
Part III — Advanced Probability

Based on lectures by M. Lis
Notes taken by Dexter Chua

Michaelmas 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

The aim of the course is to introduce students to advanced topics in modern probability
theory. The emphasis is on tools required in the rigorous analysis of stochastic
processes, such as Brownian motion, and in applications where probability theory plays
an important role.

Review of measure and integration: sigma-algebras, measures and filtrations;
integrals and expectation; convergence theorems; product measures, independence and
Fubini’s theorem.
Conditional expectation: Discrete case, Gaussian case, conditional density functions;
existence and uniqueness; basic properties.
Martingales: Martingales and submartingales in discrete time; optional stopping;
Doob’s inequalities, upcrossings, martingale convergence theorems; applications of
martingale techniques.
Stochastic processes in continuous time: Kolmogorov’s criterion, regularization
of paths; martingales in continuous time.
Weak convergence: Definitions and characterizations; convergence in distribution,
tightness, Prokhorov’s theorem; characteristic functions, Lévy’s continuity theorem.
Sums of independent random variables: Strong laws of large numbers; central
limit theorem; Cramér’s theory of large deviations.
Brownian motion: Wiener’s existence theorem, scaling and symmetry properties;
martingales associated with Brownian motion, the strong Markov property, hitting
times; properties of sample paths, recurrence and transience; Brownian motion and the
Dirichlet problem; Donsker’s invariance principle.
Poisson random measures: Construction and properties; integrals.
Lévy processes: Lévy-Khinchin theorem.

Pre-requisites

A basic familiarity with measure theory and the measure-theoretic formulation of

probability theory is very helpful. These foundational topics will be reviewed at the

beginning of the course, but students unfamiliar with them are expected to consult the

literature (for instance, Williams’ book) to strengthen their understanding.
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0 Introduction

In some other places in the world, this course might be known as “Stochastic
Processes”. In addition to doing probability, a new component studied in the
course is time. We are going to study how things change over time.

In the first half of the course, we will focus on discrete time. A familiar
example is the simple random walk — we start at a point on a grid, and at
each time step, we jump to a neighbouring grid point randomly. This gives a
sequence of random variables indexed by discrete time steps, and are related to
each other in interesting ways. In particular, we will consider martingales, which
enjoy some really nice convergence and “stopping ”properties.

In the second half of the course, we will look at continuous time. There
is a fundamental difference between the two, in that there is a nice topology
on the interval. This allows us to say things like we want our trajectories to
be continuous. On the other hand, this can cause some headaches because R
is uncountable. We will spend a lot of time thinking about Brownian motion,
whose discovery is often attributed to Robert Brown. We can think of this as the
limit as we take finer and finer steps in a random walk. It turns out this has a
very rich structure, and will tell us something about Laplace’s equation as well.

Apart from stochastic processes themselves, there are two main objects that
appear in this course. The first is the conditional expectation. Recall that if we
have a random variable X, we can obtain a number E[X], the expectation of
X. We can think of this as integrating out all the randomness of the system,
and just remembering the average. Conditional expectation will be some subtle
modification of this construction, where we don’t actually get a number, but
another random variable. The idea behind this is that we want to integrate out
some of the randomness in our random variable, but keep the remaining.

Another main object is stopping time. For example, if we have a production
line that produces random number of outputs at each point, then we can ask how
much time it takes to produce a fixed number of goods. This is a nice random
time, which we call a stopping time. The niceness follows from the fact that
when the time comes, we know it. An example that is not nice is, for example,
the last day it rains in Cambridge in a particular month, since on that last day,
we don’t necessarily know that it is in fact the last day.

At the end of the course, we will say a little bit about large deviations.
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1 Some measure theory

1.1 Review of measure theory

To make the course as self-contained as possible, we shall begin with some review
of measure theory. On the other hand, if one doesn’t already know measure
theory, they are recommended to learn the measure theory properly before
starting this course.

Definition (σ-algebra). Let E be a set. A subset E of the power set P(E) is
called a σ-algebra (or σ-field) if

(i) ∅ ∈ E ;

(ii) If A ∈ E , then AC = E \A ∈ E ;

(iii) If A1, A2, . . . ∈ E , then
⋃∞
n=1An ∈ E .

Definition (Measurable space). A measurable space is a set with a σ-algebra.

Definition (Borel σ-algebra). Let E be a topological space with topology T .
Then the Borel σ-algebra B(E) on E is the σ-algebra generated by T , i.e. the
smallest σ-algebra containing T .

We are often going to look at B(R), and we will just write B for it.

Definition (Measure). A function µ : E → [0,∞] is a measure if

– µ(∅) = 0

– If A1, A2, . . . ∈ E are disjoint, then

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Definition (Measure space). A measure space is a measurable space with a
measure.

Definition (Measurable function). Let (E1, E1) and (E2, E2) be measurable
spaces. Then f : E1 → E2 is said to be measurable if A ∈ E2 implies f−1(A) ∈ E1.

This is similar to the definition of a continuous function.

Notation. For (E, E) a measurable space, we write mE for the set of measurable
functions E → R.

We write mE+ to be the positive measurable functions, which are allowed to
take value ∞.

Note that we do not allow taking the values ±∞ in the first case.

Theorem. Let (E, E , µ) be a measure space. Then there exists a unique function
µ̃ : mE+ → [0,∞] satisfying

– µ̃(1A) = µ(A), where 1A is the indicator function of A.

– Linearity: µ̃(αf + βg) = αµ̃(f) + βµ̃(g) if α, β ∈ R≥0 and f, g ∈ mE+.
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– Monotone convergence: iff f1, f2, . . . ∈ mE+ are such that fn ↗ f ∈ mE+

pointwise a.e. as n→∞, then

lim
n→∞

µ̃(fn) = µ̃(f).

We call µ̃ the integral with respect to µ, and we will write it as µ from now on.

Definition (Simple function). A function f is simple if there exists αn ∈ R≥0

and An ∈ E for 1 ≤ n ≤ k such that

f =

k∑
n=1

αn1An .

From the first two properties of the measure, we see that

µ(f) =

k∑
n=1

αnµ(An).

One convenient observation is that a function is simple iff it takes on only finitely
many values. We then see that if f ∈ mE+, then

fn = 2−nb2nfc ∧ n

is a sequence of simple functions approximating f from below. Thus, given
monotone convergence, this shows that

µ(f) = limµ(fn),

and this proves the uniqueness part of the theorem.
Recall that

Definition (Almost everywhere). We say f = g almost everywhere if

µ({x ∈ E : f(x) 6= g(x)}) = 0.

We say f is a version of g.

Example. Let `n = 1[n,n+1]. Then µ(`n) = 1 for all 1, but also fn → 0 and
µ(0) = 0. So the “monotone” part of monotone convergence is important.

So if the sequence is not monotone, then the measure does not preserve limits,
but it turns out we still have an inequality.

Lemma (Fatou’s lemma). Let fi ∈ mE+. Then

µ
(

lim inf
n

fn

)
≤ lim inf

n
µ(fn).

Proof. Apply monotone convergence to the sequence infm≥n fm

Of course, it would be useful to extend integration to functions that are not
necessarily positive.

5



1 Some measure theory III Advanced Probability

Definition (Integrable function). We say a function f ∈ mE is integrable if
µ(|f |) ≤ ∞. We write L1(E) (or just L1) for the space of integrable functions.

We extend µ to L1 by

µ(f) = µ(f+)− µ(f−),

where f± = (±f) ∧ 0.

If we want to be explicit about the measure and the σ-algebra, we can write
L1(E, Eµ).

Theorem (Dominated convergence theorem). If fi ∈ mE and fi → f a.e., such
that there exists g ∈ L1 such that |fi| ≤ g a.e. Then

µ(f) = limµ(fn).

Proof. Apply Fatou’s lemma to g − fn and g + fn.

Definition (Product σ-algebra). Let (E1, E1) and (E2, E2) be measure spaces.
Then the product σ-algebraE1⊗E2 is the smallest σ-algebra on E1×E2 containing
all sets of the form A1 ×A2, where Ai ∈ Ei.

Theorem. If (E1, E1, µ1) and (E2, E2, µ2) are σ-finite measure spaces, then there
exists a unique measure µ on E1 ⊗ E2) satisfying

µ(A1 ×A2) = µ1(A1)µ2(A2)

for all Ai ∈ Ei.
This is called the product measure.

Theorem (Fubini’s/Tonelli’s theorem). If f = f(x1, x2) ∈ mE+ with E =
E1 ⊗ E2, then the functions

x1 7→
∫
f(x1, x2)dµ2(x2) ∈ mE+

1

x2 7→
∫
f(x1, x2)dµ1(x1) ∈ mE+

2

and ∫
E

f du =

∫
E1

(∫
E2

f(x1, x2) dµ2(x2)

)
dµ1(x1)

=

∫
E2

(∫
E1

f(x1, x2) dµ1(x1)

)
dµ2(x2)

1.2 Conditional expectation

In this course, conditional expectation is going to play an important role, and
it is worth spending some time developing the theory. We are going to focus
on probability theory, which, mathematically, just means we assume µ(E) = 1.
Practically, it is common to change notation to E = Ω, E = F , µ = P and∫

dµ = E. Measurable functions will be written as X,Y, Z, and will be called
random variables. Elements in F will be called events. An element ω ∈ Ω will
be called a realization.
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There are many ways we can think about conditional expectations. The first
one is how most of us first encountered conditional probability.

Suppose B ∈ F , with P(B) > 0. Then the conditional probability of the
event A given B is

P(A | B) =
P(A ∩B)

P(B)
.

This should be interpreted as the probability that A happened, given that B
happened. Since we assume B happened, we ought to restrict to the subset of the
probability space where B in fact happened. To make this a probability space,
we scale the probability measure by P(B). Then given any event A, we take the
probability of A ∩B under this probability measure, which is the formula given.

More generally, if X is a random variable, the conditional expectation of X
given B is just the expectation under this new probability measure,

E[X | B] =
E[X1B ]

P[B]
.

We probably already know this from high school, and we are probably not quite
excited by this. One natural generalization would be to allow B to vary.

Let G1, G2, . . . ∈ F be disjoint events such that
⋃
nGn = Ω. Let

G = σ(G1, G2, . . .) =

{⋃
n∈I

Gn : I ⊆ N

}
.

Let X ∈ L1. We then define

Y =

∞∑
n=1

E(X | Gn)1Gn
.

Let’s think about what this is saying. Suppose a random outcome ω happens.
To compute Y , we figure out which of the Gn our ω belongs to. Let’s say
ω ∈ Gk. Then Y returns the expected value of X given that we live in Gk. In
this processes, we have forgotten the exact value of ω. All that matters is which
Gn the outcome belongs to. We can “visually” think of the Gn as cutting up
the sample space Ω into compartments:

We then average out X in each of these compartments to obtain Y . This is what
we are going to call the conditional expectation of X given G, written E(X | G).

Ultimately, the characterizing property of Y is the following lemma:

Lemma. The conditional expectation Y = E(X | G) satisfies the following
properties:

7



1 Some measure theory III Advanced Probability

– Y is G-measurable

– We have Y ∈ L1, and
EY 1A = EX1A

for all A ∈ G.

Proof. It is clear that Y is G-measurable. To show it is L1, we compute

E[|Y |] = E

∣∣∣∣∣
∞∑
n=1

E(X | Gn)1Gn

∣∣∣∣∣
≤ E

∞∑
n=1

E(|X| | Gn)1Gn

=
∑

E (E(|X| | Gn)1Gn)

=
∑

E|X|1Gn

= E
∑
|X|1Gn

= E|X|
<∞,

where we used monotone convergence twice to swap the expectation and the
sum.

The final part is also clear, since we can explicitly enumerate the elements in
G and see that they all satisfy the last property.

It turns out for any σ-subalgebra G ⊆ F , we can construct the conditional
expectation E(X | G), which is uniquely characterized by the above two proper-
ties.

Theorem (Existence and uniqueness of conditional expectation). Let X ∈ L1,
and G ⊆ F . Then there exists a random variable Y such that

– Y is G-measurable

– Y ∈ L1, and EX1A = EY 1A for all A ∈ G.

Moreover, if Y ′ is another random variable satisfying these conditions, then
Y ′ = Y almost surely.

We call Y a (version of) the conditional expectation given G.

We will write the condition expectation as E(X | G), and if X = 1A, we will
write P(A | G) = E(1A | G).

Recall also that if Z is a random variable, then σ(Z) = {Z−1(B) : B ∈ B}.
In this case, we will write E(X | Z) = E(X | σ(Z)).

By, say, bounded convergence, it follows from the second condition that
EXZ = EY Z for all bounded G-measurable functions Z.

Proof. We first consider the case where X ∈ L2(Ω,F , µ). Then we know from
functional analysis that for any G ⊆ F , the space L2(G) is a Hilbert space with
inner product

〈X,Y 〉 = µ(XY ).
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In particular, L2(G) is a closed subspace of L2(F). We can then define Y to
be the orthogonal projection of X onto L2(G). It is immediate that Y is G-
measurable. For the second part, we use that X − Y is orthogonal to L2(G),
since that’s what orthogonal projection is supposed to be. So E(X − Y )Z = 0
for all Z ∈ L2(G). In particular, since the measure space is finite, the indicator
function of any measurable subset is L2. So we are done.

We next focus on the case where X ∈ mE+. We define

Xn = X ∧ n

We want to use monotone convergence to obtain our result. To do so, we need
the following result:

Claim. If (X,Y ) and (X ′, Y ′) satisfy the conditions of the theorem, and X ′ ≥ X
a.s., then Y ′ ≥ Y a.s.

Proof. Define the event A = {Y ′ ≤ Y } ∈ G. Consider the event Z = (Y −Y ′)1A.
Then Z ≥ 0. We then have

EY ′1A = EX ′1A ≥ EX1A = EY 1A.

So it follows that we also have E(Y − Y ′)1A ≤ 0. So in fact EZ = 0. So Y ′ ≥ Y
a.s.

We can now define Yn = E(Xn | G), picking them so that {Yn} is increasing.
We then take Y∞ = limYn. Then Y∞ is certainly G-measurable, and by monotone
convergence, if A ∈ G, then

EX1A = limEXn1A = limEYn1A = EY∞1A.

Now if EX <∞, then EY∞ = EX <∞. So we know Y∞ is finite a.s., and we
can define Y = Y∞1Y∞<∞.

Finally, we work with arbitrary X ∈ L1. We can write X = X+ −X−, and
then define Y ± = E(X± | G), and take Y = Y + − Y −.

Uniqueness is then clear.

Lemma. If Y is σ(Z)-measurable, then there exists h : R→ R Borel-measurable
such that Y = h(Z). In particular,

E(X | Z) = h(Z) a.s.

for some h : R→ R.

We can then define E(X | Z = z) = h(z). The point of doing this is that we
want to allow for the case where in fact we have P(Z = z) = 0, in which case
our original definition does not make sense.

Exercise. Consider X ∈ L1, and Z : Ω→ N discrete. Compute E(X | Z) and
compare our different definitions of conditional expectation.

Example. Let (U, V ) ∈ R2 with density fU,V (u, v), so that for any B1, B2 ∈ B,
we have

P(U ∈ B1, V ∈ B2) =

∫
B1

∫
b2

fU,V (u, v) du dv.

9
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We want to compute E(h(V ) | U), where h : R → R is Borel measurable. We
can define

fU (u) =

∫
R
fU,V (u, v) dv,

and we define the conditional density of V given U by

F|U (v | u) =
fU,V (u, v)

fU (u)
.

We define

g(u) =

∫
h(u)fV |U (v | u) dv.

We claim that E(h(V ) | U) is just g(U).
To check this, we show that it satisfies the two desired conditions. It is clear

that it is σ(U)-measurable. To check the second condition, fix an A ∈ σ(U).
Then A = {(u, v) : u ∈ B} for some B. Then

E(h(V )1A) =

∫∫
h(v)1u∈BfU,V (u, v) du dv

=

∫∫
h(v)1u∈BfV |U (v | u)fV (u) du dv

=

∫
g(U)1u∈BfU (u) du

= E(g(U)1A),

as desired.

The point of this example is that to compute conditional expectations, we
use our intuition to guess what the conditional expectation should be, and then
check that it satisfies the two uniquely characterizing properties.

Example. Suppose (X,W ) are Gaussian. Then for all linear functions ϕ : R2 →
R, the quantity ϕ(X,W ) is Gaussian.

One nice property of Gaussians is that lack of correlation implies independence.
We want to compute E(X |W ). Note that if Y is such that EX = EY , X − Y
is independent of W , and Y is W -measurable, then Y = E(X | W ), since
E(X − Y )1A = 0 for all σ(W )-measurable A.

The guess is that we want Y to be a Gaussian variable. We put Y = aW + b.
Then EX = EY implies we must have

aEW + b = EX. (∗)

The independence part requires cov(X − Y,W ) = 0. Since covariance is linear,
we have

0 = cov(X−Y,W ) = cov(X,W )−cov(aW +b,W ) = cov(X,W )−a cov(W,W ).

Recalling that cov(W,W ) = var(W ), we need

a =
cov(X,W )

var(W )
.

This then allows us to use (∗) to compute b as well. This is how we compute the
conditional expectation of Gaussians.
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We note some immediate properties of conditional expectation. As usual,
all (in)equality and convergence statements are to be taken with the quantifier
“almost surely”.

Proposition.

(i) E(X | G) = X iff X is G-measurable.

(ii) E(E(X | G)) = EX

(iii) If X ≥ 0 a.s., then E(X | G) ≥ 0

(iv) If X and G are independent, then E(X | G) = E[X]

(v) If α, β ∈ R and X1, X2 ∈ L1, then

E(αX1 + βX2 | G) = αE(X1 | G) + βE(X2 | G).

(vi) Suppose Xn ↗ X. Then

E(Xn | G)↗ E(X | G).

(vii) Fatou’s lemma: If Xn are non-negative measurable, then

E
(

lim inf
n→∞

Xn | G
)
≤ lim inf

n→∞
E(Xn | G).

(viii) Dominated convergence theorem: If Xn → X and Y ∈ L1 such that
Y ≥ |Xn| for all n, then

E(Xn | G)→ E(X | G).

(ix) Jensen’s inequality : If c : R→ R is convex, then

E(c(X) | G) ≥ c(E(X) | G).

(x) Tower property : If H ⊆ G, then

E(E(X | G) | H) = E(X | H).

(xi) For p ≥ 1,
‖E(X | G)‖p ≤ ‖X‖p.

(xii) If Z is bounded and G-measurable, then

E(ZX | G) = ZE(X | G).

(xiii) Let X ∈ L1 and G,H ⊆ F . Assume that σ(X,G) is independent of H.
Then

E(X | G) = E(X | σ(G,H)).

Proof.

(i) Clear.
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(ii) Take A = ω.

(iii) Shown in the proof.

(iv) Clear by property of expected value of independent variables.

(v) Clear, since the RHS satisfies the unique characterizing property of the
LHS.

(vi) Clear from construction.

(vii) Same as the unconditional proof, using the previous property.

(viii) Same as the unconditional proof, using the previous property.

(ix) Same as the unconditional proof.

(x) The LHS satisfies the characterizing property of the RHS

(xi) Using the convexity of |x|p, Jensen’s inequality tells us

‖E(X | G)‖pp = E|E(X | G)|p

≤ E(E(|X|p | G))

= E|X|p

= ‖X‖pp

(xii) If Z = 1B , and let b ∈ G. Then

E(ZE(X | G)1A) = E(E(X | G) · 1A∩B) = E(X1A∩B) = E(ZX1A).

So the lemma holds. Linearity then implies the result for Z simple, then
apply our favorite convergence theorems.

(xiii) Take B ∈ H and A ∈ G. Then

E(E(X | σ(G,H)) · 1A∩B) = E(X · 1A∩B)

= E(X1A)P(B)

= E(E(X | G)1A)P(B)

= E(E(X | G)1A∩B)

If instead of A ∩ B, we had any σ(G,H)-measurable set, then we would
be done. But we are fine, since the set of subsets of the form A ∩B with
A ∈ G, B ∈ H is a generating π-system for σ(H,G).

We shall end with the following key lemma. We will later use it to show that
many of our martingales are uniformly integrable.

Lemma. If X ∈ L1, then the family of random variables YG = E(X | G) for all
G ⊆ F is uniformly integrable.

In other words, for all ε > 0, there exists λ > 0 such that

E(YG1|YG>λ|) < ε

for all G.

12



1 Some measure theory III Advanced Probability

Proof. Fix ε > 0. Then there exists δ > 0 such that E|X|1A < ε for any A with
P(A) < δ.

Take Y = E(X | G). Then by Jensen, we know

|Y | ≤ E(|X| | G)

In particular, we have
E|Y | ≤ E|X|.

By Markov’s inequality, we have

P(|Y | ≥ λ) ≤ E|Y |
λ
≤ E|X|

λ
.

So take λ such that E|X|
λ < δ. So we have

E(|Y |1|Y |≥λ) ≤ E(E(|X| | G)1|Y |≥λ) = E(|X|1|Y |≥λ) < ε

using that 1|Y |≥λ is a G-measurable function.

13
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2 Martingales in discrete time

2.1 Filtrations and martingales

We would like to model some random variable that “evolves with time”. For
example, in a simple random walk, Xn could be the position we are at time n.
To do so, we would like to have some σ-algebras Fn that tells us the “information
we have at time n”. This structure is known as a filtration.

Definition (Filtration). A filtration is a sequence of σ-algebras (Fn)n≥0 such
that F ⊇ Fn+1 ⊇ Fn for all n. We define F∞ = σ(F0,F1, . . .) ⊆ F .

We will from now on assume (Ω,F ,P) is equipped with a filtration (Fn)n≥0.

Definition (Stochastic process in discrete time). A stochastic process (in discrete
time) is a sequence of random variables (Xn)n≥0.

This is a very general definition, and in most cases, we would want Xn to
interact nicely with our filtration.

Definition (Natural filtration). The natural filtration of (Xn)n≥0 is given by

FXn = σ(X1, . . . , Xn).

Definition (Adapted process). We say that (Xn)n≥0 is adapted (to (Fn)n≥0)
if Xn is Fn-measurable for all n ≥ 0. Equivalently, if FXn ⊆ Fn.

Definition (Integrable process). A process (Xn)n≥0 is integrable if Xn ∈ L1 for
all n ≥ 0.

We can now write down the definition of a martingale.

Definition (Martingale). An integrable adapted process (Xn)n≥0 is a martingale
if for all n ≥ m, we have

E(Xn | Fm) = Xm.

We say it is a super-martingale if

E(Xn | Fm) ≤ Xm,

and a sub-martingale if
E(Xn | Fm) ≥ Xm,

Note that it is enough to take m = n − 1 for all n ≥ 0, using the tower
property.

The idea of a martingale is that we cannot predict whether Xn will go up
or go down in the future even if we have all the information up to the present.
For example, if Xn denotes the wealth of a gambler in a gambling game, then in
some sense (Xn)n≥0 being a martingale means the game is “fair” (in the sense
of a fair dice).

Note that (Xn)n≥0 is a super-martingale iff (−Xn)n≥0 is a sub-martingale,
and if (Xn)n≥0 is a martingale, then it is both a super-martingale and a sub-
martingale. Often, what these extra notions buy us is that we can formulate
our results for super-martingales (or sub-martingales), and then by applying the
result to both (Xn)n≥0 and (−Xn)n≥0, we obtain the desired, stronger result
for martingales.

14
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2.2 Stopping time and optimal stopping

The optional stopping theorem says the definition of a martingale in fact implies
an a priori much stronger property. To formulate the optional stopping theorem,
we need the notion of a stopping time.

Definition (Stopping time). A stopping time is a random variable T : Ω →
N≥0 ∪ {∞} such that

{T ≤ n} ∈ Fn
for all n ≥ 0.

This means that at time n, if we want to know if T has occurred, we can
determine it using the information we have at time n.

Note that T is a stopping time iff {t = n} ∈ Fn for all n, since if T is a
stopping time, then

{T = n} = {T ≤ n} \ {T ≤ n− 1},

and {T ≤ n− 1} ∈ Fn−1 ⊆ Fn. Conversely,

{T ≤ n} =

n⋃
k=1

{T = k} ∈ Fn.

This will not be true in the continuous case.

Example. If B ∈ B(R), then we can define

T = inf{n : Xn ∈ B}.

Then this is a stopping time.
On the other hand,

T = sup{n : Xn ∈ B}

is not a stopping time (in general).

Given a stopping time, we can make the following definition:

Definition (XT ). For a stopping time T , we define the random variable XT by

XT (ω) = XT (ω)(ω)

on {T <∞}, and 0 otherwise.

Later, for suitable martingales, we will see that the limit X∞ = limn→∞Xn

makes sense. In that case, We define XT (ω) to be X∞(ω) if T =∞.
Similarly, we can define

Definition (Stopped process). The stopped process is defined by

(XT
n )n≥0 = (XT (ω)∧n(ω))n≥0.

This says we stop evolving the random variable X once T has occurred.
We would like to say that XT is “FT -measurable”, i.e. to compute XT , we

only need to know the information up to time T . After some thought, we see
that the following is the correct definition of FT :

15
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Definition (FT ). For a stopping time T , define

FT = {A ∈ F∞ : A ∩ {T ≤ n} ∈ Fn}.

This is easily seen to be a σ-algebra.

Example. If T ≡ n is constant, then FT = Fn.

There are some fairly immediate properties of these objects, whose proof is
left as an exercise for the reader:

Proposition.

(i) If T, S, (Tn)n≥0 are all stopping times, then

T ∨ S, T ∧ S, sup
n
Tn, inf Tn, lim supTn, lim inf Tn

are all stopping times.

(ii) FT is a σ-algebra

(iii) If S ≤ T , then FS ⊆ FT .

(iv) XT1T<∞ is FT -measurable.

(v) If (Xn) is an adapted process, then so is (XT
n )n≥0 for any stopping time T .

(vi) If (Xn) is an integrable process, then so is (XT
n )n≥0 for any stopping time

T .

We now come to the fundamental property of martingales.

Theorem (Optional stopping theorem). Let (Xn)n≥0 be a super-martingale
and S ≤ T bounded stopping times. Then

EXT ≤ EXS .

Proof. Follows from the next theorem.

What does this theorem mean? If X is a martingale, then it is both a
super-martingale and a sub-martingale. So we can apply this to both X and
−X, and so we have

E(XT ) = E(XS).

In particular, since 0 is a stopping time, we see that

EXT = EX0

for any bounded stopping time T .
Recall that martingales are supposed to model fair games. If we again think

of Xn as the wealth at time n, and T as the time we stop gambling, then this
says no matter how we choose T , as long as it is bounded, the expected wealth
at the end is the same as what we started with.

16
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Example. Consider the stopping time

T = inf{n : Xn = 1},

and take X such that EX0 = 0. Then clearly we have EXT = 1. So this tells us
T is not a bounded stopping time!

Theorem. The following are equivalent:

(i) (Xn)n≥0 is a super-martingale.

(ii) For any bounded stopping times T and any stopping time S,

E(XT | FS) ≤ XS∧T .

(iii) (XT
n ) is a super-martingale for any stopping time T .

(iv) For bounded stopping times S, T such that S ≤ T , we have

EXT ≤ EXS .

In particular, (iv) implies (i).

Proof.

– (ii) ⇒ (iii): Consider (XT ′

n )≥0 for a stopping time T ′. To check if this is a
super-martingale, we need to prove that whenever m ≤ n,

E(Xn∧T ′ | Fm) ≤ Xm∧T ′ .

But this follows from (ii) above by taking S = m and T = T ′ ∧ n.

– (ii) ⇒ (iv): Clear by the tower law.

– (iii) ⇒ (i): Take T =∞.

– (i) ⇒ (ii): Assume T ≤ n. Then

XT = XS∧T +
∑

S≤k<T

(Xk+1 −Xk)

= XS∧T +

n∑
k=0

(Xk+1 −Xk)1S≤k<T (∗)

Now note that {S ≤ k < T} = {S ≤ k} ∩ {T ≤ k}c ∈ Fk. Let A ∈ FS .
Then A ∩ {S ≤ k} ∈ Fk by definition of FS . So A ∩ {S ≤ k < T} ∈ Fk.

Apply E to to (∗)× 1A. Then we have

E(XT1A) = E(XS∧T1A) +

n∑
k=0

E(Xk+1 −Xk)1A∩{S≤k<T}.

But for all k, we know

E(Xk+1 −Xk)1A∩{S≤k<T} ≤ 0,

17
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since X is a super-martingale. So it follows that for all A ∈ FS , we have

E(XT · 1A) ≤ E(XS∧T1A).

But since XS∧T is FS∧T measurable, it is in particular FS measurable. So
it follows that for all A ∈ FS , we have

E(E(XT | FS)1A) ≤ E(XS∧T1A).

So the result follows.

– (iv) ⇒ (i): Fix m ≤ n and A ∈ Fm. Take

T = m1A + 1AC .

One then manually checks that this is a stopping time. Now note that

XT = Xm1A +Xn1AC .

So we have

0 ≥ E(Xn)− E(XT )

= E(Xn)− E(Xn1Ac)− E(Xm1A)

= E(Xn1A)− E(Xm1A).

Then the same argument as before gives the result.

2.3 Martingale convergence theorems

One particularly nice property of martingales is that they have nice conver-
gence properties. We shall begin by proving a pointwise version of martingale
convergence.

Theorem (Almost sure martingale convergence theorem). Suppose (Xn)n≥0

is a super-martingale that is bounded in L1, i.e. supn E|Xn| <∞. Then there
exists an F∞-measurable X∞ ∈ L1 such that

Xn → X∞ a.s. as n→∞.

To begin, we need a convenient characterization of when a series converges.

Definition (Upcrossing). Let (xn) be a sequence and (a, b) an interval. An
upcrossing of (a, b) by (xn) is a sequence j, j + 1, . . . , k such that xj ≤ a and
xk ≥ b. We define

Un[a, b, (xn)] = number of disjoint upcrossings contained in {1, . . . , n}
U [a, b, (xn)] = lim

n→∞
Un[a, b, x].

We can then make the following elementary observation:

Lemma. Let (xn)n≥0 be a sequence of numbers. Then xn converges in R if and
only if

(i) lim inf |xn| <∞.

18
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(ii) For all a, b ∈ Q with a < b, we have U [a, b, (xn)] <∞.

For our martingales, since they are bounded in L1, Fatou’s lemma tells us
E lim inf |Xn| <∞. So lim inf |Xn| = 0 almost surely. Thus, it remains to show
that for any fixed a < b ∈ Q, we have P(U [a, b, (Xn)] = ∞) = 0. This is a
consequence of Doob’s upcrossing lemma.

Lemma (Doob’s upcrossing lemma). If Xn is a super-martingale, then

(b− a)E(Un[a, b(Xn)]) ≤ E(Xn − a)−

Proof. Assume that X is a positive super-martingale. We define stopping times
Sk, Tk as follows:

– T0 = 0

– Sk+1 = inf{n : Xn ≤ a, n ≥ Tn}

– Tk+1 = inf{n : Xn ≥ b, n ≥ Sk+1}.

Given an n, we want to count the number of upcrossings before n. There are
two cases we might want to distinguish:

b

a

n

b

a

n

Now consider the sum
n∑
k=1

XTk∧n −XSk∧n.

In the first case, this is equal to

Un∑
k=1

XTk
−XSk

+

n∑
k=Un+1

Xn −Xn ≥ (b− a)Un.

In the second case, it is equal to

Un∑
k=1

XTk
−XSk

+(Xn−XSUn+1
)+

n∑
k=Un+2

Xn−Xn ≥ (b−a)Un+(Xn−XSUn+1
).

Thus, in general, we have

n∑
k=1

XTk∧n −XSk∧n ≥ (b− a)Un + (Xn −XSUn+1∧n).
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By definition, Sk < Tk ≤ n. So the expectation of the LHS is always non-negative
by super-martingale convergence, and thus

0 ≥ (b− a)EUn + E(Xn −XSUn+1∧n).

Then observe that
Xn −XSUn+1

≥ −(Xn − a)−.

The almost-sure martingale convergence theorem is very nice, but often it is
not good enough. For example, we might want convergence in Lp instead. The
following example shows this isn’t always possible:

Example. Suppose (ρn)n≥0 is a sequence of iid random variables and

P(ρn = 0) =
1

2
= P(ρn = 2).

Let

Xn =

n∏
k=0

ρk.

Then this is a martingale, and EXn = 1. On the other hand, Xn → 0 almost
surely. So ‖Xn −X∞‖1 does not converge to 0.

For p > 1, if we want convergence in Lp, it is not surprising that we at least
need the sequence to be Lp bounded. We will see that this is in fact sufficient.
For p = 1, however, we need a bit more than being bounded in L1. We will need
uniform integrability.

To prove this, we need to establish some inequalities.

Lemma (Maximal inequality). Let (Xn) be a sub-martingale that is non-
negative, or a martingale. Define

X∗n = sup
k≤n
|Xk|, X∗ = lim

n→∞
X∗n.

If λ ≥ 0, then
λP(X∗n ≥ λ) ≤ E[|Xn|1X∗n≥λ].

In particular, we have
λP(X∗n ≥ λ) ≤ E[|Xn|].

Markov’s inequality says almost the same thing, but has E[|X∗n|] instead of
E[|Xn|]. So this is a stronger inequality.

Proof. If Xn is a martingale, then |Xn| is a sub-martingale. So it suffices to
consider the case of a non-negative sub-martingale. We define the stopping time

T = inf{n : Xn ≥ λ}.

By optional stopping,

EXn ≥ EXT∧n

= EXT1T≤n + EXn1T>n

≥ λP(T ≤ n) + EXn1T>n

= λP(X∗n ≥ λ) + EXn1T>n.
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Lemma (Doob’s Lp inequality). For p > 1, we have

‖X∗n‖p ≤
p

p− 1
‖Xn‖p

for all n.

Proof. Let k > 0, and consider

‖X∗n ∧ k‖pp = E|X∗n ∧ k|p.

We use the fact that

xp =

∫ x

0

psp−1 ds.

So we have

‖X∗n ∧ k‖pp = E|X∗n ∧ k|p

= E
∫ X∗n∧k

0

pxp−1 dx

= E
∫ k

0

pxp−11X∗n≥x dx

=

∫ k

0

pxp−1P(X∗n ≥ x) dx (Fubini)

≤
∫ k

0

pxp−2EXn1X∗n≥x dx (maximal inequality)

= EXn

∫ k

0

pxp−21X∗n≥x dx (Fubini)

=
p

p− 1
EXn(X∗n ∧ k)p−1

≤ p

p− 1
‖Xn‖p (E(X∗n ∧ k)p)

p−1
p (Hölder)

=
p

p− 1
‖Xn‖p‖X∗n ∧ k‖p−1

p

Now take the limit k →∞ and divide by ‖X∗n‖p−1
p .

Theorem (Lp martingale convergence theorem). Let (Xn)n≥0 be a martingale,
and p > 1. Then the following are equivalent:

(i) (Xn)n≥0 is bounded in Lp, i.e. supn E|Xi|p <∞.

(ii) (Xn)n≥0 converges as n→∞ to a random variable X∞ ∈ Lp almost surely
and in Lp.

(iii) There exists a random variable Z ∈ Lp such that

Xn = E(Z | Fn)

Moreover, in (iii), we always have X∞ = E(Z | F∞).

This gives a bijection between martingales bounded in Lp and Lp(F∞),
sending (Xn)n≥0 7→ X∞.
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Proof.

– (i) ⇒ (ii): If (Xn)n≥0 is bounded in Lp, then it is bounded in L1. So by
the martingale convergence theorem, we know (Xn)n≥0 converges almost
surely to X∞. By Fatou’s lemma, we have X∞ ∈ Lp.
Now by monotone convergence, we have

‖X∗‖p = lim
n
‖X∗n‖p ≤

p

p− 1
sup
n
‖Xn‖p <∞.

By the triangle inequality, we have

|Xn −X∞| ≤ 2X∗ a.s.

So by dominated convergence, we know that Xn → X∞ in Lp.

– (ii) ⇒ (iii): Take Z = X∞. We want to prove that

Xm = E(X∞ | Fm).

To do so, we show that ‖Xm − E(X∞ | Fm)‖p = 0. For n ≥ m, we know
this is equal to

‖E(Xn | Fm)−E(X∞ | Fm)‖p = ‖E(Xn−X∞ | Fm)‖p ≤ ‖Xn−X∞‖p → 0

as n→∞, where the last step uses Jensen’s. But it is also a constant. So
we are done.

– (iii) ⇒ (i): Since expectation decreases Lp norms, we already know that
(Xn)n≥0 is Lp-bounded.

To show the “moreover” part, note that
⋃
n≥0 Fn is a π-system that

generates F∞. So it is enough to prove that

EX∞1A = E(E(Z | F∞)1A).

But if A ∈ FN , then

EX∞1A = lim
n→∞

EXn1A

= lim
n→∞

E(E(Z | Fn)1A)

= lim
n→∞

E(E(Z | F∞)1A),

where the last step relies on the fact that 1A is Fn-measurable.

We finally finish off the p = 1 case with the additional uniform integrability
condition.

Theorem (Convergence in L1). Let (Xn)n≥0 be a martingale. Then the follow-
ing are equivalent:

(i) (Xn)n≥0 is uniformly integrable.

(ii) (Xn)n≥0 converges almost surely and in L1.

(iii) There exists Z ∈ L1 such that Xn = E(Z | Fn) almost surely.
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Moreover, X∞ = E(Z | F∞).

The proof is very similar to the Lp case.

Proof.

– (i)⇒ (ii): Let (Xn)n≥0 be uniformly integrable. Then (Xn)n≥0 is bounded
in L1. So the (Xn)n≥0 converges to X∞ almost surely. Then by measure
theory, uniform integrability implies that in fact Xn → L1.

– (ii) ⇒ (iii): Same as the Lp case.

– (iii) ⇒ (i): For any Z ∈ L1, the collection E(Z | G) ranging over all
σ-subalgebras G is uniformly integrable.

Thus, there is a bijection between uniformly integrable martingales and
L1(F∞).

We now revisit optional stopping for uniformly integrable martingales. Recall
that in the statement of optional stopping, we needed our stopping times to be
bounded. It turns out if we require our martingales to be uniformly integrable,
then we can drop this requirement.

Theorem. If (Xn)n≥0 is a uniformly integrable martingale, and S, T are arbi-
trary stopping times, then E(XT | FS) = XS∧T . In particular EXT = X0.

Note that we are now allowing arbitrary stopping times, so T may be infinite
with non-zero probability. Hence we define

XT =

∞∑
n=0

Xn1T=n +X∞1T=∞.

Proof. By optional stopping, for every n, we know that

E(XT∧n | FS) = XS∧T∧n.

We want to be able to take the limit as n → ∞. To do so, we need to show
that things are uniformly integrable. First, we apply optional stopping to write
XT∧n as

XT∧n = E(Xn | FT∧n)

= E(E(X∞ | Fn) | FT∧n)

= E(X∞ | FT∧n).

So we know (XT
n )n≥0 is uniformly integrable, and hence Xn∧T → XT almost

surely and in L1.
To understand E(XT∧n | FS), we note that

‖E(Xn∧T −XT | FS)‖1 ≤ ‖Xn∧T −XT ‖1 → 0 as n→∞.

So it follows that E(Xn∧T | FS)→ E(XT | FS) as n→∞.
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2.4 Applications of martingales

Having developed the theory, let us move on to some applications. Before we do
that, we need the notion of a backwards martingale.

Definition (Backwards filtration). A backwards filtration on a measurable space
(E, E) is a sequence of σ-algebras F̂n ⊆ E such that F̂n+1 ⊆ F̂n. We define

F̂∞ =
⋂
n≥0

F̂n.

Theorem. Let Y ∈ L1, and let F̂n be a backwards filtration. Then

E(Y | F̂n)→ E(Y | F̂∞)

almost surely and in L1.

A process of this form is known as a backwards martingale.

Proof. We first show that E(Y | F̂n) converges. We then show that what it
converges to is indeed E(Y | F̂∞).

We write
Xn = E(Y | F̂n).

Observe that for all n ≥ 0, the process (Xn−k)0≤k≤n is a martingale by the tower
property, and so is (−Xn−k)0≤k≤n. Now notice that for all a < b, the number
of upcrossings of [a, b] by (Xk)0≤k≤n is equal to the number of upcrossings of
[−b,−a] by (−Xn−k)0≤k≤n.

Using the same arguments as for martingales, we conclude that Xn → X∞
almost surely and in L1 for some X∞.

To see that X∞ = E(Y | F̂∞), we notice that X∞ is F̂∞ measurable. So it is
enough to prove that

EX∞1A = E(E(Y | F̂∞)1A)

for all A ∈ F̂∞. Indeed, we have

EX∞1A = lim
n→∞

EXn1A

= lim
n→∞

E(E(Y | F̂n)1A)

= lim
n→∞

E(Y | 1A)

= E(Y | 1A)

= E(E(Y | F̂n)1A).

Theorem (Kolmogorov 0-1 law). Let (Xn)n≥0 be independent random variables.
Then, let

F̂n = σ(Xn+1, Xn+2, . . .).

Then the tail σ-algebra F̂∞ is trivial, i.e. P(A) ∈ {0, 1} for all A ∈ F̂∞.

Proof. Let Fn = σ(X1, . . . , Xn). Then Fn and F̂n are independent. Then for
all A ∈ F̂∞, we have

E(1A | Fn) = P(A).

But the LHS is a martingale. So it converges almost surely and in L1 to
E(1A | F∞). But 1A is F∞-measurable, since F̂∞ ⊆ F∞. So this is just 1A. So
1A = P(A) almost surely, and we are done.
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Theorem (Strong law of large numbers). Let (Xn)n≥1 be iid random variables
in L1, with EX1 = µ. Define

Sn =

n∑
i=1

Xi.

Then
Sn
n
→ µ as n→∞

almost surely and in L1.

Proof. We have

Sn = E(Sn | Sn) =

n∑
i=1

E(Xi | Sn) = nE(X1 | Sn).

So the problem is equivalent to showing that E(X1 | Sn)→ µ as n→∞. This
seems like something we can tackle with our existing technology, except that the
Sn do not form a filtration.

Thus, define a backwards filtration

F̂n = σ(Sn, Sn+1, Sn+2, . . .) = σ(Sn, Xn+1, Xn+2, . . .) = σ(Sn, τn),

where τn = σ(Xn+1, Xn+2, . . .). We now use the property of conditional expec-
tation that we’ve never used so far, that adding independent information to a
conditional expectation doesn’t change the result. Since τn is independent of
σ(X1, Sn), we know

Sn
n

= E(X1 | Sn) = E(X1 | F̂n).

Thus, by backwards martingale convergence, we know

Sn
n
→ E(X1 | F̂∞).

But by the Kolmogorov 0-1 law, we know F̂∞ is trivial. So we know that E(X1 |
F̂∞) is almost constant, which has to be E(E(X1 | F̂∞)) = E(X1) = µ.

Recall that if (E, E , µ) is a measure space and f ∈ mE+, then

ν(A) = µ(f1A)

is a measure on E . We say f is a density of ν with respect to µ.
We can ask an “inverse” question – given two different measures on E , when

is it the case that one is given by a density with respect to the other?
A first observation is that if ν(A) = µ(f1A), then whenever µ(A) = 0, we

must have ν(A) = 0. However, this is not sufficient. For example, let µ be a
counting measure on R, and ν the Lebesgue measure. Then our condition is
satisfied. However, if ν is given by a density f with respect to ν, we must have

0 = ν({x}) = µ(f1{x}) = f(x).

So f ≡ 0, but taking f ≡ 0 clearly doesn’t give the Lebesgue measure.
The problem with this is that µ is not a σ-finite measure.
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Theorem (Radon–Nikodym). Let (Ω,F) be a measurable space, and Q and P
be two probability measures on (Ω,F). Then the following are equivalent:

(i) Q is absolutely continuous with respect to P, i.e. for any A ∈ F , if P(A) = 0,
then Q(A) = 0.

(ii) For any ε > 0, there exists δ > 0 such that for all A ∈ F , if P(A) ≤ δ, then
Q(A) ≤ ε.

(iii) There exists a random variable X ≥ 0 such that

Q(A) = EP(X1A).

In this case, X is called the Radon–Nikodym derivative of Q with respect
to P, and we write X = dQ

dP .

Note that this theorem works for all finite measures by scaling, and thus for
σ-finite measures by partitioning Ω into sets of finite measure.

Proof. We shall only treat the case where F is countably generated , i.e. F =
σ(F1, F2, . . .) for some sets Fi. For example, any second-countable topological
space is countably generated.

– (iii) ⇒ (i): Clear.

– (ii) ⇒ (iii): Define the filtration

Fn = σ(F1, F2, . . . , Fn).

Since Fn is finite, we can write it as

Fn = σ(An,1, . . . , An,mn),

where each An,i is an atom, i.e. if B ( An,i and B ∈ Fn, then B = ∅. We
define

Xn =

mn∑
n=1

Q(An,i)

P(An,i)
1An,i ,

where we skip over the terms where P(An,i) = 0. Note that this is exactly
designed so that for any A ∈ Fn, we have

EP(Xn1A) = EP
∑

An,i⊆A

Q(An,i)

P(An, i)
1An,i

= Q(A).

Thus, if A ∈ Fn ⊆ Fn+1, we have

EXn+11A = Q(A) = EXn1A.

So we know that
E(Xn+1 | Fn) = Xn.

It is also immediate that (Xn)n≥0 is adapted. So it is a martingale.

We next show that (Xn)n≥0 is uniformly integrable. By Markov’s inequality,
we have

P(Xn ≥ λ) ≤ EXn

λ
=

1

λ
≤ δ
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for λ large enough. Then

E(Xn1Xn≥λ) = Q(Xn ≥ λ) ≤ ε.

So we have shown uniform integrability, and so we know Xn → X almost
surely and in L1 for some X. Then for all A ∈

⋃
n≥0 Fn, we have

Q(A) = lim
n→∞

EXn1A = EX1A.

So Q(−) and EX1(−) agree on
⋃
n≥0 Fn, which is a generating π-system

for F , so they must be the same.

– (i) ⇒ (ii): Suppose not. Then there exists some ε > 0 and some
A1, A2, . . . ∈ F such that

Q(An) ≥ ε, P(An) ≤ 1

2n
.

Since
∑
n P(An) is finite, by Borel–Cantelli, we know

P lim supAn = 0.

On the other hand, by, say, dominated convergence, we have

Q lim supAn = Q

( ∞⋂
n=1

∞⋃
m=n

Am

)

= lim
k→∞

Q

(
k⋂

n=1

∞⋃
m=n

Am

)

≥ lim
k→∞

Q

( ∞⋃
m=k

Ak

)
≥ ε.

This is a contradiction.

Finally, we end the part on discrete time processes by relating what we have
done to Markov chains.

Let’s first recall what Markov chains are. Let E be a countable space, and µ
a measure on E. We write µx = µ({x}), and then µ(f) = µ · f .

Definition (Transition matrix). A transition matrix is a matrix P = (pxy)x,y∈E
such that each px = (px,y)y∈E is a probability measure on E.

Definition (Markov chain). An adapted process (Xn) is called a Markov chain
if for any n and A ∈ Fn such that {xn = x} ⊇ A, we have

P(Xn+1 = y | A) = pxy.

Definition (Harmonic function). A function f : E → R is harmonic if Pf = f .
In other words, for any x, we have∑

y

pxyf(y) = f(x).
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We then observe that

Proposition. If F is harmonic and bounded, and (Xn)n≥0 is Markov, then
(f(Xn))n≥0 is a martingale.

Example. Let (Xn)n≥0 be iid Z-valued random variables in L1, and E[Xi] = 0.
Then

Sn = X0 + · · ·+Xn

is a martingale and a Markov chain.
However, if Z is a Z-valued random variable, consider the random variable

(ZSn)n≥0 and Fn = σ(Fn, Z). Then this is a martingale but not a Markov
chain.
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3 Continuous time stochastic processes

In the remainder of the course, we shall study continuous time processes. When
doing so, we have to be rather careful, since our processes are indexed by
an uncountable set, when measure theory tends to only like countable things.
Ultimately, we would like to study Brownian motion, but we first develop some
general theory of continuous time processes.

Definition (Continuous time stochastic process). A continuous time stochastic
process is a family of random variables (Xt)t≥0 (or (Xt)t∈[a,b]).

In the discrete case, if T is a random variable taking values in {0, 1, 2, . . .},
then it makes sense to look at the new random variable XT , since this is just

XT =

∞∑
n=0

Xn1T=n.

This is obviously measurable, since it is a limit of measurable functions.
However, this is not necessarily the case if we have continuous time, unless

we assume some regularity conditions on our process. In some sense, we want
Xt to depend “continuously” or at least “measurably” on t.

To make sense of XT , It would be enough to require that the map

ϕ : (ω, t) 7→ Xt(ω)

is measurable when we put the product σ-algebra on the domain. In this case,
XT (ω) = ϕ(ω, T (ω)) is measurable. In this formulation, we see why we didn’t
have this problem with discrete time — the σ-algebra on N is just P(N), and so
all sets are measurable. This is not true for B([0,∞)).

However, being able to talk about XT is not the only thing we want. Often,
the following definitions are useful:

Definition (Cadlag function). We say a function X : [0,∞] → R is cadlag if
for all t

lim
s→t+

xs = xt, lim
s→t−

xs exists.

The name cadlag (or cádlág) comes from the French term continue á droite,
limite á gauche, meaning “right-continuous with left limits”.

Definition (Continuous/Cadlag stochastic process). We say a stochastic process
is continuous (resp. cadlag) if for any ω ∈ Ω, the map t 7→ Xt(ω) is continuous
(resp. cadlag).

Notation. We write C([0,∞),R) for the space of all continuous functions
[0,∞)→ R, and D([0,∞),R) the space of all cadlag functions.

We endow these spaces with a σ-algebra generated by the coordinate functions

(xt)t≥0 7→ xs.

Then a continuous (or cadlag) process is a random variable taking values in
C([0,∞),R) (or D([0,∞),R)).
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Definition (Finite-dimensional distribution). A finite dimensional distribution
of (Xt)t≥0 is a measure on Rn of the form

µt1,...,tn(A) = P((Xt1 , . . . , Xtn) ∈ A)

for all A ∈ B(Rn), for some 0 ≤ t1 < t2 < . . . < tn.

The important observation is that if we know all finite-dimensional distri-
butions, then we know the law of X, since the cylinder sets form a π-system
generating the σ-algebra.

If we know, a priori, that (Xt)t≥0 is a continuous process, then for any dense
set I ⊆ [0,∞), knowing (Xt)t≥0 is the same as knowing (Xt)t∈I . Conversely, if
we are given some random variables (Xt)t∈I , can we extend this to a continuous
process (Xt)t≥0? The answer is, of course, “not always”, but it turns out we can
if we assume some Hölder conditions.

Theorem (Kolmogorov’s criterion). Let (ρt)t∈I be random variables, where
I ⊆ [0, 1] is dense. Assume that for some p > 1 and β > 1

p , we have

‖ρt − ρs‖p ≤ C|t− s|β for all t, s ∈ I. (∗)

Then there exists a continuous process (Xt)t∈I such that for all t ∈ I,

Xt = ρt almost surely,

and moreover for any α ∈ [0, β − 1
p ), there exists a random variable Kα ∈ Lp

such that
|Xs −Xt| ≤ Kα|s− t|α

for all s, t ∈ [0, 1].

Before we begin, we make the following definition:

Definition (Dyadic numbers). We define

Dn =

{
s ∈ [0, 1] : s =

k

2n
for some k ∈ Z

}
, D =

⋃
n≥0

Dn.

Observe that D ⊆ [0, 1] is a dense subset. Topologically, this is just like any
other dense subset. However, it is convenient to use D instead of an arbitrary
subset when writing down formulas.

Proof. First note that we may assume D ⊆ I. Indeed, for t ∈ D, we can define
ρt by taking the limit of ρs in Lp since Lp is complete. The equation (∗) is
preserved by limits, so we may work on I ∪D instead.

By assumption, (ρt)t∈I is Hölder in Lp. We claim that it is almost surely
pointwise Hölder.

Claim. There exists a random variable Kα ∈ Lp such that

|ρs − ρt| ≤ Kα|s− t|α for all s, t ∈ D.

Moreover, Kα is increasing in α.
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Given the claim, we can simply set

Xt(ω) =

{
limq→t,q∈D ρq(ω) Kα <∞ for all α ∈ [0, β − 1

p )

0 otherwise
.

Then this is a continuous process, and satisfies the desired properties.
To construct such a Kα, observe that given any s, t ∈ D, we can pick m ≥ 0

such that
2−(m+1) < t− s ≤ 2−m.

Then we can pick u = k
2m+1 such that s < u < t. Thus, we have

u− s < 2−m, t− u < 2−m.

Therefore, by binary expansion, we can write

u− s =
∑

i≥m+1

xi
2i
, t− u =

∑
i≥m+1

yi
2i
,

for some xi, yi ∈ {0, 1}. Thus, writing

Kn = sup
t∈Dn

|St+2−n − St|,

we can bound

|ρs − ρt| ≤ 2

∞∑
n=m+1

Kn,

and thus

|ρs − ρt|
|s− t|α

≤ 2

∞∑
n=m+1

2(m+1)αKn ≤ 2

∞∑
n=m+1

2(n+1)αKn.

Thus, we can define

Kα = 2
∑
n≥0

2nαKn.

We only have to check that this is in Lp, and this is not hard. We first get

EKp
n ≤

∑
t∈Dn

E|ρt+2−n − ρt|p ≤ Cp2n · 2−nβ = C2n(1−pβ).

Then we have

‖Kα‖p ≤ 2
∑
n≥0

2nα‖Kn‖p ≤ 2C
∑
n≥0

2n(α+ 1
p−β) <∞.

We will later use this to construct Brownian motion. For now, we shall
develop what we know about discrete time processes for continuous time ones.
Fortunately, a lot of the proofs are either the same as the discrete time ones, or
can be reduced to the discrete time version. So not much work has to be done!

Definition (Continuous time filtration). A continuous-time filtration is a family
of σ-algebras (Ft)t≥0 such that Fs ⊆ Ft ⊆ F if s ≤ t. Define F∞ = σ(Ft : t ≥ 0).
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Definition (Stopping time). A random variable t : Ω → [0,∞] is a stopping
time if {T ≤ t} ∈ Ft for all t ≥ 0.

Proposition. Let (Xt)t≥0 be a cadlag adapted process and S, T stopping times.
Then

(i) S ∧ T is a stopping time.

(ii) If S ≤ T , then FS ⊆ FT .

(iii) XT1T<∞ is FT -measurable.

(iv) (XT
t )t≥0 = (XT∧t)t≥0 is adapted.

We only prove (iii). The first two are the same as the discrete case, and the
proof of (iv) is similar to that of (iii).

To prove this, we need a quick lemma, whose proof is a simple exercise.

Lemma. A random variable Z is FT -measurable iff Z1{T≤t} is Ft-measurable
for all t ≥ 0.

Proof of (iii) of proposition. We need to prove that XT1{T≤t} is Ft-measurable
for all t ≥ 0.

We write
XT1T≤t = XT1T<t +Xt1T=t.

We know the second term is measurable. So it suffices to show that XT1T<t is
Ft-measurable.

Define Tn = 2−nd2nT e. This is a stopping time, since we always have Tn ≥ T .
Since (Xt)t≥0 is cadlag, we know

XT1T<t = lim
n→∞

XTn∧t1T<t.

Now Tn ∧ t can take only countably (and in fact only finitely) many values, so
we can write

XTn∧t =
∑

q∈Dn,q<t

Xq1Tn=q +Xt1T<t<Tn ,

and this is Ft-measurable. So we are done.

In the continuous case, stopping times are a bit more subtle. A natural
source of stopping times is given by hitting times.

Definition (Hitting time). Let A ∈ B(R). Then the hitting time of A is

TA = inf
t≥0
{Xt ≤ A}.

This is not always a stopping time. For example, consider the process Xt

such that with probability 1
2 , it is given by Xt = t, and with probability 1

2 , it is
given by

Xt =

{
t t ≤ 1

2− t t > 1
.
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1

1

Take A = (1,∞). Then TA = 1 in the first case, and TA =∞ in the second case.
But {Ta ≤ 1} 6∈ F1, as at time 1, we don’t know if we are going up or down.

The problem is that A is not closed.

Proposition. Let A ⊆ R be a closed set and (Xt)t≥0 be continuous. Then TA
is a stopping time.

Proof. Observe that d(Xq, A) is a continuous function in q. So we have

{TA ≤ t} =

{
inf

q∈Q,q<t
d(Xq, A) = 0

}
.

Motivated by our previous non-example of a hitting time, we define

Definition (Right-continuous filtration). Given a continuous filtration (Ft)t≥0,
we define

F+
t =

⋂
s>t

Fs ⊇ Ft.

We say (Ft)t≥0 is right continuous if Ft = F+
t .

Often, we want to modify our events by things of measure zero. While this
doesn’t really affect anything, it could potentially get us out of Ft. It does no
harm to enlarge all Ft to include events of measure zero.

Definition (Usual conditions). Let N = {A ∈ F∞ : P(A) ∈ {0, 1}}. We say
that (Ft)t≥0 satisfies the usual conditions if it is right continuous and N ⊆ F0.

Proposition. Let (Xt)t≥0 be an adapted process (to (Ft)t≥0) that is cadlag,
and let A be an open set. Then TA is a stopping time with respect to F+

t .

Proof. Since (Xt)t≥0 is cadlag and A is open. Then

{TA < t} =
⋃

q<t,q∈Q
{Xq ∈ A} ∈ Ft.

Then

{TA ≤ t} =
⋂
n≥0

{
TA < t+

1

n

}
∈ F+

t .

Definition (Coninuous time martingale). An adapted process (Xt)t≥0 is called
a martingale iff

E(Xt | Fs) = Xs

for all t ≥ s, and similarly for super-martingales and sub-martingales.
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Note that if t1 ≤ t2 ≤ · · · , then

X̃n = Xtn

is a discrete time martingale. Similarly, if t1 ≥ t2 ≥ · · · , and

X̂n = Xtn

defines a discrete time backwards martingale. Using this observation, we can
now prove what we already know in the discrete case.

Theorem (Optional stopping theorem). Let (Xt)t≥0 be an adapted cadlag
process in L1. Then the following are equivalent:

(i) For any bounded stopping time T and any stopping time S, we have
XT ∈ L1 and

E(XT | FS) = XT∧S .

(ii) For any stopping time T , (XT
t )t≥0 = (XT∧t)t≥0 is a martingale.

(iii) For any bounded stopping time T , XT ∈ L1 and EXT = EX0.

Proof. We show that (i) ⇒ (ii), and the rest follows from the discrete case
similarly.

Since T is bounded, assume T ≤ t, and we may wlog assume t ∈ N. Let

Tn = 2−nd2nT e, Sn = 2−nd2nSe.

We have Tn ↘ T as n→∞, and so XTn
→ XT as n→∞.

Since Tn ≤ t+ 1, by restricting our sequence to Dn, discrete time optional
stopping implies

E(Xt+1 | FTn
) = XTn

.

In particular, XTn
is uniformly integrable. So it converges in L1. This implies

XT ∈ L1.
To show that E(Xt | FS) = XT∧S , we need to show that for any A ∈ FS , we

have
EXt1A = EXS∧T1A.

Since FS ⊆ FSn , we already know that

EXTn
1A = lim

n→∞
EXSn∧Tn

1A

by discrete time optional stopping, since E(XTn
| FSn

) = XTn∧Sn
. So taking the

limit n→∞ gives the desired result.

Theorem. Let (Xt)t≥0 be a super-martingale bounded in L1. Then it converges
almost surely as t→∞ to a random variable X∞ ∈ L1.

Proof. Define Us[a, b, (xt)t≥0] be the number of upcrossings of [a, b] by (xt)t≥0

up to time s, and

U∞[a, b, (xt)t≥0] = lim
s→∞

Us[a, b, (xt)t≥0].
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Then for all s ≥ 0, we have

Us[a, b, (xt)t≥0] = lim
n→∞

Us[a, b, (x
(n)
t )t∈Dn ].

By monotone convergence and Doob’s upcrossing lemma, we have

EUs[a, b, (Xt)t≥0] = lim
n→∞

EUs[a, b, (Xt)t∈Dn
] ≤ E(Xs − a)−

b− 1
≤ E|Xs|+ a

b− a
.

We are then done by taking the supremum over s. Then finish the argument as
in the discrete case.

This shows we have pointwise convergence in R ∪ {±∞}, and by Fatou’s
lemma, we know that

E|X∞| = E lim inf
tn→∞

|Xtn | ≤ lim inf
tn→∞

E|Xtn | <∞.

So X∞ is finite almost surely.

We shall now state without proof some results we already know for the
discrete case. The proofs are straightforward generalizations of the discrete
version.

Lemma (Maximal inequality). Let (Xt)t≥0 be a cadlag martingale or a non-
negative sub-martingale. Then for all t ≥ 0, λ ≥ 0, we have

λP(X∗t ≥ λ) ≤ E|Xt|.

Lemma (Doob’s Lp inequality). Let (Xt)t≥0 be as above. Then

‖X∗t ‖p ≤
p

p− 1
‖Xt‖p.

Definition (Version). We say a process (Yt)t≥0 is a version of (Xt)t≥0 if for all
t, P(Yt = Xt) = 1.

Note that this not the same as saying P(∀t : Yt = Xt) = 1.

Example. Take Xt ≡ 0 for all t and take U be a uniform random variable on
[0, 1]. Define

Yt =

{
1 t = U

0 otherwise
.

Then for all t, we have Xt = Yt almost surely. So (Yt) is a version of (Xt).
However, Xt is continuous but Yt is not.

Theorem (Regularization of martingales). Let (Xt)t≥0 be a martingale with
respect to (Ft), and suppose Ft satisfies the usual conditions. Then there exists
a version (X̃t) of (Xt) which is cadlag.

Proof. For all M > 0, define

ΩM0 =

{
sup

q∈D∩[0,M ]

|Xq| <∞

}
∩
⋂

a<b∈Q

{
UM [a, b, (Xt)t∈D∩[0,M ]] <∞

}
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Then we see that P(ΩM0 ) = 1 by Doob’s upcrossing lemma. Now define

X̃t = lim
s≥t,s→t,s∈D

Xs1Ωt
0
.

Then this is Ft measurable because Ft satisfies the usual conditions.
Take a sequence tn ↘ t. Then (Xtn) is a backwards martingale. So it

converges almost surely in L1 to X̃t. But we can write

Xt = E(Xtn | Ft).

Since Xtn → X̃t in L1, and X̃t is Ft-measurable, we know Xt = X̃t almost
surely.

The fact that it is cadlag is an exercise.

Theorem (Lp convergence of martingales). Let (Xt)t≥0 be a cadlag martingale.
Then the following are equivalent:

(i) (Xt)t≥0 is bounded in Lp.

(ii) (Xt)t≥0 converges almost surely and in Lp.

(iii) There exists Z ∈ Lp such that Xt = E(Z | Ft) almost surely.

Theorem (L1 convergence of martingales). Let (Xt)t≥0 be a cadlag martingale.
Then the folloiwng are equivalent:

(i) (Xt)t≥0 is uniformly integrable.

(ii) (Xt)t≥0 converges almost surely and in L1 to X∞.

(iii) There exists Z ∈ L1 such that E(Z | Ft) = Xt almost surely.

Theorem (Optional stopping theorem). Let (Xt)t≥0 be a uniformly integrable
martingale, and let S, T b e any stopping times. Then

E(XT | Fs) = XS∧T .
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4 Weak convergence of measures

Often, we may want to consider random variables defined on different spaces.
Since we cannot directly compare them, a sensible approach would be to use
them to push our measure forward to R, and compare them on R.

Definition (Law). Let X be a random variable on (Ω,F ,P). The law of X is
the probability measure µ on (R,B(R)) defined by

µ(A) = P(X−1(A)).

Example. For x ∈ R, we have the Dirac δ measure

δx(A) = 1{x∈A}.

This is the law of a random variable that constantly takes the value x.

Now if we have a sequence xn → x, then we would like to say δxn
→ δx. In

what sense is this true? Suppose f is continuous. Then∫
fdδxn

= f(xn)→ f(x) =

∫
fdδx.

So we do have some sort of convergence if we pair it with a continuous function.

Definition (Weak convergence). Let (µn)n≥0, µ be probability measures on
a metric space (M,d) with the Borel measure. We say that µn ⇒ µ, or µn
converges weakly to µ if

µn(f)→ µ(f)

for all f bounded and continuous.
If (Xn)n≥0 are random variables, then we say (Xn) converges in distribution

if µXn converges weakly.

Note that in general, weak convergence does not say anything about how
measures of subsets behave.

Example. If xn → x, then δxn → δx weakly. However, if xn 6= x for all n, then
δxn

({x}) = 0 but δx({x}) = 1. So

δxn({x}) 6→ δn({x}).

Example. Pick X = [0, 1]. Let µn = 1
n

∑n
k=1 δ k

n
. Then

µn(f) =
1

n

n∑
k=1

f

(
k

n

)
.

So µn converges to the Lebesgue measure.

Proposition. Let (µn)n≥0 be as above. Then, the following are equivalent:

(i) (µn)n≥0 converges weakly to µ.

(ii) For all open G, we have

lim inf
n→∞

µn(G) ≥ µ(G).
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(iii) For all closed A, we have

lim sup
n→∞

µn(A) ≤ µ(A).

(iv) For all A such that µ(∂A) = 0, we have

lim
n→∞

µn(A) = µ(A)

(v) (when M = R) Fµn(x)→ Fµ(x) for all x at which Fµ is continuous, where
Fµ is the distribution function of µ, defined by Fµ(x) = µn((−∞, t]).

Proof.

– (i)⇒ (ii): The idea is to approximate the open set by continuous functions.
We know Ac is closed. So we can define

fN (x) = 1 ∧ (N · dist(x,Ac)).

This has the property that for all N > 0, we have

fN ≤ 1A,

and moreover fN ↗ 1A as N →∞. Now by definition of weak convergence,

lim inf
n→∞

µ(A) ≥ lim inf
n→∞

µn(fN ) = µ(FN )→ µ(A) as N →∞.

– (ii) ⇔ (iii): Take complements.

– (iii) and (ii) ⇒ (iv): Take A such that µ(∂A) = 0. Then

µ(A) = µ(Å) = µ(Ā).

So we know that

lim inf
n→∞

µn(A) ≥ lim inf
n→∞

µn(Å) ≥ µ(Å) = µ(A).

Similarly, we find that

µ(A) ≥ lim sup
n→∞

µn(A).

So we are done.

– (iv) ⇒ (i): We have

µ(f) =

∫
M

f(x) dµ(x)

=

∫
M

∫ ∞
0

1f(x)≥t dt dµ(x)

=

∫ ∞
0

µ({f ≥ t}) dt.

Since f is continuous, ∂{f ≤ t} ⊆ {f = t}. Now there can be only
countably many t’s such that µ({f = t}) > 0. So replacing µ by limn→∞ µn
only changes the integrand at countably many places, hence doesn’t affect
the integral. So we conclude using bounded convergence theorem.
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– (iv) ⇒ (v): Assume t is a continuity point of Fµ. Then we have

µ(∂(−∞, t]) = µ({t}) = Fµ(t)− Fµ(t−) = 0.

So µn(∂n(−∞, t])→ µ((−∞, t]), and we are done.

– (v) ⇒ (ii): If A = (a, b), then

µn(A) ≥ Fµn(b′)− Fµn(a′)

for any a ≤ a′ ≤ b′ ≤ b with a′, b′ continuity points of Fµ. So we know
that

lim inf
n→∞

µn(A) ≥ Fµ(b′)− Fµ(a′) = µ(a′, b′).

By taking supremum over all such a′, b′, we find that

lim inf
n→∞

µn(A) ≥ µ(A).

Definition (Tight probability measures). A sequence of probability measures
(µn)n≥0 on a metric space (M, e) is tight if for all ε > 0, there exists compact
K ⊆M such that

sup
n
µn(M \K) ≤ ε.

Note that this is always satisfied for compact metric spaces.

Theorem (Prokhorov’s theorem). If (µn)n≥0 is a sequence of tight probability
measures, then there is a subsequence (µnk

)k≥0 and a measure µ such that
µnk
⇒ µ.

To see how this can fail without the tightness assumption, suppose we define
measures µn on R by

µn(A) = µ̃(A ∩ [n, n+ 1]),

where µ̃ is the Lebesgue measure. Then for any bounded set S, we have
limn→∞ µn(S) = 0. Thus, if the weak limit existed, it must be everywhere zero,
but this does not give a probability measure.

We shall prove this only in the case M = R. It is not difficult to construct a
candidate of what the weak limit should be. Simply use Bolzano–Weierstrass to
pick a subsequence of the measures such that the distribution functions converge
on the rationals. Then the limit would essentially be what we want. We then
apply tightness to show that this is a genuine distribution.

Proof. Take Q ⊆ R, which is dense and countable. Let x1, x2, . . . be an enumera-
tion of Q. Define Fn = Fµn

. By Bolzano–Weierstrass, and some fiddling around
with sequences, we can find some Fnk

such that

Fnk
(xi)→ yi ≡ F (xi)

as k →∞, for each fixed xi.
Since F is non-decreasing on Q, it has left and right limits everywhere. We

extend F to R by taking right limits. This implies F is cadlag.
Take x a continuity point of F . Then for each ε > 0, there exists s < x < t

rational such that
|F (s)− F (t)| < ε

2
.
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Take n large enough such that |Fn(s) − F (s)| < ε
4 , and same for t. Then by

monotonicity of F and Fn, we have

|Fn(x)− F (x)| ≤ |F (s)− F (t)|+ |Fn(s)− F (s)|+ |Fn(t)− F (t)| ≤ ε.

It remains to show that F (x) → 1 as x → ∞ and F (x) → 0 as x → −∞. By
tightness, for all ε > 0, there exists N > 0 such that

µn((−∞, N ]) ≤ ε, µn((N,∞) ≤ ε.

This then implies what we want.

We shall end the chapter with an alternative characterization of weak con-
vergence, using characteristic functions.

Definition (Characteristic function). Let X be a random variable taking values
in Rd. The characteristic function of X is the function Rd → C defined by

ϕX(t) = Eei〈t,x〉 =

∫
Rd

ei〈t,x〉 dµX(x).

Note that ϕX is continuous by bounded convergence, and ϕX(0) = 1.

Proposition. If ϕX = ϕY , then µX = µY .

Theorem (Lévy’s convergence theroem). Let (Xn)n≥0, X be random variables
taking values in Rd. Then the following are equivalent:

(i) µXn ⇒ µX as n→∞.

(ii) ϕXn
→ ϕX pointwise.

We will in fact prove a stronger theorem.

Theorem (Lévy). Let (Xn)n≥0 be as above, and let ϕXn(t) → ψ(t) for all t.
Suppose ψ is continuous at 0 and ψ(0) = 1. Then there exists a random variable
X such that ϕX = ψ and µXn

⇒ µX as n→∞.

We will only prove the case d = 1. We first need the following lemma:

Lemma. Let X be a real random variable. Then for all λ > 0,

µX(|x| ≥ λ) ≤ cλ
∫ 1/λ

0

(1− ReϕX(t)) dt,

where C = (1− sin 1)−1.

Proof. For M ≥ 1, we have∫ M

0

(1− cos t) dt = M − sinM ≥M(1− sin 1).

By setting M = |x|
λ , we have

1|X|≥λ ≤ C
λ

|X|

∫ |X|/λ
0

(1− cos t) dt.
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By a change of variables with t 7→ Xt, we have

1|X|≥λ ≤ cλ
∫ 1

0

(1− cosXt) dt.

Apply µX , and use the fact that ReϕX(t) = E cos(Xt).

We can now prove Lévy’s theorem.

Proof of theorem. It is clear that weak convergence implies convergence in char-
acteristic functions.

Now observe that if µn ⇒ µ iff from every subsequence (nk)k≥0, we can
choose a further subsequence (nk`) such that µnk`

⇒ µ as `→∞. Indeed, ⇒ is
clear, and suppose µn 6⇒ µ but satisfies the subsequence property. Then we can
choose a bounded and continuous function f such that

µn(f) 6⇒ µ(f).

Then there is a subsequence (nk)k≥0 such that |µnk
(f)− µ(f)| > ε. Then there

is no further subsequence that converges.
Thus, to show ⇐, we need to prove the existence of subsequential limits

(uniqueness follows from convergence of characteristic functions). It is enough to
prove tightness of the whole sequence.

By the mean value theorem, we can choose λ so large that

cλ

∫ 1/λ

0

(1− Reψ(t)) dt <
ε

2
.

By bounded convergence, we can choose λ so large that

cλ

∫ 1/λ

0

(1− ReϕXn
(t)) dt ≤ ε

for all n. Thus, by our previous lemma, we know (µXn
)n≥0 is tight. So we are

done.
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5 Brownian motion

Finally, we can begins studying Brownian motion. Brownian motion was first
observed by the botanist Robert Brown in 1827, when he looked at the random
movement of pollen grains in water. In 1905, Albert Einstein provided the first
mathematical description of this behaviour. In 1923, Norbert Wiener provided
the first rigorous construction of Brownian motion.

5.1 Basic properties of Brownian motion

Definition (Brownian motion). A continuous process (Bt)t≥0 taking values in
Rd is called a Brownian motion in Rd started at x ∈ Rd if

(i) B0 = x almost surely.

(ii) For all s < t, the increment Bt −Bs ∼ N(0, (t− s)I).

(iii) Increments are independent. More precisely, for all t1 < t2 < · · · < tk, the
random variables

Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1

are independent.

If B0 = 0, then we call it a standard Brownian motion.

We always assume our Brownian motion is standard.

Theorem (Wiener’s theorem). There exists a Brownian motion on some proba-
bility space.

Proof. We first prove existence on [0, 1] and in d = 1. We wish to apply
Kolmogorov’s criterion.

Recall that Dn are the dyadic numbers. Let (Zd)d∈D be iid N(0, 1) random
variables on some probability space. We will define a process on Dn inductively
on n with the required properties. We wlog assume x = 0.

In step 0, we put
B0 = 0, B1 = Z1.

Assume that we have already constructed (Bd)d∈Dn−1
satisfying the properties.

Take d ∈ Dn \Dn−1, and set

d± = d± 2−n.

These are the two consecutive numbers in Dn−1 such that d− < d < d+. Define

Bd =
Bd+ +Bd−

2
+

1

2(n+1)/2
Zd.

The condition (i) is trivially satisfied. We now have to check the other two
conditions.

Consider

Bd+ −Bd =
Bd+ −Bd−

2
− 1

2(n+1)/2
Zd

Bd −Bd− =
Bd+ −Bd−

2︸ ︷︷ ︸
N

+
1

2(n+1)/2
Zd︸ ︷︷ ︸

N ′

.
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Notice that N and N ′ are normal with variance var(N ′) = var(N) = 1
2n+1 . In

particular, we have

cov(N −N ′, N +N ′) = var(N)− var(N ′) = 0.

So Bd+ −Bd and Bd −Bd− are independent.
Now note that the vector of increments of (Bd)d∈Dn between consecutive

numbers in Dn is Gaussian, since after dotting with any vector, we obtain a
linear combination of independent Gaussians. Thus, to prove independence, it
suffice to prove that pairwise correlation vanishes.

We already proved this for the case of increments between Bd and Bd± , and
this is the only case that is tricky, since they both involve the same Zd. The
other cases are straightforward, and are left as an exercise for the reader.

Inductively, we can construct (Bd)d∈D, satisfying (i), (ii) and (iii). Note that
for all s, t ∈ D, we have

E|Bt −Bs|p = |t− s|p/2E|N |p

for N ∼ N(0, 1). Since E|N |p <∞ for all p, by Kolmogorov’s criterion, we can
extend (Bd)d∈D to (Bt)t∈[0,1]. In fact, this is α-Hölder continuous for all α < 1

2 .
Since this is a continuous process and satisfies the desired properties on

a dense set, it remains to show that the properties are preserved by taking
continuous limits.

Take 0 ≤ t1 < t2 < · · · < tm ≤ 1, and 0 ≤ tn1 < tn2 < · · · < tnm ≤ 1 such that
tni ∈ Dn and tni → ti as n→∞ and i = 1, . . .m.

We now apply Lévy’s convergence theorem. Recall that if X is a random
variable in Rd and X ∼ N(0,Σ), then

ϕX(u) = exp

(
−1

2
uTΣu

)
.

Since (Bt)t∈[0,1] is continuous, we have

ϕ(Btn2
−Btn1

,...,Btnm
−Bn

tm−1
)(u) = exp

(
−1

2
uTΣu

)
= exp

(
−1

2

m−1∑
i=1

(tni+1 − tni )u2
i

)
.

We know this converges, as n→∞, to exp
(
− 1

2

∑m−1
i=1 (ti+1 − ti)u2

i

)
.

By Lévy’s convergence theorem, the law of (Bt2 −Bt1 , Bt3 −Bt2 , . . . , Btn −
Btm−1

) is Gaussian with the right covariance. This implies that (ii) and (iii)
hold on [0, 1].

To extend the time to [0,∞), we define independent Brownian motions
(Bit)t∈[0,1],i∈N and define

Bt =

btc−1∑
i=0

Bi1 +B
btc
t−btc

To extend to Rd, take the product of d many independent one-dimensional
Brownian motions.
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Lemma. Brownian motion is a Gaussian process, i.e. for any 0 ≤ t1 < t2 <
· · · < tm ≤ 1, the vector (Bt1 , Bt2 , . . . , Btn) is Gaussian with covariance

cov(Bt1 , Bt2) = t1 ∧ t2.

Proof. We know (Bt1 , Bt2 − Bt1 , . . . , Btm − Btm−1
) is Gaussian. Thus, the

sequence (Bt1 , . . . , Btm) is the image under a linear isomorphism, so it is Gaussian.
To compute covariance, for s ≤ t, we have

cov(Bs, Bt) = EBsBt = EBsBT − EB2
s + EB2

s = EBs(Bt −Bs) + EB2
s = s.

Proposition (Invariance properties). Let (Bt)t≥0 be a standard Brownian
motion in Rd.

(i) If U is an orthogonal matrix, then (UBt)t≥0 is a standard Brownian motion.

(ii) Brownian scaling : If a > 0, then (a−1/2Bat)t≥0 is a standard Brownian
motion. This is known as a random fractal property .

(iii) (Simple) Markov property : For all s ≥ 0, the sequence (Bt+s −Bs)t≥0 is a
standard Brownian motion, independent of (FBs ).

(iv) Time inversion: Define a process

Xt =

{
0 t = 0

tB1/t t > 0
.

Then (Xt)t≥0 is a standard Brownian motion.

Proof. Only (iv) requires proof. It is enough to prove that Xt is continuous and
has the right finite-dimensional distributions. We haves

(Xt1 , . . . , Xtm) = (t1B1/t1 , . . . , tmB1/tm).

The right-hand side is the image of (B1/t1 , . . . , B1/tm) under a linear isomorphism.
So it is Gaussian. If s ≤ t, then the covariance is

cov(sBs, tBt) = st cov(B1/s, B1/t) = st

(
1

s
∧ 1

t

)
= s = s ∧ t.

Continuity is obvious for t > 0. To prove continuity at 0, we already proved that
(Xq)q>0,q∈Q has the same law (as a process) as Brownian motion. By continuity
of Xt for positive t, we have

P
(

lim
q∈Q+,q→0

Xq = 0

)
= P

(
lim

q∈Q+,q→0
Bq = 0

)
= 1B

by continuity of B.

Using the natural filtration, we have

Theorem. For all s ≥ t, the process (Bt+s −Bs)t≥0 is independent of F+
s .
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Proof. Take a sequence sn → s such that sn > s for all n. By continuity,

Bt+s −Bs = lim
n→∞

Bt+sn −Bsn

almost surely. Now each of Bt+sn −Bsn is independent of F+
s , and hence so is

the limit.

Theorem (Blumenthal’s 0-1 law). The σ-algebra F+
0 is trivial, i.e. if A ∈ F+

0 ,
then P(A) ∈ {0, 1}.

Proof. Apply our previous theorem. Take A ∈ F+
0 . Then A ∈ σ(Bs : s ≥ 0). So

A is independent of itself.

Proposition.

(i) If d = 1, then

1 = P(inf{t ≥ 0 : Bt > 0} = 0)

= P(inf{t ≥ 0 : Bt < 0} = 0)

= P(inf{t > 0 : Bt = 0} = 0)

(ii) For any d ≥ 1, we have

lim
t→∞

Bt
t

= 0

almost surely.

(iii) If we define
St = sup

0≤s≤t
Bt, It = inf

0≤s≤t
Bt,

then S∞ =∞ and I∞ = −∞ almost surely.

(iv) If A is open an Rd, then the cone of A is CA = {tx : x ∈ A, t > 0}. Then
inf{t ≥ 0 : Bt ∈ CA} = 0 almost surely.

Thus, Brownian motion is pretty chaotic.

Proof.

(i) It suffices to prove the first equality. Note that the event {inf{t ≥ 0 : Bk >
0} = 0} is trivial. Moreover, for any finite t, the probability that Bt > 0 is
1
2 . Then take a sequence tn such that tn → 0, and apply Fatou to conclude
that the probability is positive.

(ii) Follows from the previous one since tB1/t is a Brownian motion.

(iii) By scale invariance, because S∞ = aS∞ for all a > 0.

(iv) Same as (i).

Theorem (Strong Markov property). Let (Bt)t≥0 be a standard Brownian
motion in Rd, and let T be an almost-surely finite stopping time with respect to
(F+

t )t≥0. Then

B̃t = BT+t −BT
is a standard Brownian motion with respect to (F+

T+t)t≥0 that is independent of

F+
T .
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Proof. Let Tn = 2−nd2nT e. We first prove the statement for Tn. We let

B
(k)
t = Bt+k/2n −Bk/2n

This is then a standard Browninan motion independent of F+
k/2n by the simple

Markov property. Let
B∗(t) = Bt+Tn −BTn .

Let A be the σ-algebra on C = C([0,∞),Rd), and A ∈ A. Let E ∈ F+
Tn

. The
claim that B∗ is a standard Brownian motion independent of E can be concisely
captured in the equality

P({B∗ ∈ A} ∩ E) = P({B ∈ A})P(E). (†)

Taking E = Ω tells us B∗ and B have the same law, and then taking general E
tells us B∗ is independent of F+

Tn
.

It is a straightforward computation to prove (†). Indeed, we have

P({B∗ ∈ A} ∩ E) =

∞∑
k=0

P
(
{B(k) ∈ A} ∩ E ∩

{
Tn =

k

2n

})
Since E ∈ F+

Tn
, we know E ∩ {Tn = k/2n} ∈ F+

k/2n . So by the simple Markov

property, this is equal to

=

∞∑
k=0

P({B(k) ∈ A})P
(
E ∩

{
Tn =

k

2n

})
.

But we know Bk is a standard Brownian motion. So this is equal to

=

∞∑
b=0

P({B ∈ A})P
(
E ∩

{
Tn =

k

2n

})
= P({B ∈ A})P(E).

So we are done.
Now as n→∞, the increments of B∗ converge almost surely to the increments

of B̃, since B is continuous and Tn ↘ T almost surely. But B∗ all have the same
distribution, and almost sure convergence implies convergence in distribution.
So B̃ is a standard Brownian motion. Being independent of F+

T is clear.

We know that we can reset our process any time we like, and we also know
that we have a bunch of invariance properties. We can combine these to prove
some nice results.

Theorem (Reflection principle). Let (Bt)T≥0 and T be as above. Then the

reflected process (B̃t)t≥0 defined by

B̃t = Bt1t<T + (2BT −Bt)1t≥T

is a standard Brownian motion.

Of course, the fact that we are reflecting is not important. We can apply any
operation that preserves the law. This theorem is “obvious”, but we can be a
bit more careful in writing down a proof.
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Proof. By the strong Markov property, we know

BTt = BT+t −BT

and −BTt are standard Brownian motions independent of F+
T . This implies that

the pairs of random variables

P1 = ((Bt)0≤t≤T , (Bt)
T
t≥0), P2 = ((Bt)0≤t≤T , (−Bt)Tt≥0)

taking values in C × C have the same law on C × C with the product σ-algebra.
Define the concatenation map ψT (X,Y ) : C × C → C by

ψT (X,Y ) = Xt1t<T + (XT + Yt−T )1t≥T .

Assuming Y0 = 0, the resulting process is continuous.
Notice that ψT is a measurable map, which we can prove by approximations

of T by discrete stopping times. We then conclude that ψT (P1) has the same
law as ψT (P2).

Corollary. Let (Bt)T≥0 be a standard Brownian motion in d = 1. Let b > 0
and a ≤ b. Let

St = sup
0≤s≤t

Bt.

Then
P(St ≥ b, Bt ≤ a) = P(Bt ≥ 2b− a).

Proof. Consider the stopping time T given by the first hitting time of b. Since
S∞ =∞, we know T is finite almost surely. Let (B̃t)t≥0 be the reflected process.
Then

{St ≥ b, Bt ≤ a} = {B̃t ≥ 2b− a}.

Corollary. The law of St is equal to the law of |Bt|.

Proof. Apply the previous process with b = a to get

P(St ≥ a) = P(St ≥ a,Bt < a) + P(St ≥ a,Bt ≥ a)

= P(Bt ≥ a) + P(Bt ≥ a)

= P(Bt ≤ a) + P(Bt ≥ a)

= P(|Bt| ≥ a).

Proposition. Let d = 1 and (Bt)t≥0 be a standard Brownian motion. Then
the following processes are (F+

t )t≥0 martingales:

(i) (Bt)t≥0

(ii) (B2
t − t)t≥0

(iii)
(

exp
(
uBt − u2t

2

))
t≥0

for u ∈ R.

Proof.

(i) Using the fact that Bt −Bs is independent of F+
s , we know

E(Bt −Bs | F+
s ) = E(Bt −Bs) = 0.
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(ii) We have

E(B2
t − t | F+

s ) = E((Bt −Bs)2 | Fs)− E(B2
s | F+

s ) + 2E(BtBs | F+
s )− t

We know Bt −Bs is independent of F+
s , and so the first term is equal to

var(Bt −Bs) = (t− s), and we can simply to get

= (t− s)−B2
s + 2B2

s − t
= B2

s − s.

(iii) Similar.

5.2 Harmonic functions and Brownian motion

Recall that a Markov chain plus a harmonic function gave us a martingale. We
shall derive similar results here.

Definition (Domain). A domain is an open connected set D ⊆ Rd.

Definition (Harmonic function). A function u : D → R is called harmonic if

∆f =

d∑
i=1

∂2f

∂x2
i

= 0.

There is also an alternative characterization of harmonic functions that
involves integrals instead of derivatives.

Lemma. Let u : D → R be measurable and locally bounded. Then the following
are equivalent:

(i) u is twice continuously differentiable and ∆u = 0.

(ii) For any x ∈ D and r > 0 such that B(x, r) ⊆ D, we have

u(x) =
1

Vol(B(x, r))

∫
B(x,r)

u(y) dy

(iii) For any x ∈ D and r > 0 such that B(x, r) ⊆ D, we have

u(x) =
1

Area(∂B(x, r))

∫
∂B(x,r)

u(y) dy.

The latter two properties are known as the mean value property .

Proof. IA Vector Calculus.

Theorem. Let (Bt)t≥0 be a standard Brownian motion in Rd, and u : Rd → R
be harmonic such that

E|u(x+Bt)| <∞

for any x ∈ Rd and t ≥ 0. Then the process (u(Bt))t≥0 is a martingale with
respect to (F+

t )t≥0.

To prove this, we need to prove a side lemma:
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Lemma. If X and Y are independent random variables in Rd, and X is G-
measurable. If f : Rd × Rd → R is such that f(X,Y ) is integrable, then

E(f(X,Y ) | G) = Ef(z, Y )|z=X .

Proof. Use Fubini and the fact that µ(X,Y ) = µX ⊗ µY .

Observe that if µ is a probability measure in Rd such that the density of µ
with respect to the Lebesgue measure depends only on |x|, then if u is harmonic,
the mean value property implies

u(x) =

∫
Rd

u(x+ y) dµ(y).

Proof of theorem. Let t ≥ s. Then

E(u(Bt) | F+
s ) = E(u(Bs + (Bt −Bs)) | F+

s )

= E(u(z +Bt −Bs))|Z=Bs

= u(z)|z=Bs

= u(Bs).

In fact, the following more general result is true:

Theorem. Let f : Rd → R be twice continuously differentiable with bounded
derivatives. Then, the processes (Xt)t≥0 defined by

Xt = f(Bt)−
1

2

∫ t

0

∆f(Bs) ds

is a martingale with respect to (F+
t )t≥0.

We shall not prove this, but we can justify this as follows: suppose we have
a sequence of independent random variables {X1, X2, . . .}, with

P(Xi = ±1) =
1

2
.

Let Sn = X1 + · · ·+Xn. Then

E(f(Sn+1) | S1, . . . , Sn)−f(Sn) =
1

2
(f(Sn−1)+f(Sn+1)−2f(sn)) ≡ 1

2
∆̃f(Sn),

and we see that this is the discretized second derivative. So

f(Sn)− 1

2

n−1∑
i=0

∆̃f(Si)

is a martingale.
Now the mean value property of a harmonic function u says if we draw a

sphere B centered at x, then u(x) is the average value of u on B. More generally,
if we have a surface S containing x, is it true that u(x) is the average value of u
on S in some sense?
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Remarkably, the answer is yes, and the precise result is given by Brownian
motion. Let (Xt)t≥0 be a Brownian motion started at x, and let T be the first
hitting time of S. Then, under certain technical conditions, we have

u(x) = Exu(XT ).

In fact, given some function ϕ defined on the boundary of D, we can set

u(x) = Exϕ(XT ),

and this gives us the (unique) solution to Laplace’s equation with the boundary
condition given by ϕ.

It is in fact not hard to show that the resulting u is harmonic in D, since
it is almost immediate by construction that u(x) is the average of u on a small
sphere around x. The hard part is to show that u is in fact continuous at the
boundary, so that it is a genuine solution to the boundary value problem. This
is where the technical condition comes in.

First, we quickly establish that solutions to Laplace’s equation are unique.

Definition (Maximum principle). Let u : D̄ → R be continuous and harmonic.
Then

(i) If u attains its maximum inside D, then u is constant.

(ii) If D is bounded, then the maximum of u in D̄ is attained at ∂D.

Thus, harmonic functions do not have interior maxima unless it is constant.

Proof. Follows from the mean value property of harmonic functions.

Corollary. If u and u′ solve ∆u = ∆u′ = 0, and u and u′ agree on ∂D, then
u = u′.

Proof. u− u′ is also harmonic, and so attains the maximum at the boundary,
where it is 0. Similarly, the minimum is attained at the boundary.

The technical condition we impose on D is the following:

Definition (Poincaré cone condition). We say a domain D satisfies the Poincaré
cone condition if for any x ∈ ∂D, there is an open cone C based at X such that

C ∩D ∩B(x, δ) = ∅

for some δ ≥ 0.

Example. If D = R2 \ ({0} × R≥0), then D does not satisfy the Poincaré cone
condition.

And the technical lemma is as follows:

Lemma. Let C be an open cone in Rd based at 0. Then there exists 0 ≤ a < 1
such that if |x| ≤ 1

2k , then

Px(T∂B(0,1) < TC) ≤ ak.
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Proof. Pick
a = sup

|x|≤ 1
2

Px(T∂B(0,1) < TC) < 1.

We then apply the strong Markov property, and the fact that Brownian motion is
scale invariant. We reason as follows — if we start with |x| ≤ 1

2k , we may or may

not hit ∂B(2−k+1) before hitting C. If we don’t, then we are happy. If we are not,
then we have reached ∂B(2−k+1). This happens with probability at most a. Now
that we are at ∂B(2−k+1), the probability of hitting ∂B(2−k+2) before hitting
the cone is at most a again. If we hit ∂B(2−k+3), we again have a probability of
≤ a of hitting ∂B(2−k+4), and keep going on. Then by induction, we find that
the probability of hitting ∂B(0, 1) before hitting the cone is ≤ ak.

The ultimate theorem is then

Theorem. Let D be a bounded domain satisfying the Poincaré cone condition,
and let ϕ : ∂D → R be continuous. Let

T∂D = inf{t ≥ 0 : Bt ∈ ∂D}.

This is a bounded stopping time. Then the function u : D̄ → R defined by

u(x) = Ex(ϕ(BT∂D
)),

where Ex is the expectation if we start at x, is the unique continuous function
such that u(x) = ϕ(x) for x ∈ ∂D, and ∆u = 0 for x ∈ D.

Proof. Let τ = T∂B(x,δ) for δ small. Then by the strong Markov property and
the tower law, we have

u(x) = Ex(u(xτ )),

and xτ is uniformly distributed over ∂B(x, δ). So we know u is harmonic in the
interior of D, and in particular is continuous in the interior. It is also clear that
u|∂D = ϕ. So it remains to show that u is continuous up to D̄.

So let x ∈ ∂D. Since ϕ is continuous, for every ε > 0, there is δ > 0 such
that if y ∈ ∂D and |y − x| < δ, then |ϕ(y)− ϕ(x)| ≤ ε.

Take z ∈ D̄ such that |z − x| ≤ δ
2 . Suppose we start our Brownian motion at

z. If we hit the boundary before we leave the ball, then we are in good shape. If
not, then we are sad. But if the second case has small probability, then since ϕ
is bounded, we can still be fine.

Pick a cone C as in the definition of the Poincaré cone condition, and assume
we picked δ small enough that C ∩B(x, δ) ∩D = ∅. Then we have

|u(z)− ϕ(x)| = |Ez(ϕ(BT∂D
))− ϕ(x)|

≤ Ez|ϕ(BT∂D
− ϕ(x))|

≤ εPz(TB(x,δ) > T∂D) + 2 sup ‖ϕ‖Pz(T∂D > T∂B(x,δ))

≤ ε+ 2‖ϕ‖∞Pz(TB(x,δ) ≤ TC),

and we know the second term → 0 as z → x.
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5.3 Transience and recurrence

Theorem. Let (Bt)t≥0 be a Brownian motion in Rd.

– If d = 1, then (Bt)t≥0 is point recurrent , i.e. for each x, z ∈ R, the set
{t ≥ 0 : Bt = z} is unbounded Px-almost surely.

– If d = 2, then (Bt)t≥0 is neighbourhood recurrent , i.e. for each x ∈ R2 and
U ⊆ R2 open, the set {t ≥ 0 : Bt ∈ U} is unbounded Px-almost surely.
However, the process does not visit points, i.e. for all x, z ∈ Rd, we have

PX(Bt = z for some t > 0) = 0.

– If d ≥ 3, then (Bt)t≥0 is transient , i.e. |Bt| → ∞ as t → ∞ Px-almost
surely.

Proof.

– This is trivial, since inft≥0Bt = −∞ and supt≥0Bt = ∞ almost surely,
and (Bt)t≥0 is continuous.

– It is enough to prove for x = 0. Let 0 < ε < R <∞ and ϕ ∈ C2
b (R2) such

that ϕ(x) = log |x| for ε ≤ |x| ≤ R. It is an easy exercise to check that this
is harmonic inside the annulus. By the theorem we didn’t prove, we know

Mt = ϕ(Bt)−
1

2

∫ t

0

∆ϕ(Bs) ds

is a martingale. For λ ≥ 0, let Sλ = inf{t ≥ 0 : |Bt| = λ}. If ε ≤ |x| ≤ R,
then H = Sε ∧ SR is PX -almost surely finite. Then MH is a bounded
martingale. By optional stopping, we have

Ex(log |BH |) = log |x|.

But the LHS is

log εP(Sε < SR) + logRP(SR < Sε).

So we find that

Px(Sε < SR) =
logR− log |x|
logR− log ε

. (∗)

Note that if we let R→∞, then SR →∞ almost surely. Using (∗), this
implies PX(Sε <∞) = 1, and this does not depend on x. So we are done.

To prove that (Bt)t≥0 does not visit points, let ε → 0 in (∗) and then
R→∞ for x 6= z = 0.

– It is enough to consider the case d = 3. As before, let ϕ ∈ C2
b (R3) be such

that

ϕ(x) =
1

|x|
for ε ≤ x ≤ 2. Then ∆ϕ(x) = 0 for ε ≤ x ≤ R. As before, we get

Px(Sε < SR) =
|x|−1 − |R|−1

ε−1 −R−1
.
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As R→∞, we have

Px(Sε <∞) =
ε

x
.

Now let
An = {Bt ≥ n for all t ≥ BTn3}.

Then

P0(Acn) =
1

n2
.

So by Borel–Cantelli, we know only finitely of Acn occur almost surely. So
infinitely many of the An hold. This guarantees our process →∞.

5.4 Donsker’s invariance principle

To end our discussion on Brownian motion, we provide an alternative construction
of Brownian motion, given by Donsker’s invariance principle. Suppose we run any
simple random walk on Zd. We can think of this as a very coarse approximation
of a Brownian motion. As we zoom out, the step sizes in the simple random
walk look smaller and smaller, and if we zoom out sufficiently much, then we
might expect that the result looks like Brownian motion, and indeed it converges
to Brownian motion in the limit.

Theorem (Donsker’s invariance principle). Let (Xn)n≥0 be iid random variables
with mean 0 and variance 1, and set Sn = X1 + · · ·+Xn. Define

St = (1− {t})sbtc + {t}Sbtc+1.

where {t} = t− btc.
Define

(S
[N ]
t )t≥0 = (N−1/2St·N )t∈[0,1].

As (S
[N ]
t )t∈[0,1] converges in distribution to the law of standard Brownian motion

on [0, 1].

The reader might wonder why we didn’t construct our Brownian motion
this way instead of using Wiener’s theorem. The answer is that our proof of
Donsker’s invariance principle relies on the existence of a Brownian motion! The
relevance is the following theorem:

Theorem (Skorokhod embedding theorem). Let µ be a probability measure on
R with mean 0 and variance σ2. Then there exists a probability space (Ω,F ,P)
with a filtration (Ft)t≥0 on which there is a standard Brownian motion (Bt)t≥0

and a sequence of stopping times (Tn)n≥0 such that, setting Sn = BTn
,

(i) Tn is a random walk with steps of mean σ2

(ii) Sn is a random walk with step distribution µ.

So in some sense, Brownian motion contains all random walks with finite
variance.

The only stopping times we know about are the hitting times of some value.
However, if we take Tn to be the hitting time of some fixed value, then BTn

would be a pretty poor attempt at constructing a random walk. Thus, we may
try to come up with the following strategy — construct a probability space
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with a Brownian motion (Bt)t≥0, and an independent iid sequence (Xn)n∈N of
random variables with distribution µ. We then take Tn to be the first hitting
time of X1 + · · · + Xn. Then setting Sn = XTn

, property (ii) is by definition
satisfied. However, (i) will not be satisfied in general. In fact, for any y 6= 0, the
expected first hitting time of y is infinite! The problem is that if, say, y > 0, and
we accidentally strayed off to the negative side, then it could take a long time to
return.

The solution is to “split” µ into two parts, and construct two random variables
(X,Y ) ∈ [0,∞)2, such that if T is T is the first hitting time of (−X,Y ), then
BT has law µ.

Since we are interested in the stopping times T−x and Ty, the following
computation will come in handy:

Lemma. Let x, y > 0. Then

P0(T−x < Ty) =
y

x+ y
, E0T−x ∧ Ty = xy.

Proof sketch. Use optional stopping with (B2
t − t)t≥0.

Proof of Skorokhod embedding theorem. Define Borel measures µ± on [0,∞) by

µ±(A) = µ(±A).

Note that these are not probability measures, but we can define a probability
measure ν on [0,∞)2 given by

dν(x, y) = C(x+ y) dµ−(x) dµ+(y)

for some normalizing constant C (this is possible since µ is integrable). This
(x+ y) is the same (x+ y) appearing in the denominator of P0(T−x < Ty) = y

x+y .

Then we claim that any (X,Y ) with this distribution will do the job.
We first figure out the value of C. Note that since µ has mean 0, we have

C

∫ ∞
0

x dµ−(x) = C

∫ ∞
0

y dµ+(y).

Thus, we have

1 =

∫
C(x+ y) dµ−(x) dµ+(y)

= C

∫
x dµ−(x)

∫
dµ+(y) + C

∫
y dµ+(y)

∫
dµ−(x)

= C

∫
x dµ−(x)

(∫
dµ+(y) +

∫
dµ−(x)

)
= C

∫
x dµ−(x) = C

∫
y dµ+(y).

We now set up our notation. Take a probability space (Ω,F ,P) with a stan-
dard Brownian motion (Bt)t≥0 and a sequence ((Xn, Yn))n≥0 iid with distribution
ν and independent of (Bt)t≥0.

Define
F0 = σ((Xn, Yn), n = 1, 2, . . .), Ft = σ(F0,FBt ).
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Define a sequence of stopping times

T0 = 0, Tn+1 = inf{t ≥ Tn : Bt −BTn
∈ {−Xn+1, Yn+1}}.

By the strong Markov property, it suffices to prove that things work in the case
n = 1. So for convenience, let T = T1, X = X1, Y = Y1.

To simplify notation, let τ : C([0, 1],R)× [0,∞)2 → [0,∞) be given by

τ(ω, x, y) = inf{t ≥ 0 : ω(t) ∈ {−x, y}}.

Then we have
T = τ((Bt)t≥0, X, Y ).

To check that this works, i.e. (ii) holds, if A ⊆ [0,∞), then

P(BT ∈ A) =

∫
[0,∞)2

∫
C([0,∞),R)

1τ(ω,x,y)∈A dµB(ω) dν(x, y).

Using the first part of the previous computation, this is given by∫
[0,∞)2

x

x+ y
1y∈A C(x+ y) dµ−(x) dµ+(y) = µ+(A).

We can prove a similar result if A ⊆ (−∞, 0). So BT has the right law.
To see that T is also well-behaved, we compute

ET =

∫
[0,∞)2

∫
C([0,1],R)

τ(ω, x, y) dµB(ω) dν(x, y)

=

∫
[0,∞)2

xy dν(x, y)

= C

∫
[0,∞)2

(x2y + yx2) dµ−(x) dµ+(y)

=

∫
[0,∞)

x2 dµ−(x) +

∫
[0,∞)

y2 dµ+(y)

= σ2.

The idea of the proof of Donsker’s invariance principle is that in the limit of
large N , the Tn are roughly regularly spaced, by the law of large numbers, so
this allows us to reverse the above and use the random walk to approximate the
Brownian motion.

Proof of Donsker’s invariance principle. Let (Bt)t≥0 be a standard Brownian
motion. Then by Brownian scaling,

(B
(N)
t )t≥0 = (N1/2Bt/N )t≥0

is a standard Brownian motion.
For every N > 0, we let (T

(N)
n )n≥0 be a sequence of stopping times as in the

embedding theorem for B(N). We then set

S(N)
n = B

(N)

T
(N)
n

.
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For t not an integer, define S
(N)
t by linear interpolation. Observe that

((T (N)
n )n≥0, S

(N)
t ) ∼ ((T (1)

n )n≥0, S
(1)
t ).

We define

S̃
(N)
t = N−1/2S

(N)
tN , T̃ (N)

n =
T

(N)
n

N
.

Note that if t = n
N , then

S̃
(N)
n/N = N−1/2S(N)

n = N−1/2B
(N)

T
(N)
n

= B
T

(N)
n /N

= BT̃N
n
. (∗)

Note that (S̃
(N)
t )t≥0 ∼ (S

(N)
t )t≥0. We will prove that we have convergence in

probability, i.e. for any δ > 0,

P
(

sup
0≤t<1

|S̃(N)
t −Bt| > δ

)
= P(‖S̃(N) −B‖∞ > δ)→ 0 as N →∞.

We already know that S̃ and B agree at some times, but the time on S̃ is fixed
while that on B is random. So what we want to apply is the law of large numbers.
By the strong law of large numbers,

lim
n→∞

1

n
|T (1)
n − n| → 0 as n→ 0.

This implies that

sup
1≤n≤N

1

N
|T (1)
n − n| → 0 as N →∞.

Note that (T
(1)
n )n≥0 ∼ (T

(N)
n )n≥0, it follows for any δ > 0,

P

(
sup

1≤n≤N

∣∣∣∣∣T (N)
n

N
− n

N

∣∣∣∣∣ ≥ δ
)
→ 0 as N →∞.

Using (∗) and continuity, for any t ∈ [ nN ,
n+1
N ], there exists u ∈ [T

(N)
n/N , T

(N)
(n+1)/N ]

such that
S̃

(N)
t = Bu.

Note that if times are approximated well up to δ, then |t− u| ≤ δ + 1
N .

Hence we have

{‖S̃ −B‖∞ > ε} ≤
{∣∣∣T̃ (N)

n − n

N

∣∣∣ > δ for some n ≤ N
}

∪
{
|Bt −Bu| > ε for some t ∈ [0, 1], |t− u| < δ +

1

N

}
.

The first probability → 0 as n→∞. For the second, we observe that (Bt)T∈[0,1]

has uniformly continuous paths, so for ε > 0, we can find δ > 0 such that the
second probability is less than ε whenever N > 1

δ (exercise!).

So S̃(N) → B uniformly in probability, hence converges uniformly in distri-
bution.
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6 Large deviations

So far, we have been interested in the average or “typical” behaviour of our
processes. Now, we are interested in “extreme cases”, i.e. events with small
probability. In general, our objective is to show that these probabilities tend to
zero very quickly.

Let (Xn)n≥0 be a sequence of iid integrable random variables in R and mean
value EX1 = x̄ and finite variance σ2. We let

Sn = X1 + · · ·+Xn.

By the central limit theorem, we have

P(Sn ≥ nx̄+
√
nσa)→ P(Z ≥ a) as n→∞,

where Z ∼ N(0, 1). This implies

P(Sn ≥ an)→ 0

for any a > x̄. The question is then how fast does this go to zero?
There is a very useful lemma in the theory of sequences that tells us this

vanishes exponentially quickly with n. Note that

P(Sm+n ≥ a(m+ n)) ≥ P(Sm ≥ am)P(Sn ≥ an).

So the sequence P(Sn ≥ an) is super-multiplicative. Thus, the sequence

bn = − logP(Sn ≥ an)

is sub-additive.

Lemma (Fekete). If bn is a non-negative sub-additive sequence, then limn
bn
n

exists.

This implies the rate of decrease is exponential. Can we do better than that,
and point out exactly the rate of decrease?

For λ ≥ 0, consider the moment generating function

M(λ) = EeλX1 .

We set ψ(λ) = logM(λ), and the Legendre transform of ψ is

ψ∗(a) = sup
λ≥0

(aλ− ψ(λ)).

Note that these things may be infinite.

Theorem (Cramér’s theorem). For a > x̄, we have

lim
n→∞

1

n
logP(Sn ≥ an) = −ψ∗(a).

Note that we always have

ψ∗(a) = sup
λ≥0

(aλ− ψ(λ)) ≥ −ψ(0) = 0.

57



6 Large deviations III Advanced Probability

Proof. We first prove an upper bound. For any λ, Markov tells us

P(Sn ≥ an) = P(eλSn ≥ eλan) ≤ e−λanEeλSn

= e−λan
n∏
i=1

EeλXi = e−λanM(λ)n = e−n(λa−ψ(λ)).

Since λ was arbitrary, we can pick λ to maximize λa−ψ(λ), and so by definition
of ψ∗(a), we have P(Sn ≥ an) ≤ e−nψ∗(a). So it follows that

lim sup
1

n
logP(Sn ≥ an) ≤ −ψ∗(a).

The lower bound is a bit more involved. One checks that by translating Xi by a,
we may assume a = 0, and in particular, x̄ < 0.

So we want to prove that

lim inf
n

1

n
logP(Sn ≥ 0) ≥ inf

λ≥0
ψ(λ).

We consider cases:

– If P(X ≤ 0) = 1, then

P(Sn ≥ 0) = P(Xi = 0 for i = 1, . . . n) = P(X1 = 0)n.

So in fact

lim inf
n

1

n
logP(Sn ≥ 0) = logP(X1 = 0).

But by monotone convergence, we have

P(X1 = 0) = lim
λ→∞

EeλX1 .

So we are done.

– Consider the case P(X1 > 0) > 0, but P(X1 ∈ [−K,K]) = 1 for some K.
The idea is to modify X1 so that it has mean 0. For µ = µX1

, we define a
new distribution by the density

dµθ

dµ
(x) =

eθx

M(θ)
.

We define

g(θ) =

∫
x dµθ(x).

We claim that g is continuous for θ ≥ 0. Indeed, by definition,

g(θ) =

∫
xeθx dµ(x)∫
eθx dµ(x)

,

and both the numerator and denominator are continuous in θ by dominated
convergence.

Now observe that g(0) = x̄, and

lim sup
θ→∞

g(θ) > 0.
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So by the intermediate value theorem, we can find some θ0 such that
g(θ0) = 0.

Define µθ0n to be the law of the sum of n iid random variables with law µθ0 .
We have

P(Sn ≥ 0) ≥ P(Sn ∈ [0, εn]) ≥ Eeθ0(Sn−εn)1Sn∈[0,εn],

using the fact that on the event Sn ∈ [0, εn], we have eθ0(Sn−εn) ≤ 1. So
we have

P(Sn ≥ 0) ≥M(θ0)ne−θ0εnµθ0n ({Sn ∈ [0, εn]}).
By the central limit theorem, for each fixed ε, we know

µθ0n ({Sn ∈ [0, εn]})→ 1

2
as n→∞.

So we can write

lim inf
n

1

n
logP(Sn ≥ 0) ≥ ψ(θ0)− θ0ε.

Then take the limit ε→ 0 to conclude the result.

– Finally, we drop the finiteness assumption, and only assume P(X1 > 0) > 0.
We define ν to be the law of X1 condition on the event {|X1| ≤ K}. Let
νn be the law of the sum of n iid random variables with law ν. Define

ψK(λ) = log

∫ K

−K
eλx dµ(x)

ψν(λ) = log

∫ ∞
−∞

eλx dν(x) = ψK(λ)− logµ({|X| ≤ K}).

Note that for K large enough,
∫
x dν(x) < 0. So we can use the previous

case. By definition of ν, we have

µn([0,∞)) ≥ ν([0,∞))µ(|X| ≤ K)n.

So we have

lim inf
n

1

n
logµ([0,∞)) ≥ logµ(|X| ≤ K) + lim inf log νn([0,∞))

≥ logµ(|X| ≤ K) + inf ψν(λ)

= inf
λ
ψK(λ)

= ψλK .

Since ψK increases as K increases to infinity, this increases to some J we
have

lim inf
n

1

n
logµn([0,∞)) ≥ J . (†)

Since ψK(λ) are continuous, {λ : ψK(λ) ≤ J} is non-empty, compact and
nested in K. By Cantor’s theorem, we can find

λ0 ∈
⋂
K

{λ : ψK(λ) ≤ J}.

So the RHS of (†) satisfies

J ≥ sup
K
ψK(λ0) = ψ(λ0) ≥ inf

λ
ψ(λ).
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discrete stochastic process, 14
distribution
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dominated convergence theorem, 6,
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finite-dimensional distribution, 30
Fubini’s theorem, 6

harmonic function, 27, 48
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increment, 42
integrable function, 6
integrable process, 14
integral, 5

Jensen’s inequality, 11

Kolmogorov 0-1 law, 24
Kolmogorov’s criterion, 30

Lévy’s convergence theorem, 40
Laplacian operator, 48
law, 37
Legendre transform, 57

Markov chain, 27
Markov property, 44
martingale, 14

continuous time, 33
martingale convergence theorem
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L1, 22, 36
Lp, 21, 36
almost sure, 18

maximal inequality, 20, 35
maximum principle, 50
mean value property, 48
measurable function, 4
measurable space, 4
measure, 4
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measure space, 4
moment generating function, 57

natural filtration, 14
neighbourhood recurrent, 52

optional stopping theorem, 16, 34

Poincaré cone condition, 50
point recurrent, 52
product σ-algebra, 6
product measure, 6
Prokhorov’s theorem, 39

Radon–Nikodym derivative, 26
Radon–Nikodym theorem, 26
random fractal property, 44
random variables, 6
realization, 6
reflection principle, 46
regularization, 35
right continuous filtration, 33

simple function, 5
Skorokhod embedding theorem, 53
standard Brownian motion, 42
stochastic process, 29

adapted, 14
cadlag, 29
continuous, 29
discrete, 14
integrable, 14

stopped process, 15
stopping time, 15, 32

continuous time, 32
strong Markov property, 45
sub-martingale, 14

continuous time, 33
super-martingale, 14

continuous time, 33

tail σ-algebra, 24
tight probability measures, 39
Tonelli’s theorem, 6
tower property, 11
transient, 52
transition matrix, 27
trivial σ-algebra, 24
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usual conditions, 33

version, 5, 35

weak convergence, 37
Wiener’s theorem, 42
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