There exists a non-zero weak solution u ∈ H1
0 (U) to the homogeneous

problem, i.e. (∗) with f = 0.

Theorem (Fredholm alternative). Let H be a Hilbert space and K : H → H
be a compact operator. Then

(i) ker(I −K) is finite-dimensional.

(ii) im(I −K) is finite-dimensional.

(iii) im(I −K) = ker(I −K†)⊥.

(iv) ker(I −K) = {0} iff im(I −K) = H.

(v) dim ker(I −K) = dim ker(I −K†) = dim coker(I −K).

Lemma. Weak limits are unique.

Lemma. Strong convergence implies weak convergence.

Theorem (Weak compactness). Let H be a separable Hilbert space, and suppose
(um)∞m=1 is a bounded sequence in H with ‖um‖ ≤ K for all m. Then um admits
a subsequence (umj )

∞
j=1 such that umj ⇀ u for some u ∈ H with ‖u‖ ≤ K.

Proof. Let (ei)
∞
i=1 be an orthonormal basis for H. Consider (e1, um). By Cauchy–

Schwarz, we have
|(e1, um)| ≤ ‖e1‖‖em‖ ≤ K.

So by Bolzano–Weierstrass, there exists a subsequence (umj ) such that (e1, umj )
converges.

Doing this iteratively, we can find a subsequence (v`) such that for each i,
there is some ci such that (ei, v`)→ ci as `→∞.

We would expect the weak limit to be
∑
ciei. To prove this, we need to first

show it converges. We have

p∑
j=1

|cj |2 = lim
k→∞

p∑
j=1

|(ej , v`)|2

≤ sup

p∑
j=1

|(ej , v`)|2

≤ sup ‖vk‖2

≤ K2,
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using Bessel’s inequality. So

u =

∞∑
j=1

cjej

converges in H, and ‖u‖ ≤ K. We already have

(ej , v`)→ (ej , u)

for all j. Since ‖v` − u‖ is bounded by 2K, it follows that the set of all w such
that

(w, v`)→ (v, u) (†)

is closed under finite linear combinations and taking limits, hence is all of H.
To see that it is closed under limits, suppose wk → w, and wk satisfy (†). Then

|(w, v`)−(w, u)| ≤ |(w−wk, v`−u)|+|(wk, v`−u)| ≤ 2K‖w−wk‖+|(wk, v`−u)|

So we can first find k large enough such that the first term is small, then pick `
such that the second is small.

Lemma (Poincaré revisited). Suppose u ∈ H1(Rn). Let Q = [ξ1, ξ1 +L]× · · ·×
[ξn, ξn + L] be a cube of length L. Then we have

‖u‖2L2(Q) ≤
1

|Q|

(∫
Q

u(x) dx

)2

+
nL2

2
‖Du‖2L2(Q).

Proof. By approximation, we can assume u ∈ C∞(Q̄). For x, y ∈ Q, we write

u(x)− u(y) =

∫ x1

y1

d

dt
u(t, x1, . . . , xn) dt

+

∫ x2

y2

d

dt
u(y1, t, x3, . . . , xn) dt

+ · · ·

+

∫ xn

yn

d

dt
u(y1, . . . , yn−1, t) dt.

Squaring, and using 2ab ≤ a2 + b2, we have

u(x)2 + u(y)2 − 2u(x)u(y) ≤ n
(∫ x1

y1

d

dt
u(t, x1, . . . , xn) dt

)2

+ · · ·

+ n

(∫ xn

yn

d

dt
u(y1, . . . , yn−1, t) dt

)2

.

Now integrate over x and y. On the left, we get∫∫
Q×Q

dx dy (u(x)2 + u(y)2 − 2u(x)u(y)) = 2|Q|‖u‖2L2(Q) − 2

(∫
Q

u(x) dx

)2

.
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On the right we have

I1 =

(∫ x1

y1

d

dt
u(t, x2, . . . , xn) dt

)2

≤
∫ x1

y1

dt

∫ x1

y1

(
d

dt
u(t, x2, . . . , xn)

)2

dt (Cauchy–Schwarz)

≤ L
∫ ξ1+L

ξ1

(
d

dt
u(t, x2, . . . , xn)

)2

dt.

Integrating over all x, y ∈ Q, we get∫∫
Q×Q

dx dy I1 ≤ L2|Q|‖D1u‖2L2(Q).

Similarly estimating the terms on the right-hand side, we find that

2|Q|‖u‖L2(Q) − 2

(∫
Q

u(x) dx

)2

≤ n|Q|
n∑
i=1

‖Diu‖2L2(Q) = n|Q|L2‖Du‖2L2(Q).

Theorem (Rellich–Kondrachov). Let U ⊆ Rn be open, bounded with C1

boundary. Then if (um)∞m=1 is a sequence in H1(U) with um ⇀ u, then um → u
in L2.

In particular, by weak compactness any sequence in H1(U) has a subsequence
that is convergent in L2(U).

Proof. By the extension theorem, we may assume U = Q for some large cube Q
with U b Q.

We subdivide Q into N many cubes of side length δ, such that the cubes
only intersect at their faces. Call these {Qa}Na=1.

We apply Poincaré separately to each of these to obtain

‖uj − u‖2L2(Q) =

N∑
a=1

‖uj − u‖2L2(Qa)

≤
N∑
a=1

[
1

|Qa|

(∫
Qa

(ui − u) dx

)2

+
nδ2

2
‖Dui −Du‖2L2(Qa)

]

=

N∑
a=1

1

|Qa|

(∫
Qa

(ui − u) dx

)2

+
nδ2

2
‖Dui −Du‖2L2(Q).

Now since ‖Dui −Du‖2L2(Q) is fixed, for δ small enough, the second term is < ε
2 .

Then since ui ⇀ u, we in particular have∫
Q1

(ui − u) dx→ 0 as i→∞

for all a, since this is just the inner product with the constant function 1. So for
i large enough, the first term is also < ε

2 .
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Corollary. Suppose K : L2(U)→ H1(U) is a bounded linear operator. Then
the composition

L2(U) H1(U) L2(U)K

is compact.

Proof. Indeed, if um ∈ L2(U) is bounded, then Kum is also bounded. So by
Rellich–Kondrachov, there exists a subsequence umj → u in L2(U).

Theorem (Fredholm alternative for elliptic BVP). Let L be a uniformly elliptic
operator on an open bounded set U with C1 boundary. Consider the problem

Lu = f, u|∂U = 0. (∗)

Then exactly one of the following are true:

(i) For each f ∈ L2(U), there is a unique weak solution u ∈ H1
0 (U) to (∗)

(ii) There exists a non-zero weak solution u ∈ H1
0 (U) to the homogeneous

problem, i.e. (∗) with f = 0.

If this holds, then the dimension of N = kerL ⊆ H1
0 (U) is equal to the

dimension of N∗ = kerL† ⊆ H1
0 (U).

Finally, (∗) has a solution if and only if (f, v)L2(U) = 0 for all v ∈ N∗

Proof. We know that there exists γ > 0 such that for any f ∈ L2(U), there is a
unique weak solution u ∈ H1

0 (U) to

Lγu = Lu+ γu = f, u|∂U = 0.

Moreover, we have the bound ‖u‖H1(U) ≤ C‖f‖L2(U) (which gives uniqueness).
Thus, we can set L−1

γ f to be this u, and then L−1
γ : L2(U) → H1

0 (U) is a
bounded linear map. Composing with the inclusion L2(U), we get a compact
endomorphism of L2(U).

Now suppose u ∈ H1
0 is a weak solution to (∗). Then

B[u, v] = (f, v)L2(U) for all v ∈ H1
0 (U)

is true if and only if

Bγ [u, v] ≡ B[u, v] + γ(u, v) = (f + γu, v) for all v ∈ H1
0 (U).

Hence, u is a weak solution of (∗) if and only if

u = L−1
γ (f + γu) = γL−1

γ u+ L−1
γ f.

In other words, u solves (∗) iff

u−Ku = h,

for
K = γL−1

γ , h = L−1
γ f.

Since we know that K : L2(U)→ L2(U) is compact, by the Fredholm alternative
for compact operators, either
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(i) u−Ku = h admits a solution u ∈ L2(U) for all h ∈ L2(U); or

(ii) There exists a non-zero u ∈ L2(U) such that u − Ku = 0. Moreover,
im(I −K) = ker(I −K†)⊥ and dim ker(I −K) = dim im(I −K)⊥.

There is a bit of bookkeeping to show that this corresponds to the two alternatives
in the theorem.

(i) We need to show that u ∈ H1
0 (U). But this is trivial, since we have

u = γL−1
γ u+ L−1

γ f,

and we know that L−1
γ maps L2(U) into H1

0 (U).

(ii) As above, we know that the non-zero solution u. There are two things to
show. First, we have to show that v −K†v = 0 iff v is a weak solution to

L†v = 0, v|∂U = 0.

Next, we need to show that h = L−1
γ f ∈ (N∗)⊥ iff f ∈ (N∗)⊥.

For the first part, we want to show that v ∈ ker(I − K†) iff B†[v, u] =
B[u, v] = 0 for all u ∈ H1

0 (U).

We are good at evaluating B[u, v] when u is of the form L−1
γ w, by definition

of a weak solution. Fortunately, imL−1
γ contains C∞c (U), since L−1

γ Lγφ =
φ for all φ ∈ C∞c (U). In particular, imL−1

γ is dense in H1
0 (U). So it suffices

to show that v ∈ ker(I −K†) iff B[L−1
γ w, v] = 0 for w ∈ L2(U). This is

immediate from the computation

B[L−1
γ w, v] = Bγ [L−1

γ w, v]−γ(L−1
γ w, v) = (w, v)−(Kw, v) = (w, v−K†v).

The second is also easy — if v ∈ N∗ = ker(I −K†), then

(L−1
γ f, v) =

1

γ
(Kf, v) =

1

γ
(f,K†v) =

1

γ
(f, v).

4.3 The spectrum of elliptic operators

Theorem (Spectral theorem of compact operators). Let dimH = ∞, and
K : H → H a compact operator. Then

– σ(K) = σp(K) ∪ {0}. Note that 0 may or may not be in σp(K).

– σ(K) \ {0} is either finite or is a sequence tending to 0.

– If λ ∈ σp(K), then ker(K − λI) is finite-dimensional.

– If K is self-adjoint, i.e. K = K† and H is separable, then there exists a
countable orthonormal basis of eigenvectors.

Theorem (Spectrum of L).

(i) There exists a countable set Σ ⊆ R such that there is a non-trivial solution
to Lu = λu iff λ ∈ Σ.
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(ii) If Σ is infinite, then Σ = {λk}∞k=1, the values of an increasing sequence
with λk →∞.

(iii) To each λ ∈ Σ there is an associated finite-dimensional space

E(λ) = {u ∈ H1
0 (U) | u is a weak solution of (∗) with f = 0}.

We say λ ∈ Σ is an eigenvalue and u ∈ E(λ) is the associated eigenfunction.

Proof. Apply the spectral theorem to compact operator L−1
γ : L2(U)→ L2(U),

and observe that

L−1
γ u = λu⇐⇒ u = λ(L+ γ)u⇐⇒ Lu =

1− λγ
λ

u.

Note that L−1
γ does not have a zero eigenvalue.

Theorem. Suppose L is a formally self-adjoint, positive, uniformly elliptic
operator on U , an open bounded set with C1 boundary. Then we can represent
the eigenvalues of L as

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ,

where each eigenvalue appears according to its multiplicity (dim E(λ)), and there
exists an orthonormal basis {wk}∞k=1 of L2(U) with wk ∈ H1

0 (U) an eigenfunction
of L with eigenvalue λk.

Proof. Note that positivity implies c ≥ 0. So the inverse L−1 : L2(U)→ L2(U)
exists and is a compact operator. We are done if we can show that L−1 is
self-adjoint. This is trivial, since for any f, g, we have

(L−1f, g)L2(U) = B[v, u] = B[u, v] = (L−1g, f)L2(U).

4.4 Elliptic regularity

Lemma. If u ∈ L2(U), then u ∈ H1(V ) iff

‖∆hu‖L2(V ) ≤ C

for some C and all 0 < |h| < 1
2dist(V, ∂U). In this case, we have

1

C̃
‖Du‖L2(V ) ≤ ‖∆hu‖L2(V ) ≤ C̃‖Du‖L2(V ).

Proof. See example sheet.

Lemma. If w, v and compactly supported in U , then∫
U

w∆−hk v dx =

∫
U

(∆h
kw)v dx

∆h
k(wv) = (τhkw)∆h

kv + (∆h
kw)v,

where τhkw(x) = w(x+ hek).
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Theorem (Interior regularity). Suppose L is uniformly elliptic on an open set
U ⊆ Rn, and assume aij ∈ C1(U), bi, c ∈ L∞(U) and f ∈ L2(U). Suppose
further that u ∈ H1(U) is such that

B[u, v] = (f, v)L2(U) (†)

for all v ∈ H1
0 (U). Then u ∈ H2

loc(U), and for each V b U , we have

‖u‖H2(V ) ≤ C(‖f‖L2(U) + ‖u‖L2(U)),

with C depending on L, V, U , but not f or u.

Proof. We first show that we may in fact assume bi = c = 0. Indeed, if we know
the theorem for such L, then given a general L, we write

L′u = −
∑

(aijuxj )xi , Ru =
∑

biuxi + cu.

Then if u is a weak solution to Lu = f , then it is also a weak solution to
L′u = f − Ru. Noting that Ru ∈ L2(U), this tells us u ∈ H2

loc(U). Moreover,
on V b U ,

– We can control ‖u‖H2(V ) by ‖f −Ru‖L2(V ) and ‖u‖L2(V ) (by theorem).

– We can control ‖f −Ru‖L2(V ) by ‖f‖L2(V ), ‖u‖L2(V ) and ‖Du‖L2(V ).

– By G̊arding’s inequality, we can control ‖Du‖L2(V ) by ‖u‖L2(V ) and
B[u, u] = (f, u)L2(V ).

– By Hölder, we can control (f, u)L2(V ) by ‖f‖L2(V ) and ‖u‖L2(V ).

So it suffices to consider the case where L only has second derivatives. Fix
V b U and choose W such that V bW b U . Take ξ ∈ C∞c (W ) such that ζ ≡ 1
on V .

Recall that our example of Laplace’s equation, we considered the integral∫
f2 dx and did some integration by parts. Essentially, what we did was to

apply the definition of a weak solution to ∆u. There we was lucky, and we could
obtain the result in one go. In general, we should consider the second derivatives
one by one.

For k ∈ {1, . . . n}, we consider the function

v = −∆−hk (ζ2∆h
ku).

As we shall see, this is the correct way to express uxkxk in terms of difference
quotients (the −h in the first ∆−hk comes from the fact that we want to integrate
by parts). We shall put this into the definition of a weak solution to say
B[u, v] = (f, v). The plan is to isolate a ‖∆h

kDu‖2 term on the left and then
bound it.

We first compute

B[u, v] = −
∑
i,j

∫
U

aijuxi∆
−h
k (ζ2∆h

ku)xj dx

=
∑
i,j

∫
U

∆h
k(aijuxi)(ζ

2∆h
ku)xj dx

=
∑
i,j

∫
U

(τhk a
ij∆h

kuxi + (∆h
ka
ij)uxi)(ζ

2∆h
kuxj + 2ζζxj∆

h
ku) dx

≡ A1 +A2,
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where

A1 =
∑
i,j

∫
U

ξ2(τhk a
ij)(∆h

kuxi)(∆
h
kuxj ) dx

A2 =
∑
i,j

∫
U

[
(∆h

ka
ij)uxiζ

2∆h
kuxj + 2ζζxj∆

h
ku(τhk a

ij∆h
kuxi + (∆h

ka
ij)uxi)

]
dx.

By uniform ellipticity, we can bound

A1 ≥ θ
∫
U

ξ2|∆h
kDu|2 dx.

This is what we want to be small.
Note that A2 looks scary, but every term either only involves “first derivatives”

of u, or a product of a second derivative of u with a first derivative. Thus, applying
Young’s inequality, we can bound |A2| by a linear combination of |∆h

kDu|2 and
|Du|2, and we can make the coefficient of |∆h

kDu|2 as small as possible.
In detail, since aij ∈ C1(U) and ζ is supported in W , we can uniformly

bound aij ,∆h
ka
ij , ζxj , and we have

|A2| ≤ C
∫
W

[
ζ|∆h

kDu||Du|+ ζ|Du||∆h
ku|+ ζ|∆h

kDu||∆h
ku|
]

dx.

Now recall that ‖∆h
ku‖ is bounded by ‖Du‖. So applying Young’s inequality, we

may bound (for a different C)

|A2| ≤ ε
∫
W

ζ2|∆h
kDu|2 + C

∫
W

|Du|2 dx.

Thus, taking ε = θ
2 , it follows that

(f, v) = B[u, v] ≥ θ

2

∫
U

ζ2|∆h
kDu|2 dx− C

∫
W

|Du|2 dx.

This is promising.
It now suffices to bound (f, v) from above. By Young’s inequality,

|(f, v)| ≤
∫
|f ||∆−hk (ζ2∆h

ku)| dx

≤ C
∫
|f ||D(ζ2∆h

ku)| dx

≤ ε
∫
|D(ζ2∆h

ku)|2 dx+ C

∫
|f |2 dx

≤ ε
∫
|ζ2∆h

kDu|2 dx+ C(‖f‖2L2(U) + ‖Du‖2L2(U))

Setting ε = θ
4 , we get∫

U

ζ2|∆h
kDu|2 dx ≤ C(‖f‖2L2(W ) + ‖Du‖2L2(W )),

and so, in particular, we get a uniform bound on ‖∆h
kDu‖L2(V ). Now as before,

we can use G̊arding to get rid of the ‖Du‖L2(W ) dependence on the right.
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Theorem (Elliptic regularity). If aij , bi and c are Cm+1(U) for some m ∈ N,
and f ∈ Hm(U), then u ∈ Hm+2

loc (U) and for V bW b U , we can estimate

‖u‖Hm+2(V ) ≤ C(‖f‖Hm(W ) + ‖u‖L2(W )).

In particular, if m is large enough, then u ∈ C2
loc(U), and if all aij , bi, c, f are

smooth, then u is also smooth.

Theorem (Boundary H2 regularity). Assume aij ∈ C1(Ū), b1, c ∈ L∞(U), and
f ∈ L2(U). Suppose u ∈ H1

0 (U) is a weak solution of Lu = f, u|∂U = 0. Finally,
we assume that ∂U is C2. Then

‖u‖H2(U) ≤ C(‖f‖L2(U) + ‖u‖L2(U)).

If u is the unique weak solution, we can drop the ‖u‖L2(U) from the right hand
side.

Proof. Note that we already know that u is locally in H2
loc(U). So we only have

to show that the second-derivative is well-behaved near the boundary.
By a partition of unity and change of coordinates, we may assume we are in

the case
U = B1(0) ∩ {xn > 0}.

Let V = B1/2(0) ∩ {xn > 0}. Choose a ζ ∈ C∞c (B1(0)) with ζ ≡ 1 on V and
0 ≤ ζ ≤ 1.

Most of the proof in the previous proof goes through, as long as we restrict
to

v = −∆−hk (ζ2∆h
ku)

with k 6= n, since all the translations keep us within U , and hence are well-defined.
Thus, we control all second derivatives of the form DkDiu, where k ∈

{1, . . . , n − 1} and i ∈ {1, . . . , n}. The only remaining second-derivative to
control is DnDnu. To understand this, we go back to the PDE and look at the
PDE itself. Recall that we know it holds pointwise almost everywhere, so

n∑
i,j=1

(aijuxi)xj +

n∑
i=1

biuxi + cu = f.

So we can write annuxnuxn = F almost everywhere, where F depends on a, b, c, f
and all (up to) second derivatives of u that are not uxnxn . Thus, F is controlled
in L2. But uniform ellipticity implies ann is bounded away from 0. So we are
done.
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5 Hyperbolic equations

Theorem (Uniqueness of weak solution). A weak solution, if exists, is unique.

Proof. It suffices to consider the case f = ψ = ψ′ = 0, and show any solution
must be zero. Let

v(x, t) =

∫ T

t

e−λsu(x, s) ds,

where λ is a real number we will pick later. The point of introducing this e−λt

is that in general, we do not expect conservation of energy. There could be some
exponential growth in the energy, so want to suppress this.

Then this function belongs to H1(UT ), v = 0 on ΣT ∪ ∂∗UT , and

vt = −e−λtu.

Using the fact that u is a weak solution, we have∫
UT

(
utue

−λt −
∑

vtxjvxie
λt +

∑
i

biuxiv + (c− 1)uv − vvteλt
)

dx dt = 0.

Integrating by parts, we can write this as A = B, where

A =

∫
UT

(
d

dt

(
1

2
u2e−λt −

∑
aijvxivxje

λt − 1

2
v2eλt

)
+
λ

2

(
u2e−λt +

∑
aijvxivxje

λt + v2eλt
))

dx dt

B = −
∫
UT

(
eλt
∑

aijvxivxj −
∑

bixiuv −
∑

bivxiu+ (c− 1)uv
)

dx dt.

Here A is the nice bit, which we can control, and B is the junk bit, which we
will show that we can absorb elsewhere.

Integrating the time derivative in A, using v = 0 on ΣT and u = 0 on Σ0, we
have

A = eλT
∫

ΣT

1

2
u2 dx+

∫
Σ0

∑(
aijvxivxj + v2

)
dx

λ

2

∫
UT

(
u2e−λt +

∑
aijvxivxje

λt + v2eλt
)

dx dt.

Using the uniform ellipticity condition (and the observation that the first line is
always non-negative), we can bound

A ≥ λ

2

∫
UT

(
u2e−λt + θ|Dv|2eλt + v2eλt

)
dx dt.

Doing some integration by parts, we can also bound

B ≤ c

2

∫
UT

(
u2e−λt + θ|Dv|2eλt + v2eλt

)
dx dt,

where the constant c does not depend on λ. Taking this together, we have

λ− c
2

∫
UT

(
u2e−λt + θ|Dv|2eλt + v2eλt

)
dx dt ≤ 0.
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Taking λ > c, this tells us the integral must vanish. In particular, the integral of
u2eλt = 0. So u = 0.

Theorem (Existence of weak solution). Given ψ ∈ H1
0 (U) and ψ′ ∈ L2(U),

f ∈ L2(UT ), there exists a (unique) weak solution with

‖u‖H1(UT ) ≤ C(‖ψ‖H1(U) + ‖ψ′‖L2(U) + ‖f‖L2(UT )). (†)

Proof. We use Galerkin’s method . The way we write our equations suggests we
should think of our hyperbolic PDE as a second-order ODE taking values in the
infinite-dimensional space H1

0 (U). To apply the ODE theorems we know, we
project our equation onto a finite-dimensional subspace, and then take the limit.

First note that by density arguments, we may assume ψ,ψ′ ∈ C∞c (U) and
f ∈ C∞c (UT ), as long as we prove the estimate (†). So let us do so.

Let {ϕk}∞k=1 be an orthonormal basis for L2(U), with ϕk ∈ H1
0 (U). For

example, we can take ϕk to be eigenfunctions of −∆ with Dirichlet boundary
conditions.

We shall consider “solutions” of the form

uN (x, t) =

N∑
k=1

uk(t)ϕk(x).

We want this to be a solution after projecting to the subspace spanned by
ϕ1, . . . , ϕN . Thus, we want (utt + Lu − f, ϕk)L2(Σt) = 0 for all k = 1, . . . , N .
After some integration by parts, we see that we want(
üN , ϕk

)
L2(U)

+

∫
Σt

(∑
aijuNxi(ϕk)xj + biuNxiϕk + cuNϕk

)
dx = (f, ϕk)L2(U).

(∗)
We also require

uk(0) = (ψ,ϕk)L2(U)

u̇k(0) = (ψ′, ϕk)L2(U).

Notice that if we have a genuine solution u that can be written as a finite sum
of the ϕk(x), then these must be satisfied.

This is a system of ODEs for the functions uk(t), and the RHS is uniformly
C1 in t and linear in the uk’s. By Picard–Lindelöf, a solution exists for t ∈ [0, T ].

So for each N , we have an approximate solution that solves the equation
when projected onto 〈ϕ1, . . . , ϕN 〉. What we need to do is to extract from this
solution a genuine weak solution. To do so, we need some estimates to show
that the functions uN converge.

We multiply (∗) by e−λtu̇k(t), sum over k = 1, . . . , N , and integrate from 0
to τ ∈ (0, T ), and end up with∫ τ

0

dt

∫
U

dx
(
üN u̇Ne−λt +

∑
aijuNxi u̇

N
xj +

∑
biuNxi u̇

N + cuN u̇N
)
e−λt

=

∫ τ

0

dt

∫
U

du(fu̇Ne
−λt).
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As before, we can rearrange this to get A = B, where

A =

∫
Uτ

dt dx

(
d

dt

(
1

2
(u̇N )2 +

1

2

∑
aijuNxiu

N
xj +

1

2
(uN )2e−λt

)
+
λ

2

(
(u̇N )2 +

∑
aijuNxiu

N
xj + (uN )2

)
e−λt

)
and

B =

∫
Uτ

dt dx

(
1

2

∑
ȧijuNxiu

N
xj −

∑
biuNxi u̇

N + (1− c)uN u̇N + fu̇N
)
e−λt.

Integrating in time, and estimating as before, for λ sufficiently large, we get

1

2

∫
Στ

(
(u̇N )2 + |DuN |2

)
dx+

∫
Uτ

(
(u̇N )2 + |DuN |2 + (uN )2

)
dx dt

≤ C(‖ψ‖2H1(U) + ‖ψ′‖2L2(U) + ‖f‖2UT ).

This, in particular, tells us uN is bounded in H1(UT ),

Since uN (0) =
∑N
n=1(ψ,ϕk)ϕk, we know this tends to ψ in H1(U). So for

N large enough, we have

‖uN‖H1(Σ0) ≤ 2‖ψ‖H1(U).

Similarly, ‖u̇N‖L2(Σ0) ≤ 2‖ψ′‖L2(U).
Thus, we can extract a convergent subsequence uNm ⇀ u in H1(U) for some

u ∈ H1(U) such that

‖u‖H1(UT ) ≤ C(‖ψ‖H1(U) + ‖ψ‖L2(U) + ‖f‖L2(UT )).

For convenience, we may relabel the sequence so that in fact uN ⇀ u.
To check that u is a solution, suppose v =

∑M
k=1 vk(t)ϕk for some vk ∈

H1((0, T )) with vk(T ) = 0. By definition of uN , we have

(üN , v)L2(U) +

∫
Σt

∑
i,j

aijuNxivxj +
∑
i

biuNxiv + cuv dx = (f, v)L2(U).

Integrating
∫ T

0
dt using v(T ) = 0, we have∫

UT

(
−uNt vt +

∑
xi
Nvxj +

∑
biuNxiv + cuv

)
dx dt−

∫
Σ0

uNt v dx

=

∫
UT

fv dx dt.

Now note that if N > M , then
∫

Σ0
uNt v dx =

∫
Σ0
ψ′v dx. Now, passing to the

weak limit, we have∫
UT

(
−utvt +

∑
aijuxivxj +

∑
biuxiv + cuv

)
dx dt−

∫
Σ0

ψ′v dx

=

∫
UT

fv dx dt.
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So ut satisfies the identity required for u to be a weak solution.
Now for k = 1, . . . ,M , the map w ∈ H1(UT ) 7→

∫
Σ0
wϕk dx is a bounded

linear map, since the trace is bounded in L2. So we conclude that∫
Σ0

uϕk dx = lim
N→∞

∫
Σ0

uNϕk dx = (ψ,ϕk)L2(H).

Since this is true for all ϕk, it follows that u|Σ0
= ψ, and v of the form considered

are dense in H1(UT ) with v = 0 on ∂∗UT ∪ ΣT . So we are done.

Theorem. If aij , bi, c ∈ C2(UT ) and ∂U ∈ C2, then for ψ ∈ H2(U) and
ψ′ ∈ H1

0 (U), and f, ft ∈ L2(UT ), we have

u ∈ H2(UT ) ∩ L∞((0, T );H2(U))

ut ∈ L∞((0, T ), H1
0 (U))

utt ∈ L∞((0, T );L2(U))

Proof. We return to the Galerkin approximation. Now by assumption, we have
a linear system with C2 coefficients. So uk ∈ C3((0, T )). Differentiating with
respect to t (assuming as we can f, ft ∈ C0(ŪT )), we have

(∂3
t u

N , ϕk)L2(U) +

∫
Σt

(∑
aij u̇Nxi(ϕk)xj +

∑
biu̇Nxiϕk + cu̇Nϕk

)
dx

= (ḟ , ϕk)L2(U) −
∫

Σt

(∑
ȧijuNxi(ϕk)xj +

∑
ḃiuNxiϕk + ċuϕk

)
dx.

Multiplying by üke
−λt, summing k = 1, . . . , N , integrating

∫ τ
0

dt, and recalling
we already control u ∈ H1(UT ), we get

sup
t∈(0,T )

(‖uNt ‖H1(Σt) + ‖uNtt ‖L2(Σt) + ‖uNt ‖H2(UT ))

≤ C
(
‖uNt ‖H1(Σ0) + ‖uNtt ‖L2(Σ0) + ‖ψ‖H1(Σ0)

+ ‖ψ′‖L2(Σ0) + ‖f‖L2(UT ) + ‖ft‖L2(UT )

)
.

We know

uNt |t=0 =

N∑
k=1

(ψ′, ϕk)L2(U)ϕk.

Since ϕk are a basis for H1, we have

‖uNt ‖H1(Σ0) ≤ ‖ψ′‖H1(Σ0).

To control uNtt , let us assume for convenience that in fact ϕk are the eigenfunctions
−∆. From the fact that

(üN , ϕk)L2(U)+

∫
Σt

∑
i,j

aijuNxi(ϕk)xj +
∑
i

biuNxiϕk+cuNϕk dx dt = (f, ϕk)L2(U),

integrate the first term in the integral by parts, multiply by ün, and sum to get

‖uNtt ‖Σ0
≤ C(‖uN‖H2(Σ0) + ‖f‖L2(UT ) + ‖ft‖L2(UT )).
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We need to control ‖uN‖H2(Σ0) by ‖ψ‖H2(Σ0). Then, using that ∆ϕk|∂U = 0
and uN is a finite sum of these ϕk’s,

(∆uN ,∆uN )L2(Σ0) = (uN ,∆2uN )L2(Σ0) = (ψ,∆2uN )L2(Σ0) = (∆ψ,∆uN )L2(Σ0).

So
‖uN‖H2(Σ0) ≤ ‖∆uN‖L2(Σ0) ≤ C‖ψ‖2H(U).

Passing to the weak limit, we conclude that

ut ∈ H1(UT )

ut ∈ L∞((0, T ), H1
0 (U))

utt ∈ L∞((0, T ), L2(U)).

Since utt + Lu = f , by an elliptic estimate on (almost) every constant t, we
obtain u ∈ L∞((0, T ), H2(U)).

Theorem. If aij , bi, c ∈ Ck+1(ŪT ) and ∂U is Ck+1, and

∂itu|Σ0 ∈ H1
0 (U) i = 0, . . . , k

∂k+1
t u|Σ0

∈ L2(U)

∂itf ∈ L2((0, T );Hk−i(U)) i = 0, . . . , k

then u ∈ Hk+1(U) and

∂itu ∈ L∞((0, T );Hk+1−i(U))

for i = 0, . . . , k + 1.
In particular, if everything is smooth, then we get a smooth solution.

Theorem. If u is a weak solution of the usual thing, and S′ is spacelike, then
u|D depends only on ψ|S0

, ψ′|S0
and f |D.

Proof. Returning to the definition of a weak solution, we have∫
UT

−utvt+

n∑
i,j=1

aijuxjvxi +

n∑
i=1

biuxi + cuv dx dt−
∫

Σ0

ψ′v dx =

∫
UT

fv dx dt.

By linearity it suffices to show that if u|Σ0
= 0 if ψ|S0

= ψ′|S0
= 0 and f |D = 0.

We take as test function

v(t, x) =

{∫ τ(x)

t
e−λsu(s, x) ds (t, x) ∈ D

0 (t, x) 6∈ D
.

One checks that this is in H1(UT ), and v = 0 on ΣT ∪ ∂∗UT with

vxi = τxie
−λτu(x, τ) +

∫ τ(x)

t

e−λsuxi(x, s) ds

vt = −e−λtu(x, t).
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Plugging these into the definition of a weak solution, we argue as in the previous
uniqueness proof. Then∫

D

d

dt

(
1

2
u2e−λt − 1

2

∑
aijvxivxje

λt − 1

2
v2eλt

)
+
λ

2

(
u2e−λt +

∑
aijvxivxje

λt + v2eλt
)

dx dt

=

∫
D

(
1

2

∑
aijvxivxje

λt −
∑

bivxiv − (c− 1)uv

)
dx dt

Noting that
∫
D

dx dt =
∫
S0

dx
∫ τ(x)

0
dt, we can perform the t integral of the d

dt

term, and we get contribution from S′ which is given by

IS′ =

∫
S0

1

2
u2(τ(x), x)e−λτ(x) − 1

2

∑
i,j

aijτxiτxju
2e−λτ

 dx

We have used v = 0 on S′ and vxi = τxiue
−λτ . Using the definition of a spacelike

surface, we have IS′ > 0. The rest of the argument of the uniqueness of solutions
goes through to conclude that u = 0 on D.
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