Part III — Stochastic Calculus and Applications
Theorems with proof

Based on lectures by R. Bauerschmidt
Notes taken by Dexter Chua
Lent 2018

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

– Brownian motion. Existence and sample path properties.

– Stochastic calculus for continuous processes. Martingales, local martingales, semi-martingales, quadratic variation and cross-variation, Itô’s isometry, definition of the stochastic integral, Kunita–Watanabe theorem, and Itô’s formula.

Pre-requisites

Knowledge of measure theoretic probability as taught in Part III Advanced Probability will be assumed, in particular familiarity with discrete-time martingales and Brownian motion.
Contents

0 Introduction
1 The Lebesgue–Stieltjes integral
2 Semi-martingales
 2.1 Finite variation processes
 2.2 Local martingale
 2.3 Square integrable martingales
 2.4 Quadratic variation
 2.5 Covariation
 2.6 Semi-martingale
3 The stochastic integral
 3.1 Simple processes
 3.2 Itô isometry
 3.3 Extension to local martingales
 3.4 Extension to semi-martingales
 3.5 Itô formula
 3.6 The Lévy characterization
 3.7 Girsanov’s theorem
4 Stochastic differential equations
 4.1 Existence and uniqueness of solutions
 4.2 Examples of stochastic differential equations
 4.3 Representations of solutions to PDEs
0 Introduction

Proposition. Let H be any separable Hilbert space. Then there is a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a Gaussian subspace $S \subseteq L^2(\Omega, \mathcal{F}, \mathbb{P})$ and an isometry $I : H \to S$. In other words, for any $f \in H$, there is a corresponding random variable $I(f) \sim N(0, (f,f)_H)$. Moreover, $I(\alpha f + \beta g) = \alpha I(f) + \beta I(g)$ and $(f,g)_H = \mathbb{E}[I(f)I(g)]$.

Proof. By separability, we can pick a Hilbert space basis $(e_i)_{i=1}^{\infty}$ of H. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be any probability space that carries an infinite independent sequence of standard Gaussian random variables $X_i \sim N(0,1)$. Then send e_i to X_i, extend by linearity and continuity, and take S to be the image. \hfill \square

Proposition.

- For $A \subseteq \mathbb{R}_+$ with $|A| < \infty$, $WN(A) \sim N(0,|A|)$.
- For disjoint $A, B \subseteq \mathbb{R}_+$, the variables $WN(A)$ and $WN(B)$ are independent.
- If $A = \bigcup_{i=1}^{\infty} A_i$ for disjoint sets $A_i \subseteq \mathbb{R}_+$, with $|A| < \infty, |A_i| < \infty$, then

 $$WN(A) = \sum_{i=1}^{\infty} WN(A_i)$$

 in L^2 and a.s.

Proof. Only the last point requires proof. Observe that the partial sum

$$M_n = \sum_{i=1}^{n} WN(A)$$

is a martingale, and is bounded in L^2 as well, since

$$\mathbb{E}M_n^2 = \sum_{i=1}^{n} \mathbb{E}WN(A_i)^2 = \sum_{i=1}^{n} |A_i| \leq |A|.$$

So we are done by the martingale convergence theorem. The limit is indeed $WN(A)$ because $1_A = \sum_{n=1}^{\infty} 1_{A_n}$. \hfill \square
1 The Lebesgue–Stieltjes integral

Theorem. For any two finite measures μ_1, μ_2, there is a signed measure μ with $\mu(A) = \mu_1(A) - \mu_2(A)$.

Proof. Let $\nu = \mu_1 + \mu_2$. By Radon–Nikodym, there are positive functions f_1, f_2 such that $\mu_i(dt) = f_i(t) \nu(dt)$. Then

$$(\mu_1 - \mu_2)(dt) = (f_1 - f_2)^+(t) \cdot \nu(dt) + (f_1 - f_2)^-(t) \cdot \nu(dt).$$

\[\square \]

Theorem. There is a bijection

$$\{ \text{signed measures on } [0,T] \} \leftrightarrow \{ \text{càdlàg functions of bounded variation } a : [0,T] \to \mathbb{R} \}$$

that sends a signed measure μ to $a(t) = \mu([0,t])$. To construct the inverse, given a, we define

$$a_\pm = \frac{1}{2} (V_a \pm a).$$

Then a_\pm are both positive, and $a = a_+ - a_-$. We can then define μ_\pm by

$$\mu_\pm [0,t] = a_\pm(t) - a_\pm(0)$$

$$\mu = \mu_+ - \mu_-$$

Moreover, $V_{\mu[0,t]} = |\mu|[0,t]$.

Proposition. Let a be càdlàg and BV on $[0,t]$, and h bounded and left-continuous. Then

$$\int_0^t h(s) \, da(s) = \lim_{m \to \infty} \sum_{i=1}^m h(t^{(m)}_{i-1}) \left(a(t^{(m)}_i) - a(t^{(m)}_{i-1}) \right)$$

$$\int_0^t |h(s)| \, da(s) = \lim_{m \to \infty} \sum_{i=1}^m h(t^{(m)}_{i-1}) \left| a(t^{(m)}_i) - a(t^{(m)}_{i-1}) \right|$$

for any sequence of subdivisions $0 = t^{(m)}_0 < \cdots < t^{(m)}_{n-1} = t$ of $[0,t]$ with $\max_i |t^{(m)}_i - t^{(m)}_{i-1}| \to 0$.

Proof. We approximate h by h_m defined by

$$h_m(0) = 0, \quad h_m(s) = h(t^{(m)}_i) \text{ for } s \in (t^{(m)}_{i-1}, t^{(m)}_i].$$

Then by left continuity, we have

$$h(s) = \lim_{n \to \infty} h_m(s)$$

by left continuity, and moreover

$$\lim_{m \to \infty} \sum_{i=1}^m h(t^{(m)}_{i-1}) (a(t^{(m)}_i) - a(t^{(m)}_{i-1})) = \lim_{m \to \infty} \int_{[0,t]} h_m(s) \mu(\, ds) = \int_{[0,t]} h(s) \mu(\, ds)$$

by dominated convergence theorem. The statement about $|da(s)|$ is left as an exercise. \[\square \]
2 Semi-martingales

2.1 Finite variation processes

Proposition. The total variation process V of a càdlàg adapted process A is also càdlàg, finite variation and adapted, and it is also increasing.

Proof. We only have to check that it is adapted. But that follows directly from our previous expression of the integral as the limit of a sum. Indeed, let $0 = t^{(m)}_0 < t^{(m)}_1 < \cdots < t^{(m)}_n = t$ be a (nested) sequence of subdivisions of $[0, t]$ with $\max_i |t^{(m)}_i - t^{(m)}_{i-1}| \to 0$. We have seen

$$V_t = \lim_{m \to \infty} \sum_{i=1}^{n_m} |A^{(m)}_{t^i} - A^{(m)}_{t^{i-1}}| + |A(0)| \in \mathcal{F}_t.$$

Proof. Since X is càdlàg adapted, it is clear that H is left-continuous and adapted. Since H is left-continuous, it is approximated by simple processes. Indeed, let

$$H^n_t = \sum_{i=1}^{2^n} H_{(i-1)2^{-n}}1_{((i-1)2^{-n},i2^{-n})}(t) \land n \in \mathcal{E}.$$

Then $H^n_t \to H$ for all t by left continuity, and previsibility follows.

Proposition. Let A be a finite variation process, and H previsible such that

$$\int_0^t |H(\omega, s)| |dA(\omega, s)| < \infty \text{ for all } (\omega, t) \in \Omega \times [0, \infty).$$

Then $H \cdot A$ is a finite variation process.

Proof. The finite variation and càdlàg parts follow directly from the deterministic versions. We only have to check that $H \cdot A$ is adapted, i.e. $(H \cdot A)(\cdot, t) \in \mathcal{F}_t$ for all $t \geq 0$.

First, $H \cdot A$ is adapted if $H(\omega, s) = 1_{u,v}(s)1_E(\omega)$ for some $u < v$ and $E \in \mathcal{F}_u$, since

$$(H \cdot A)(\omega, t) = 1_E(\omega)(A(\omega, t \land v) - A(\omega, t \land u)) \in \mathcal{F}_t.$$

Thus, $H \cdot A$ is adapted for $H = 1_E$ when $F \in \Pi$. Clearly, Π is a π system, i.e. it is closed under intersections and non-empty, and by definition it generates the previsible σ-algebra \mathcal{P}. So to extend the adaptedness of $H \cdot A$ to all previsible H, we use the monotone class theorem.

We let

$$\mathcal{V} = \{H : \Omega \times [0, \infty) \to \mathbb{R} : H \cdot A \text{ is adapted}\}.$$

Then

(i) $1 \in \mathcal{V}$

(ii) $1_F \in \mathcal{V}$ for all $F \in \Pi$.

(iii) \mathcal{V} is closed under monotone limits.

So \mathcal{V} contains all bounded \mathcal{P}-measurable functions.

\[\square \]
2.2 Local martingale

Theorem (Optional stopping theorem). Let X be a càdlàg adapted integrable process. Then the following are equivalent:

(i) X is a martingale, i.e. $X_t \in L^1$ for every t, and

$$
E(X_t \mid F_s) = X_s \text{ for all } t > s.
$$

(ii) The stopped process $X^T = (X^T_t) = (X_{T \wedge t})$ is a martingale for all stopping times T.

(iii) For all stopping times T, S with T bounded, $X_T \in L^1$ and $E(X_T \mid F_S) = X_{T \wedge S}$ almost surely.

(iv) For all bounded stopping times T, $X_T \in L^1$ and $E(X_T) = E(X_0)$.

For X uniformly integrable, (iii) and (iv) hold for all stopping times.

Proposition. Let X be a local martingale and $X_t \geq 0$ for all t. Then X is a supermartingale.

Proof. Let (T_n) be a reducing sequence for X. Then

$$
E(X_t \mid F_s) = E \left(\liminf_{n \to \infty} X_{T_n \wedge t} \mid F_s \right)
\leq \lim_{n \to \infty} E(X_{T_n \wedge t} \mid F_s)
= \lim_{T_n \to \infty} X_{s \wedge T_n}
= X_s.
$$

Proposition. Let $X \in L^1(\Omega, \mathcal{F}, P)$. Then the set

$$
\chi = \{ E(X \mid G) : G \subseteq \mathcal{F} \text{ a sub-}\sigma\text{-algebra} \}
$$

is uniformly integrable, i.e.

$$
\sup_{Y \in \chi} E(|Y|1_{|Y| > \lambda}) \to 0 \text{ as } \lambda \to \infty.
$$

Theorem (Vitali theorem). $X_n \to X$ in L^1 iff (X_n) is uniformly integrable and $X_n \to X$ in probability.

Proposition. The following are equivalent:

(i) X is a martingale.

(ii) X is a local martingale, and for all $t \geq 0$, the set

$$
\chi_t = \{ X_T : T \text{ is a stopping time with } T \leq t \}
$$

is uniformly integrable.

Proof.
2 Semi-martingales

– (a) ⇒ (b): Let X be a martingale. Then by the optional stopping theorem, $X_T = \mathbb{E}(X_t \mid \mathcal{F}_T)$ for any bounded stopping time $T \leq t$. So χ_t is uniformly integrable.

– (b) ⇒ (a): Let X be a local martingale with reducing sequence (T_n), and assume that the sets χ_t are uniformly integrable for all $t \geq 0$. By the optional stopping theorem, it suffices to show that $\mathbb{E}(X_T) = \mathbb{E}(X_0)$ for any bounded stopping time T.

So let T be a bounded stopping time, say $T \leq t$. Then

$$\mathbb{E}(X_0) = \mathbb{E}(X_{T_n}^{T}) = \mathbb{E}(X_{T_n}^{T_n})$$

for all n. Now $T \wedge T_n$ is a stopping time $\leq t$, so $\{X_{T_n}^{T_n}\}$ is uniformly integrable by assumption. Moreover, $T_n \wedge T \rightarrow T$ almost surely as $n \rightarrow \infty$, hence $X_{T_n}^{T_n} \rightarrow X_T$ in probability. Hence by Vitali, this converges in L^1.

So $\mathbb{E}(X_T) = \mathbb{E}(X_0)$. □

Corollary. If $Z \in L^1$ is such that $|X_t| \leq Z$ for all t, then X is a martingale. In particular, every bounded local martingale is a martingale.

Proposition. Let X be a continuous local martingale with $X_0 = 0$. Define

$$S_n = \inf\{t \geq 0 : |X_t| = n\}.$$

Then S_n is a stopping time, $S_n \rightarrow \infty$ and X^{S_n} is a bounded martingale. In particular, (S_n) reduces X.

Proof. It is clear that S_n is a stopping time, since (if it is not clear)

$$\{S_n \leq t\} = \bigcap_{k \in \mathbb{N}} \left\{ \sup_{s \leq t} |X_s| > n - \frac{1}{k} \right\} = \bigcap_{k \in \mathbb{N}} \bigcup_{s \leq t, s \in \mathbb{Q}} \left\{ |X_s| > n - \frac{1}{k} \right\} \in \mathcal{F}_t.$$

It is also clear that $S_n \rightarrow \infty$, since

$$\sup_{s \leq t} |X_s| \leq n \leftrightarrow S_n \geq t,$$

and by continuity and compactness, $\sup_{s \leq t} |X_s|$ is finite for every (ω, t).

Finally, we show that X^{S_n} is a martingale. By the optional stopping theorem, $X^{T_n \wedge S_n}$ is a martingale, so X^{S_n} is a local martingale. But it is also bounded by n. So it is a martingale. □

Theorem. Let X be a continuous local martingale with $X_0 = 0$. If X is also a finite variation process, then $X_t = 0$ for all t.

Proof. Let X be a finite-variation continuous local martingale with $X_0 = 0$. Since X is finite variation, we can define the total variation process (V_t) corresponding to X, and let

$$S_n = \inf\{t \geq 0 : V_t \geq n\} = \inf\left\{ t \geq 0 : \int_0^1 |dX_s| \geq n \right\}.$$
Then S_n is a stopping time, and $S_n \to \infty$ since X is assumed to be finite variation. Moreover, by optional stopping, X^{S_n} is a local martingale, and is also bounded, since
\[X_t^{S_n} \leq \int_0^{t \wedge S_n} |dX_s| \leq n. \]
So X^{S_n} is in fact a martingale.

We claim its L^2-norm vanishes. Let $0 = t_0 < t_1 < \cdots < t_n = t$ be a subdivision of $[0, t]$. Using the fact that X^{S_n} is a martingale and has orthogonal increments, we can write
\[E((X_t^{S_n})^2) = \sum_{i=1}^k E((X_{t_i}^{S_n} - X_{t_{i-1}}^{S_n})^2). \]
Observe that X^{S_n} is finite variation, but the right-hand side is summing the square of the variation, which ought to vanish when we take the limit $\max |t_i - t_{i-1}| \to 0$. Indeed, we can compute
\[
E((X_t^{S_n})^2) = \sum_{i=1}^k E((X_{t_i}^{S_n} - X_{t_{i-1}}^{S_n})^2) \\
\leq E \left(\max_{1 \leq i \leq k} |X_{t_i}^{S_n} - X_{t_{i-1}}^{S_n}| \sum_{i=1}^k |X_{t_i}^{S_n} - X_{t_{i-1}}^{S_n}| \right) \\
\leq E \left(\max_{1 \leq i \leq k} |X_{t_i}^{S_n} - X_{t_{i-1}}^{S_n}| V_{t \wedge S_n} \right) \\
\leq E \left(\max_{1 \leq i \leq k} |X_{t_i}^{S_n} - X_{t_{i-1}}^{S_n}| n \right).
\]
Of course, the first term is also bounded by the total variation. Moreover, we can make further subdivisions so that the mesh size tends to zero, and then the first term vanishes in the limit by continuity. So by dominated convergence, we must have $E((X_t^{S_n})^2) = 0$. So $X_t^{S_n} = 0$ almost surely for all n. So $X_t = 0$ for all t almost surely.

2.3 Square integrable martingales

Theorem (Doob’s inequality). Let $X \in \mathcal{M}^2$. Then
\[E \left(\sup_{t \geq 0} X_t^2 \right) \leq 4E(X_\infty^2). \]

Theorem. \mathcal{M}^2 is a Hilbert space and \mathcal{M}_c^2 is a closed subspace.

Proof. We need to check that \mathcal{M}^2 is complete. Thus let $(X^n) \subseteq \mathcal{M}^2$ be a Cauchy sequence, i.e.
\[E((X^n_\infty - X^m_\infty)^2) \to 0 \text{ as } n, m \to \infty. \]
By passing to a subsequence, we may assume that
\[E((X^n_\infty - X^{n-1}_\infty)^2) \leq 2^{-n}. \]
First note that
\[E \left(\sum_{n \geq 0}^{\infty} \sup_{t \geq 0} |X^n_t - X^{n-1}_t| \right) \leq \sum_{n} \left(\sup_{t \geq 0} |X^n_t - X^{n-1}_t| \right)^{1/2} \] (CS)
\[\leq \sum_{n} 2E \left(|X^n_\infty - X^{n-1}_\infty| \right)^{1/2} \] (Doob’s)
\[\leq 2 \sum_{n} 2^{-n/2} < \infty. \]

So
\[\sum_{n=1}^{\infty} \sup_{t \geq 0} |X^n_t - X^{n-1}_t| < \infty \text{ a.s. (⋆)} \]

So on this event, \((X^n)\) is a Cauchy sequence in the space \((D[0, \infty), \| \cdot \|_\infty)\) of càdlàg sequences. So there is some \(X(\omega, \cdot) \in D[0, \infty)\) such that
\[\|X^n(\omega, \cdot) - X(\omega, \cdot)\|_\infty \rightarrow 0 \text{ for almost all } \omega. \]
and we set \(X = 0\) outside this almost sure event \((⋆)\). We now claim that
\[E \left(\sup_{t \geq 0} |X^n - X|^2 \right) \rightarrow 0 \text{ as } n \rightarrow \infty. \]

We can just compute
\[E \left(\sup_{t} |X^n - X|^2 \right) = E \left(\lim_{m \rightarrow \infty} \sup_{t} |X^n - X^m|^2 \right) \]
\[\leq \liminf_{m \rightarrow \infty} E \left(\sup_{t} |X^n - X^m|^2 \right) \] (Fatou)
\[\leq \liminf_{m \rightarrow \infty} 4E(X^n_\infty - X^m_\infty)^2 \] (Doob’s)
and this goes to 0 in the limit \(n \rightarrow \infty\) as well.

We finally have to check that \(X\) is indeed a martingale. We use the triangle inequality to write
\[\|E(X_t | F_s) - X_s\|_{L^2} \leq \|E(X_t - X^n_t | F_s)\|_{L^2} + \|X^n_t - X_s\|_{L^2} \]
\[\leq E((X_t - X^n_t)^2 | F_s))^{1/2} + \|X^n_t - X_s\|_{L^2} \]
\[= \|X_t - X^n_t\|_{L^2} + \|X^n_t - X_s\|_{L^2} \]
\[\leq 2E \left(\sup_{t} |X_t - X^n_t|^2 \right)^{1/2} \rightarrow 0 \]
as \(n \rightarrow \infty\). But the left-hand side does not depend on \(n\). So it must vanish. So \(X \in M^2\).

We could have done exactly the same with continuous martingales, so the second part follows.

\[\square \]

2.4 Quadratic variation

Theorem. Let \(M\) be a continuous local martingale with \(M_0 = 0\). Then there exists a unique (up to indistinguishability) continuous adapted increasing process
(\langle M_t \rangle_{t \geq 0} \text{ such that } \langle M \rangle_0 = 0 \text{ and } M_t^2 - \langle M \rangle_t \text{ is a continuous local martingale. Moreover,}

\langle M \rangle_t = \lim_{n \to \infty} \langle M \rangle_t^{(n)}, \quad \langle M \rangle_t^{(n)} = \sum_{i=1}^{2^n t} (M_{i2^{-n}} - M_{(i-1)2^{-n}})^2,

\text{where the limit u.c.p.}

Proof. To show uniqueness, we use that finite variation and local martingale are incompatible. Suppose \((A_t) \) and \((\tilde{A}_t) \) obey the conditions for \(\langle M \rangle \). Then \(A_t - \tilde{A}_t = (M_t^2 - A_t) - (M_t^2 - \tilde{A}_t) \) is a continuous adapted local martingale starting at 0. Moreover, both \(A_t \) and \(\tilde{A}_t \) are increasing, hence have finite variation. So \(A - \tilde{A} = 0 \) almost surely.

To show existence, we need to show that the limit exists and has the right property. We do this in steps.

Claim. The result holds if \(M \) is in fact bounded.

Suppose \(|M(\omega, t)| \leq C \) for all \((\omega, t) \). Then \(M \in \mathcal{M}_c^2 \). Fix \(T > 0 \) deterministic. Let

\[X_n^T = \sum_{i=1}^{2^n T} M_{i(2^{-n})} (M_{i2^{-n} \wedge T} - M_{(i-1)2^{-n} \wedge T}). \]

This is defined so that

\[\langle M \rangle_{k2^{-n}} = M_{k2^{-n}}^2 - 2X_n^T. \]

This reduces the study of \(\langle M \rangle^{(n)} \) to that of \(X_n^{k2^{-n}} \).

We check that \((X_n^T) \) is a Cauchy sequence in \(\mathcal{M}_c^2 \). The fact that it is a martingale is an immediate computation. To show it is Cauchy, for \(n \geq m \), we calculate

\[X_n^\infty - X_m^\infty = \sum_{i=1}^{2^n T} (M_{i(2^{-n})} - M_{i(2^{-m})} \wedge T) (M_{i2^{-n}} - M_{(i-1)2^{-n}}). \]

We now take the expectation of the square to get

\[
\mathbb{E}(X_n^\infty - X_m^\infty)^2 = \mathbb{E} \left(\sum_{i=1}^{2^n T} (M_{i(2^{-n})} - M_{i(2^{-m})} \wedge T)^2 (M_{i2^{-n}} - M_{(i-1)2^{-n}})^2 \right)
\]

\[
\leq \mathbb{E} \left(\sup_{|s-t| \leq 2^{-m}} |M_s - M_t|^2 \sum_{i=1}^{2^n T} (M_{i2^{-n}} - M_{(i-1)2^{-n}})^2 \right)
\]

\[
= \mathbb{E} \left(\sup_{|s-t| \leq 2^{-m}} |M_s - M_t|^2 \langle M \rangle_T^{(n)} \right)
\]

\[
\leq \mathbb{E} \left(\sup_{|s-t| \leq 2^{-m}} |M_s - M_t|^4 \right)^{1/2} \mathbb{E} \left(\langle M \rangle_T^{(n)} \right)^{1/2}
\]

(Cauchy–Schwarz)
We shall show that the second factor is bounded, while the first factor tends to zero as \(m \to \infty \). These are both not surprising — the first term vanishing in the limit corresponds to \(M \) being continuous, and the second term is bounded since \(M \) itself is bounded.

To show that the first term tends to zero, we note that we have

\[
|M_t - M_s|^4 \leq 16C^4,
\]

and moreover

\[
\sup_{|s-t| \leq 2^{-m}} |M_t - M_s| \to 0 \text{ as } m \to \infty \text{ by uniform continuity.}
\]

So we are done by the dominated convergence theorem.

To show the second term is bounded, we do (writing \(N = \lceil 2^n T \rceil \))

\[
\mathbb{E} \left(\left(\langle M \rangle_T^{(n)} \right)^2 \right) = \mathbb{E} \left(\left(\sum_{i=1}^N (M_{t2^{-n}} - M_{(i-1)2^{-n}})^2 \right)^2 \right)
\]

\[
= \sum_{i=1}^N \mathbb{E} \left((M_{t2^{-n}} - M_{(i-1)2^{-n}})^4 \right)
\]

\[
+ 2 \sum_{i=1}^N \mathbb{E} \left((M_{t2^{-n}} - M_{(i-1)2^{-n}})^2 \sum_{k=i+1}^N (M_{k2^{-n}} - M_{(k-1)2^{-n}})^2 \right)
\]

We use the martingale property and orthogonal increments the rearrange the off-diagonal term as

\[
\mathbb{E} \left((M_{t2^{-n}} - M_{(i-1)2^{-n}})(M_{N2^{-n}} - M_{(i2^{-n})}) \right).
\]

Taking some sups, we get

\[
\mathbb{E} \left(\left(\langle M \rangle_T^{(n)} \right)^2 \right) \leq 12C^2 \mathbb{E} \left(\sum_{i=1}^N (M_{t2^{-n}} - M_{(i-1)2^{-n}})^2 \right)
\]

\[
= 12C^2 \mathbb{E} \left((M_{N2^{-n}} - M_0)^2 \right)
\]

\[
\leq 12C^2 \cdot 4C^2.
\]

So done.

So we now have \(X^n \to X \) in \(\mathbb{L}^2 \) for some \(X \in \mathbb{L}^2 \). In particular, we have

\[
\left\| \sup_t |X^n_t - X_t| \right\|_{\mathbb{L}^2} \to 0
\]

So we know that

\[
\sup_t |X^n_t - X_t| \to 0
\]

almost surely along a subsequence \(\Lambda \).

Let \(N \subseteq \Omega \) be the events on which this convergence fails. We define

\[
A_t^{(n)} = \begin{cases}
M_t^2 - 2X_t & \omega \in \Omega \setminus N \\
0 & \omega \in N
\end{cases}
\]
Then \(A^{(T)} \) is continuous, adapted since \(M \) and \(X \) are, and \((M^2_{t∧T} - A^{(T)}_t)_t \) is a martingale since \(X \) is. Finally, \(A^{(T)} \) is increasing since \(M^2_t - X^n_t \) is increasing on \(2^{-n} \mathbb{Z} \cap [0, T] \) and the limit is uniform. So this \(A^{(T)} \) basically satisfies all the properties we want \(\langle M \rangle_t \) to satisfy, except we have the stopping time \(T \).

We next observe that for any \(T \geq 1, A^{(T)}_{t∧T} = A^{(T+1)}_{t∧T} \) for all \(t \) almost surely. This essentially follows from the same uniqueness argument as we had at the beginning of the proof. Thus, there is a process \(\langle (M^{(k)})_t \rangle_{t \geq 0} \) such that

\[
\langle M \rangle_t = A^{(T)}_t
\]

for all \(t \in [0, T] \) and \(T \in \mathbb{N} \), almost surely. Then this is the desired process. So we have constructed \(\langle M \rangle \) in the case where \(M \) is bounded.

Claim. \((M^{(n)}) \to (M) \) u.c.p.

Recall that

\[
\langle M \rangle_n = M^{2}_{2^{-n}[2^n t]} - 2X^n_{2^{-n}[2^n t]}
\]

We also know that

\[
\sup_{t \leq T} |X^n_t - X_t| \to 0
\]

in \(L^2 \), hence also in probability. So we have

\[
|\langle M \rangle_t - \langle M \rangle^{(n)}_t| \leq \sup_{t \leq T} |M^{2}_{2^{-n}[2^n t]} - M^2_t| + \sup_{t \leq T} |X^n_{2^{-n}[2^n t]} - X_{2^{-n}[2^n t]}| + \sup_{t \leq T} |X^n_{2^{-n}[2^n t]} - X_t|.
\]

The first and last terms \(\to 0 \) in probability since \(M \) and \(X \) are uniformly continuous on \([0, T] \). The second term converges to zero by our previous assertion. So we are done.

Claim. The theorem holds for \(M \) any continuous local martingale.

We let \(T_n = \inf \{ t \geq 0 : |M_t| \geq n \} \). Then \((T_n) \) reduces \(M \) and \(M^{T_n} \) is a bounded martingale. So in particular \(M^{T_n} \) is a bounded continuous martingale. We set

\[
A^n = \langle M^{T_n} \rangle.
\]

Then \(A^{(n)} \) and \(A^{(n+1)}_{t∧T_n} \) are indistinguishable for \(t < T_n \) by the uniqueness argument. Thus there is a process \(\langle M \rangle \) such that \(\langle M \rangle_{t∧T_n} = A^n_t \) are indistinguishable for all \(n \). Clearly, \(\langle M \rangle \) is increasing since the \(A^n \) are, and \(M^2_{t∧T_n} - \langle M \rangle_{t∧T_n} \) is a martingale for every \(n \), so \(M^2_t - \langle M \rangle_t \) is a continuous local martingale.

Claim. \((M^{(n)}) \to (M) \) u.c.p.

We have seen

\[
(M^{T_k^{(n)}})^{(n)} \to (M^{T_k}) \text{ u.c.p.}
\]

for every \(k \). So

\[
P\left(\sup_{t \leq T} |\langle M \rangle^{(n)}_t - \langle M \rangle_t| > \varepsilon \right) \leq P(T_k < T) + P\left(\sup_{t \leq T} |\langle M^{T_k^{(n)}} \rangle^{(n)}_t - \langle M^{T_k} \rangle_t| > \varepsilon \right).
\]

So we can first pick \(k \) large enough such that the first term is small, then pick \(n \) large enough so that the second is small. \(\Box \)
Proof. Since $M_t^2 - \langle M \rangle_t$ is a continuous local martingale, so is $M_{t\wedge T}^2 - \langle M \rangle_{t\wedge T} = (M^T)^2 - \langle M \rangle_{t\wedge T}$. So we are done by uniqueness.

Proof. If $M = 0$, then $\langle M \rangle = 0$. Conversely, if $\langle M \rangle = 0$, then M^2 is a continuous local martingale and positive. Thus $\mathbb{E}M_t^2 \leq \mathbb{E}M_0^2 = 0$.

Proposition. Let $M \in \mathcal{M}_c^2$. Then $M_t^2 - \langle M \rangle_t$ is a uniformly integrable martingale, and

$$\|M - M_0\|_{\mathcal{M}_c^2} = (\mathbb{E}\langle M \rangle_\infty)^{1/2}.$$

Proof. We will show that $\langle M \rangle_\infty \in L^1$. This then implies

$$|M_t^2 - \langle M \rangle_t| \leq \sup_{t \geq 0} M_t^2 + \langle M \rangle_\infty.$$

Then the right hand side is in L^1. Since $M^2 - \langle M \rangle$ is a local martingale, this implies that it is in fact a uniformly integrable martingale.

To show $\langle M \rangle_\infty \in L^1$, we let

$$S_n = \inf\{t \geq 0 : \langle M \rangle_t \geq n\}.$$

Then $S_n \to \infty$, S_n is a stopping time and moreover $\langle M \rangle_{t\wedge S_n} \leq n$. So we have

$$M_{t\wedge S_n}^2 - \langle M \rangle_{t\wedge S_n} \leq n + \sup_{t \geq 0} M_t^2,$$

and the second term is in L^1. So $M_{t\wedge S_n}^2 - \langle M \rangle_{t\wedge S_n}$ is a true martingale. So

$$\mathbb{E}M_{t\wedge S_n}^2 - \mathbb{E}M_t^2 = \mathbb{E}(M_{t\wedge S_n}) - \mathbb{E}(M_t).$$

Taking the limit $t \to \infty$, we know $\mathbb{E}M_{t\wedge S_n}^2 \to \mathbb{E}M_\infty^2$ by dominated convergence. Since $\langle M \rangle_{t\wedge S_n}$ is increasing, we also have $\mathbb{E}(M_{t\wedge S_n}) \to \mathbb{E}(M)_{\infty}$ by monotone convergence. We can take $n \to \infty$, and by the same justification, we have

$$\mathbb{E}(M) \leq \mathbb{E}M_\infty^2 - \mathbb{E}M_0^2 = \mathbb{E}(M_\infty - M_0)^2 < \infty.$$

2.5 Covariation

Proposition.

(i) $\langle M, N \rangle$ is the unique (up to indistinguishability) finite variation process such that $M_tN_t - \langle M, N \rangle_t$ is a continuous local martingale.

(ii) The mapping $(M, N) \mapsto \langle M, N \rangle$ is bilinear and symmetric.

(iii)

$$\langle M, N \rangle_t = \lim_{n \to \infty} \langle M, N \rangle_t^{(n)} \text{ u.c.p.}$$

$$\langle M, N \rangle_t^{(n)} = \sum_{i=1}^{2^n t} (M_{i2^{-n}} - M_{i-1}2^{-n})(N_{i2^{-n}} - N_{i-1}2^{-n}).$$

(iv) For every stopping time T,

$$\langle M^T, N^T \rangle_t = \langle M^T, N \rangle_t = \langle M, N \rangle_{t\wedge T}.$$
(v) If $M, N \in \mathcal{M}_2^2$, then $M_tN_t - \langle M, N \rangle_t$ is a uniformly integrable martingale, and

$$\langle M - M_0, N - N_0 \rangle_{\mathcal{M}^2} = \mathbb{E}(M, N)_{\infty}.$$

Proof. Assume $B_0 = B_0' = 0$. Then $X_{\pm} = \frac{1}{\sqrt{2}}(B \pm B')$ are Brownian motions, and so $\langle X_{\pm} \rangle_t = t$. So their difference vanishes.

Proposition (Kunita–Watanabe). Let M, N be continuous local martingales and let H, K be two (previsible) processes. Then almost surely

$$\int_0^\infty |H_s||K_s|d\langle M, N \rangle_s \leq \left(\int_0^\infty H_s^2 d\langle M \rangle_s \right)^{1/2} \left(\int_0^\infty H_s^2 \langle N \rangle_s \right)^{1/2}.$$

Proof. For convenience, we write $\langle M, N \rangle_{ts} = \langle M, N \rangle_t - \langle M, N \rangle_s$.

Claim. For all $0 \leq s \leq t$, we have

$$|\langle M, N \rangle_{ts}| \leq \sqrt{\langle M, M \rangle_{ts}} \sqrt{\langle N, N \rangle_{ts}}.$$

By continuity, we can assume that s, t are dyadic rationals. Then

$$|\langle M, N \rangle_{ts}| = \lim_{n \to \infty} \left| \sum_{i=2^n s+1}^{2^nt} (M_{i2^{-n}} - M_{(i-1)2^{-n}})(N_{i2^{-n}} - N_{(i-1)2^{-n}}) \right|^{1/2} \times \left| \sum_{i=2^n s+1}^{2^nt} (N_{i2^{-n}} - N_{(i-1)2^{-n}})^2 \right|^{1/2} \left(\text{Cauchy–Schwarz} \right) \leq \left(\sum_{i=1}^{n} \langle M, M \rangle_{t_{i-1}} \right)^{1/2} \left(\sum_{i=1}^{n} \langle N, N \rangle_{t_{i-1}} \right)^{1/2} \left(\text{Cauchy–Schwarz} \right).$$

where all equalities are u.c.p.

Claim. For all $0 \leq s < t$, we have

$$\int_s^t |d\langle M, N \rangle_u| \leq \sqrt{\langle M, M \rangle_{ts}} \sqrt{\langle N, N \rangle_{ts}}.$$

Indeed, for any subdivision $s = t_0 < t_1 < \cdots < t_n = t$, we have

$$\sum_{i=1}^{n} |\langle M, N \rangle_{t_{i-1}}| \leq \sum_{i=1}^{n} \sqrt{\langle M, M \rangle_{t_{i-1}}} \sqrt{\langle N, N \rangle_{t_{i-1}}} \leq \left(\sum_{i=1}^{n} \langle M, M \rangle_{t_{i-1}} \right)^{1/2} \left(\sum_{i=1}^{n} \langle N, N \rangle_{t_{i-1}} \right)^{1/2} \left(\text{Cauchy–Schwarz} \right).$$

Taking the supremum over all subdivisions, the claim follows.
Claim. For all bounded Borel sets \(B \subseteq [0, \infty) \), we have
\[
\int_B |\langle M, N \rangle_u| \leq \sqrt{\int_B \langle M \rangle_u \, \mathrm{d}u} \sqrt{\int_B \langle N \rangle_u \, \mathrm{d}u}.
\]

We already know this is true if \(B \) is an interval. If \(B \) is a finite union of integrals, then we apply Cauchy–Schwarz. By a monotone class argument, we can extend to all Borel sets.

Claim. The theorem holds for
\[
H = \sum_{\ell=1}^k h_\ell 1_{B_\ell}, \quad K = \sum_{\ell=1}^n k_\ell 1_{B_\ell}
\]
for \(B_\ell \subseteq [0, \infty) \) bounded Borel sets with disjoint support.

We have
\[
\int |H_s K_s| \, \langle d\langle M, N \rangle \rangle_s \leq \sum_{\ell=1}^n |h_\ell k_\ell| \int_{B_\ell} |\langle M, N \rangle_s| \\
\leq \left(\sum_{\ell=1}^n h_\ell^2 \int_{B_\ell} \langle M \rangle_s \right)^{1/2} \left(\sum_{\ell=1}^n k_\ell^2 \int_{B_\ell} \langle N \rangle_s \right)^{1/2} \\
\leq \left(\sum_{\ell=1}^n h_\ell^2 \int_{B_\ell} \langle M \rangle_s \right)^{1/2} \left(\sum_{\ell=1}^n k_\ell^2 \int_{B_\ell} \langle N \rangle_s \right)^{1/2}
\]

To finish the proof, approximate general \(H \) and \(K \) by step functions and take the limit.

\[\square\]

2.6 Semi-martingale
3 The stochastic integral

3.1 Simple processes

Proposition. If $M \in \mathcal{M}^2$ and $H \in \mathcal{E}$, then $H \cdot M \in \mathcal{M}^2$ and

$$\|H \cdot M\|_{\mathcal{M}^2}^2 = \mathbb{E}\left(\int_0^\infty H_s^2 \, d\langle M \rangle_s\right).$$

\((*)\)

Proof. We first show that $H \cdot M \in \mathcal{M}^2$. By linearity, we only have to check it for

$$X^i_t = H_{i-1}(M_{t,\wedge t} - M_{t,\wedge t-1}).$$

We have to check that $\mathbb{E}(X^i_t \mid \mathcal{F}_s) = 0$ for all $t > s$, and the only non-trivial case is when $t > t_i - 1$.

$$\mathbb{E}(X^i_t \mid \mathcal{F}_s) = H_{i-1}(M_{t,\wedge t} - M_{t,\wedge t-1}) \mid \mathcal{F}_s = 0.$$

We also check that

$$\|X^i\|_{\mathcal{M}^2} \leq 2\|H\|_{\mathcal{M}^2} \|M\|_{\mathcal{M}^2}.$$

So it is bounded. So $H \cdot M \in \mathcal{M}^2$.

To prove

\((*)\), we note that the X^i are orthogonal and that

$$\langle X^i, X^i \rangle_t = H_{i-1}^2(\langle M \rangle_{t,\wedge t} - \langle M \rangle_{t,\wedge t-1}).$$

So we have

$$\langle H \cdot M, H \cdot M \rangle = \sum \langle X^i, X^i \rangle = \sum H_{i-1}^2(\langle M \rangle_{t,\wedge t} - \langle M \rangle_{t,\wedge t-1}) = \int_0^t H_s^2 \, d\langle M \rangle_s.$$

In particular,

$$\|H \cdot M\|_{\mathcal{M}^2}^2 = \mathbb{E}\langle H \cdot M \rangle_\infty = \mathbb{E}\left(\int_0^\infty H_s^2 \, d\langle M \rangle_s\right).\quad \square$$

Proposition. Let $M \in \mathcal{M}^2$ and $H \in \mathcal{E}$. Then

$$\langle H \cdot M, N \rangle = H \cdot \langle M, N \rangle$$

for all $N \in \mathcal{M}^2$.

Proof. Write $H \cdot M = \sum X^i = \sum H_{i-1}(M_{t,\wedge t} - M_{t,\wedge t-1})$ as before. Then

$$\langle X^i, N \rangle_t = H_{i-1}(M_{t,\wedge t} - M_{t,\wedge t-1}, N) = H_{i-1}(\langle M, N \rangle_{t,\wedge t} - \langle M, N \rangle_{t,\wedge t-1}).\quad \square$$

3.2 Itô isometry

Proposition. Let $M \in \mathcal{M}^2$. Then \mathcal{E} is dense in $L^2(M)$.

Proof. Since $L^2(M)$ is a Hilbert space, it suffices to show that if $(K, H) = 0$ for all $H \in \mathcal{E}$, then $K = 0$.

So assume that $(K, H) = 0$ for all $H \in \mathcal{E}$ and

$$X_t = \int_0^t K_s \, d\langle M \rangle_s.$$
Then \(X \) is a well-defined finite variation process, and \(X_t \in L^1 \) for all \(t \). It suffices to show that \(X_t = 0 \) for all \(t \), and we shall show that \(X_t \) is a continuous martingale.

Let \(0 \leq s < t \) and \(F \in \mathcal{F}_s \) bounded. We let \(H = F 1_{(s,t]} \in \mathcal{E} \). By assumption, we know

\[
0 = (K, H) = \mathbb{E} \left(F \int_s^t K_u \, d\langle M \rangle_u \right) = \mathbb{E}(F(X_t - X_S)).
\]

Since this holds for all \(\mathcal{F}_s \) measurable \(F \), we have shown that

\[
\mathbb{E}(X_t | \mathcal{F}_s) = X_s.
\]

So \(X \) is a (continuous) martingale, and we are done. \(\square \)

Theorem. Let \(M \in \mathcal{M}_2^c \). Then

(i) The map \(H \in \mathcal{E} \mapsto H \cdot M \in \mathcal{M}_2^c \) extends uniquely to an isometry \(L^2(M) \to \mathcal{M}_2^c \), called the Itô isometry.

(ii) For \(H \in L^2(M) \), \(H \cdot M \) is the unique martingale in \(\mathcal{M}_2^c \) such that

\[
\langle H \cdot M, N \rangle = H \cdot \langle M, N \rangle
\]

for all \(N \in \mathcal{M}_2^c \), where the integral on the LHS is the stochastic integral (as above) and the RHS is the finite variation integral.

(iii) If \(T \) is a stopping time, then \((1_{[0,T]}H) \cdot M = (H \cdot M)^T = H \cdot M^T \).

Proof.

(i) We have already shown that this map is an isometry when restricted to \(\mathcal{E} \). So extend by completeness of \(\mathcal{M}_2^c \) and denseness of \(\mathcal{E} \).

(ii) Again the equation to show is known for simple \(H \), and we want to show it is preserved under taking limits. Suppose \(H^n \to H \) in \(L^2(M) \) with \(H^n \in L^2(M) \). Then \(H^n \cdot M \to H \cdot M \) in \(\mathcal{M}_2^c \). We want to show that

\[
\langle H \cdot M, N \rangle = \lim_{n \to \infty} \langle H^n \cdot M, N \rangle \quad \text{in } L^1.
\]

for all \(N \in \mathcal{M}_2^c \).

To show the first holds, we use the Kunita–Watanabe inequality to get

\[
\mathbb{E}|\langle H \cdot M - H^n \cdot M, N \rangle| \leq \mathbb{E}((H \cdot M - H^n \cdot M)_{\infty})^{1/2} (\mathbb{E}(N)_{\infty})^{1/2},
\]

and the first factor is \(\|H \cdot M - H^n \cdot M\|_{\mathcal{M}^2} \to 0 \), while the second is finite since \(N \in \mathcal{M}_2^c \).

The second follows from

\[
\mathbb{E}|\langle H \cdot M - H^n, (M, N) \rangle_{\infty}| \leq \|H - H^n\|_{L^2(M)} \|N\|_{\mathcal{M}_2^c} \to 0.
\]

So we know that \(\langle H \cdot M, N \rangle_{\infty} = \langle H \cdot (M, N) \rangle_{\infty} \). We can then replace \(N \) by the stopped process \(N^T \) to get \(\langle H \cdot M, N_{\downarrow} \rangle = \langle H \cdot (M, N) \rangle_{\downarrow} \).

To see uniqueness, suppose \(X \in \mathcal{M}_2^c \) is another such martingale. Then we have \(\langle X - H \cdot M, N \rangle = 0 \) for all \(N \). Take \(N = X - H \cdot M \), and then we are done.
(iii) For $N \in \mathcal{M}^2_c$, we have
\[
\langle (H \cdot M)^T, N \rangle_t = (H \cdot M, N)_{t \wedge T} = (H_{[0,T]} \cdot \langle M, N \rangle)_t
\]
for every N. So we have shown that
\[
(H \cdot M)^T = (1_{[0,T]} H \cdot M)
\]
by (ii). To prove the second equality, we have
\[
\langle H \cdot M^T, N \rangle_t = H \cdot \langle M^T, N \rangle_t = H \cdot \langle M, N \rangle_{t \wedge T} = ((H_{[0,T]} \cdot \langle M, N \rangle)_t.
\]

Corollary.
\[
\langle H \cdot M, K \cdot N \rangle = H \cdot (K \cdot \langle M, N \rangle) = (HK) \cdot \langle M, N \rangle.
\]

In other words,
\[
\left< \int_{0}^{t} H_s \, dM_s, \int_{0}^{t} K_s \, dN_s \right> = \int_{0}^{t} H_s K_s \, d\langle M, N \rangle_s.
\]

Corollary. Since $H \cdot M$ and $(H \cdot M)(K \cdot N) - (H \cdot M, K \cdot N)$ are martingales starting at 0, we have
\[
E \left(\int_{0}^{t} H \, dM_s \right) = 0
\]
\[
E \left(\left(\int_{0}^{t} H_s \, dM_s \right) \left(\int_{0}^{t} K_s \, dN_s \right) \right) = \int_{0}^{t} H_s K_s \, d\langle M, N \rangle_s.
\]

Corollary. Let $H \in L^2(M)$, then $HK \in L^2(M)$ iff $K \in L^2(H \cdot M)$, in which case
\[
(KH) \cdot M = K \cdot (H \cdot M).
\]

Proof. We have
\[
E \left(\int_{0}^{t} K_s^2 H_s^2 \, d\langle M \rangle_s \right) = E \left(\int_{0}^{t} K_s^2 (H \cdot M)_s \right),
\]
so $\|K\|_{L^2(H \cdot M)} = \|HK\|_{L^2(M)}$. For $N \in \mathcal{M}^2_c$, we have
\[
\langle (KH) \cdot M, N \rangle_t = (KH \cdot (M, N))_t = (K \cdot (H \cdot (M, N)))_t = (K \cdot (H \cdot M, N))_t.
\]

3.3 Extension to local martingales

Theorem. Let M be a continuous local martingale.

(i) For every $H \in L^2_{bc}(M)$, there is a unique continuous local martingale $H \cdot M$ with $(H \cdot M)_0 = 0$ and
\[
(H \cdot M, N) = H \cdot \langle M, N \rangle
\]
for all N, M.

18
(ii) If T is a stopping time, then
\[(1_{[0,T]}H) \cdot M = (H \cdot M)^T = H \cdot M^T. \]

(iii) If $H \in L^2_{\text{loc}}(M)$, K is previsible, then $K \in L^2_{\text{loc}}(H \cdot M)$ iff $HK \in L^2_{\text{loc}}(M)$, and then
\[K \cdot (H \cdot M) = (KH) \cdot M. \]

(iv) Finally, if $M \in \mathcal{M}_c^2$ and $H \in L^2(M)$, then the definition is the same as the previous one.

Proof. Assume $M_0 = 0$, and that $\int_0^t H^2_s \, d\langle M \rangle_s < \infty$ for all $\omega \in \Omega$ (by setting $H = 0$ when this fails). Set
\[S_n = \inf \left\{ t \geq 0 : \int_0^t (1 + H^2_s) \, d\langle M \rangle_s \geq n \right\}. \]
These S_n are stopping times that tend to infinity. Then
\[\langle M^{S_n}, M^{S_n} \rangle_t = \langle M, M \rangle_{t \wedge S_n} \leq n. \]
So $M^{S_n} \in \mathcal{M}_c^2$. Also,
\[\int_0^\infty H_s \, d\langle M^{S_n} \rangle_s = \int_0^{S_n} H_s^2 \, d\langle M \rangle_s \leq n. \]
So $H \in L^2(M^{S_n})$, and we have already defined what $H \cdot M^{S_n}$ is. Now notice that
\[H \cdot M^{S_n} = (H \cdot M^{S_m})^{S_n} \quad \text{for} \quad m \geq n. \]
So it makes sense to define
\[H \cdot M = \lim_{n \to \infty} H \cdot M^{S_n}. \]
This is the unique process such that $(H \cdot M)^{S_n} = H \cdot M^{S_n}$. We see that $H \cdot M$ is a continuous adapted local martingale with reducing sequence S_n.

Claim. $\langle H \cdot M, N \rangle = H \cdot \langle M, N \rangle$.

Indeed, assume that $N_0 = 0$. Set $S'_n = \inf \{ t \geq 0 : |N_t| \geq n \}$. Set $T_n = S_n \wedge S'_n$. Observe that $N^{S_n} \in \mathcal{M}_c^2$. Then
\[\langle H \cdot M, N \rangle^{T_n} = \langle H \cdot M^{S_n}, N^{S_n} \rangle = H \cdot \langle M^{S_n}, N^{S_n} \rangle = H \cdot \langle M, N \rangle^{T_n}. \]
Taking the limit $n \to \infty$ gives the desired result.

The proofs of the other claims are the same as before, since they only use the characterizing property $\langle H \cdot M, N \rangle = H \cdot \langle M, N \rangle$.

\[\square \]
3.4 Extension to semi-martingales

Proposition.

(i) \((H, X) \mapsto H \cdot X\) is bilinear.

(ii) \(H \cdot (K \cdot X) = (HK) \cdot X\) if \(H\) and \(K\) are locally bounded.

(iii) \((H \cdot X)^T = H1_{[0,T]} \cdot X = H \cdot X^T\) for every stopping time \(T\).

(iv) If \(X\) is a continuous local martingale (resp. a finite variation process), then so is \(H \cdot X\).

(v) If \(H = \sum_{i=1}^{n} H_i - 1 \cdot 1_{(t_{i-1}, t_i]}\) and \(H_i - 1 \in \mathcal{F}_{t_i-1}\) (not necessarily bounded), then

\[
(H \cdot X)_t = \sum_{i=1}^{n} H_i - 1 (X_{t_i \land t} - X_{t_{i-1} \land t}).
\]

Proof. (i) to (iv) follow from analogous properties for \(H \cdot M\) and \(H \cdot A\). The last part is also true by definition if the \(H_i\) are uniformly bounded. If \(H_i\) is not bounded, then the finite variation part is still fine, since for each fixed \(\omega \in \Omega\), \(H_i(\omega)\) is a fixed number. For the martingale part, set

\[
T_n = \inf \{t \geq 0 : |H_t| \geq n\}.
\]

Then \(T_n\) are stopping times, \(T_n \to \infty\), and \(H1_{[0,T_n]} \in \mathcal{E}\). Thus

\[
(H \cdot M)_{t \wedge T_n} = \sum_{i=1}^{n} H_i - 1 T_{[0,T_n]}(X_{t_i \land t} - X_{t_{i-1} \land t}).
\]

Then take the limit \(n \to \infty\).

Proposition (Stochastic dominated convergence theorem). Let \(X\) be a continuous semi-martingale. Let \(H, H_n\) be previsible and locally bounded, and let \(K\) be previsible and non-negative. Let \(t > 0\). Suppose

(i) \(H^n_s \to H_s\) as \(n \to \infty\) for all \(s \in [0, t]\).

(ii) \(|H^n_s| \leq K_s\) for all \(s \in [0, t]\) and \(n \in \mathbb{N}\).

(iii) \(\int_0^t K^2_s d\langle M \rangle_s < \infty\) and \(\int_0^t K_s |dA_s| < \infty\) (note that both conditions are okay if \(K\) is locally bounded).

Then

\[
\int_0^t H^n_s dX_s \to \int_0^t H_s dX_s\] in probability.

Proof. For the finite variation part, the convergence follows from the usual dominated convergence theorem. For the martingale part, we set

\[
T_m = \inf \left\{ t \geq 0 : \int_0^t K^2_s d\langle M \rangle_s \geq m \right\}.
\]
So we have
\[E \left(\left(\int_0^{T_n \wedge t} H^n_s \, dM_s - \int_0^{T_n \wedge t} H^n_s \, dM_s \right)^2 \right) \leq E \left(\int_0^{T_n \wedge t} (H^n_s - H_s)^2 \, d\langle M \rangle_s \right) \to 0. \]
using the usual dominated convergence theorem, since \(\int_0^{T_n \wedge t} K^n_s \, d\langle M \rangle_s \leq m. \)

Since \(T_n \wedge t = t \) eventually as \(n \to \infty \) almost surely, hence in probability, we are done.

Proposition. Let \(X \) be a continuous semi-martingale, and let \(H \) be an adapted bounded left-continuous process. Then for every subdivision \(0 < t_0^{(m)} < t_1^{(m)} < \cdots < t_n^{(m)} \) of \([0, t]\) with \(\max_i |t_i^{(m)} - t_{i-1}^{(m)}| \to 0 \), then
\[\int_0^t H_s \, dX_s = \lim_{m \to \infty} \sum_{i=1}^n H_{t_i^{(m)}} (X_{t_i^{(m)}} - X_{t_{i-1}^{(m)}}) \]
in probability.

Proof. We have already proved this for the Lebesgue–Stieltjes integral, and all we used was dominated convergence. So the same proof works using stochastic dominated convergence theorem.

3.5 Itô formula

Theorem (Integration by parts). Let \(X, Y \) be a continuous semi-martingale. Then almost surely,
\[X_t Y_t - X_0 Y_0 = \int_0^t X_s \, dY_s + \int_0^t Y_s \, dX_s + \langle X, Y \rangle_t \]
The last term is called the Itô correction.

Proof. We have
\[X_t Y_t - X_s Y_s = X_s (Y_t - Y_s) + (X_t - X_s) Y_s + (X_t - X_s) (Y_t - Y_s). \]
When doing usual calculus, we can drop the last term, because it is second order. However, the quadratic variation of martingales is in general non-zero, and so we must keep track of this. We have
\[X_{k2^{-n}} Y_{k2^{-n}} - X_0 Y_0 = \sum_{i=1}^k (X_{i2^{-n}} Y_{i2^{-n}} - X_{(i-1)2^{-n}} Y_{(i-1)2^{-n}}) \]
\[= \sum_{i=1}^n \left(X_{(i-1)2^{-n}} (Y_{i2^{-n}} - Y_{(i-1)2^{-n}}) + Y_{(i-1)2^{-n}} (X_{i2^{-n}} - X_{(i-1)2^{-n}}) \right. \]
\[\left. + (X_{i2^{-n}} - X_{(i-1)2^{-n}}) (Y_{i2^{-n}} - Y_{(i-1)2^{-n}}) \right) \]
Taking the limit \(n \to \infty \) with \(k2^{-n} \) fixed, we see that the formula holds for \(t \) a dyadic rational. Then by continuity, it holds for all \(t \).
Theorem (Itô’s formula). Let X^1, \ldots, X^p be continuous semi-martingales, and let $f : \mathbb{R}^p \to \mathbb{R}$ be C^2. Then, writing $X = (X^1, \ldots, X^p)$, we have, almost surely,

$$f(X_t) = f(X_0) + \sum_{i=1}^{p} \int_0^t \frac{\partial f}{\partial x^i}(X_s) \, dX^i_s + \frac{1}{2} \sum_{i,j=1}^{p} \int_0^t \frac{\partial^2 f}{\partial x^i \partial x^j}(X_s) \, d\langle X^i, X^j \rangle_s.$$

In particular, $f(X)$ is a semi-martingale.

Proof.

Claim. Itô’s formula holds when f is a polynomial.

It clearly does when f is a constant! We then proceed by induction. Suppose Itô’s formula holds for some f. Then we apply integration by parts to $g(x) = x^k f(x)$.

where x^k denotes the kth component of x. Then we have

$$g(X_t) = g(X_0) + \int_0^t X^k_s \, df(X_s) + \int_0^t f(X_s) \, dX^k_s + \langle X^k, f(X) \rangle_t.$$

We now apply Itô’s formula for f to write

$$\int_0^t X^k_s \, df(X_s) = \sum_{i=1}^{p} \int_0^t X^k_s \frac{\partial f}{\partial x^i}(X_s) \, dX^i_s$$

$$+ \frac{1}{2} \sum_{i,j=1}^{p} \int_0^t X^k_s \frac{\partial^2 f}{\partial x^i \partial x^j}(X_s) \, d\langle X^i, X^j \rangle_s.$$

We also have

$$\langle X^k, f(X) \rangle_t = \sum_{i=1}^{p} \int_0^t \frac{\partial f}{\partial x^i}(X_s) \, d\langle X^k, X^i \rangle_s.$$

So we have

$$g(X_t) = g(X_0) + \sum_{i=1}^{p} \int_0^t \frac{\partial g}{\partial x^i}(X_s) \, dX^i_s + \frac{1}{2} \sum_{i,j=1}^{p} \int_0^t \frac{\partial^2 g}{\partial x^i \partial x^j}(X_s) \, d\langle X^i, X^j \rangle_s.$$

So by induction, Itô’s formula holds for all polynomials.

Claim. Itô’s formula holds for all $f \in C^2$ if $|X_t(\omega)| \leq n$ and $\int_0^t |dA_s| \leq n$ for all (t, ω).

By the Weierstrass approximation theorem, there are polynomials p_k such that

$$\sup_{|x| \leq k} \left(|f(x) - p_k(x)| + \max_i \left| \frac{\partial f}{\partial x^i} \right| + \max_{i,j} \left| \frac{\partial^2 f}{\partial x^i \partial x^j} \right| + \max_{i,j} \left| \frac{\partial p_k}{\partial x^i} \right| + \max_{i,j} \left| \frac{\partial^2 p_k}{\partial x^i \partial x^j} \right| \right) \leq \frac{1}{k}.$$

By taking limits, in probability, we have

$$f(X_t) - f(X_0) = \lim_{k \to \infty} (p_k(X_t) - p_k(X_0))$$

$$\int_0^t \frac{\partial f}{\partial x^i}(X_s) \, dX^i_s = \lim_{k \to \infty} \frac{\partial p_k}{\partial x^i}(X_s) \, dX^i_s$$

22
3 The stochastic calculus

by stochastic dominated convergence theorem, and by the regular dominated convergence, we have

\[\int_0^t \frac{\partial^2 f}{\partial x^i \partial x^j} \, \mathrm{d} \langle X^i, X^j \rangle_s = \lim_{k \to \infty} \int_0^t \frac{\partial^2 p_k}{\partial x^i \partial x^j} \, \mathrm{d} \langle X^i, X^j \rangle. \]

Claim. Itô’s formula holds for all \(X \).

Let

\[T_n = \inf \left\{ t \geq 0 : |X_t| \geq n \text{ or } \int_0^t |dA_s| \geq n \right\} \]

Then by the previous claim, we have

\[f(X_{T_n}^T) = f(X_0) + \sum_{i=1}^p \int_0^{T_n} \frac{\partial f}{\partial x^i} (X_{T_n}^s) \, \mathrm{d}(X_i)^{T_n}_s \]

\[+ \frac{1}{2} \sum_{i,j} \int_0^{T_n} \frac{\partial^2 f}{\partial x^i \partial x^j} (X_{T_n}^s) \, \mathrm{d} \langle (X_i)^{T_n}, (X_j)^{T_n} \rangle_s \]

\[= f(X_0) + \sum_{i=1}^p \int_0^{\wedge T_n} \frac{\partial f}{\partial x^i} (X_s) \, \mathrm{d}(X_i)_s \]

\[+ \frac{1}{2} \sum_{i,j} \int_0^{\wedge T_n} \frac{\partial^2 f}{\partial x^i \partial x^j} (X_s) \, \mathrm{d} \langle (X_i), (X_j) \rangle_s. \]

Then take \(T_n \to \infty. \)

3.6 The Lévy characterization

Theorem (Lévy’s characterization of Brownian motion). Let \((X^1, \ldots, X^d)\) be continuous local martingales. Suppose that \(X_0 = 0\) and that \(\langle X^i, X^j \rangle_t = \delta_{ij} t\) for all \(i, j = 1, \ldots, d\) and \(t \geq 0\). Then \((X^1, \ldots, X^d)\) is a standard \(d\)-dimensional Brownian motion.

Proof. Let \(0 \leq s < t\). It suffices to check that \(X_t - X_s\) is independent of \(\mathcal{F}_s\) and \(X_t - X_s \sim N(0, (t-s)I)\).

Claim. \(E(e^{i\theta \cdot (X_t-X_s)} | \mathcal{F}_s) = e^{-\frac{1}{2} |\theta|^2 (t-s)}\) for all \(\theta \in \mathbb{R}^d\) and \(s < t\).

This is sufficient, since the right-hand side is independent of \(\mathcal{F}_s\), hence so is the left-hand side, and the Fourier transform characterizes the distribution.

To check this, for \(\theta \in \mathbb{R}^d\), we define

\[Y_t = \theta \cdot X_t = \sum_{i=1}^d \theta^i X^i_t. \]

Then \(Y\) is a continuous local martingale, and we have

\[\langle Y \rangle_t = \langle Y, Y \rangle_t = \sum_{i,j=1}^d \theta^i \theta^j \langle X^i, X^j \rangle_t = |\theta|^2 t. \]
by assumption. Let
\[Z_t = e^{iY_t + \frac{1}{2}(Y)_t} = e^{i\theta X_t + \frac{1}{2}|\theta|^2 t}. \]
By Itô's formula, with \(X = iY + \frac{1}{2}(Y)_t \) and \(f(x) = e^x \), we get
\[dZ_t = Z_t \left(idY_t - \frac{1}{2}d(Y)_t + \frac{1}{2}d(Y)_t t \right) = iZ_t \, dY_t. \]
So this implies \(Z \) is a continuous local martingale. Moreover, since \(Z \) is bounded on bounded intervals of \(t \), we know \(Z \) is in fact a martingale, and \(Z_0 = 1 \). Then by definition of a martingale, we have
\[\mathbb{E}(Z_t \mid F_s) = Z_s, \]
and unwrapping the definition of \(Z_t \) shows that the result follows. \(\square \)

Theorem (Dubins–Schwarz). Let \(M \) be a continuous local martingale with \(M_0 = 0 \) and \(\langle M \rangle_\infty = \infty \). Let
\[T_s = \inf\{ t \geq 0 : \langle M \rangle_t > s \}, \]
the right-continuous inverse of \(\langle M \rangle_t \). Let \(B_s = M_{T_s} \) and \(G_s = F_{T_s} \). Then \(T_s \) is a \((F_t) \) stopping time, \(\langle M \rangle_{T_s} = s \) for all \(s \geq 0 \), \(B \) is a \((G_s) \)-Brownian motion, and
\[M_t = B_{\langle M \rangle_t}. \]

Proof. Since \(\langle M \rangle \) is continuous and adapted, and \(\langle M \rangle_\infty = \infty \), we know \(T_s \) is a stopping time and \(T_s < \infty \) for all \(s \geq 0 \).

Claim. \((G_s) \) is a filtration obeying the usual conditions, and \(G_\infty = F_\infty \).

Indeed, if \(A \in G_s \) and \(s < t \), then
\[A \cap \{ T_t \leq u \} = A \cap \{ T_s \leq u \} \cap \{ T_t \leq u \} \in F_u, \]
using that \(A \cap \{ T_s \leq u \} \in F_u \) since \(A \in G_u \). Then right-continuity follows from that of \((F_t) \) and the right-continuity of \(s \mapsto T_s \).

Claim. \(B \) is adapted to \((G_s) \).

In general, if \(X \) is càdlàg and \(T \) is a stopping time, then \(X_T 1_{(T < \infty)} \in F_T \). Apply this with \(X = M, T = T_s \) and \(F_T = G_s \). Thus \(B_s \in G_s \).

Claim. \(B \) is continuous.

Here this is actually something to verify, because \(s \mapsto T_s \) is only right continuous, not necessarily continuous. Thus, we only know \(B_s \) is right continuous, and we have to check it is left continuous.

Now \(B \) is left-continuous at \(s \) iff \(B_s = B_{s-} \), iff \(M_{T_s} = M_{T_s-} \). Now we have
\[T_s- = \inf\{ t \geq 0 : \langle M \rangle_t \geq s \}. \]
If \(T_s = T_{s-} \), then there is nothing to show. Thus, we may assume \(T_s > T_{s-} \).
Then we have \(\langle M \rangle_{T_s} = \langle M \rangle_{T_{s-}} \). Since \(\langle M \rangle_t \) is increasing, it means \(\langle M \rangle_{T_s} \) is constant in \([T_{s-}, T_s] \). We will later prove that
Lemma. M is constant on $[a,b]$ iff $\langle M \rangle$ being constant on $[a,b]$.

So we know that if $T_s > T_{s-}$, then $M_{T_s} = M_{T_{s-}}$. So B is left continuous.

We then have to show that B is a martingale.

Claim. $(M^2 - \langle M \rangle)^T_s$ is a uniformly integrable martingale.

To see this, observe that $\langle M \rangle_s = \langle M \rangle_{T_s} = s$, and so M^T_s is bounded. So $(M^2 - \langle M \rangle)^T_s$ is a uniformly integrable martingale.

We now apply the optional stopping theorem, which tells us

$$
E(B_s \mid \mathcal{G}_r) = E(M^T_s \mid \mathcal{G}_s) = M_{T_s} = B_t.
$$

So B_t is a martingale. Moreover,

$$
E(B^2_s - s \mid \mathcal{G}_r) = E((M^2 - \langle M \rangle)^T_s \mid \mathcal{F}_r) = M^2_{T_s} - \langle M \rangle_{T_s} = B^2_t - r.
$$

So $B^2_t - t$ is a martingale, so by the characterizing property of the quadratic variation, $\langle B \rangle_t = t$. So by Lévy’s criterion, this is a Brownian motion in one dimension.

Lemma. M is constant on $[a,b]$ iff $\langle M \rangle$ being constant on $[a,b]$.

Proof. It is clear that if M is constant, then so is $\langle M \rangle$. To prove the converse, by continuity, it suffices to prove that for any fixed $a < b$,

$$
\{ M_t = M_a \text{ for all } t \in [a,b] \} \supseteq \{ \langle M \rangle_b = \langle M \rangle_a \} \text{ almost surely.}
$$

We set $N_t = M_t - M_t \wedge a$. Then $\langle N \rangle_t = \langle M \rangle_t - \langle M \rangle_{t \wedge a}$. Define

$$
T_\varepsilon = \inf \{ t \geq 0 : \langle N \rangle_t \geq \varepsilon \}.
$$

Then since $N^2 - \langle N \rangle$ is a local martingale, we know that

$$
E(N^2_{t \wedge T_\varepsilon}) = E((\langle N \rangle)_{t \wedge T_\varepsilon}) \leq \varepsilon.
$$

Now observe that on the event $\{ \langle M \rangle_b = \langle M \rangle_a \}$, we have $\langle N \rangle_b = 0$. So for $t \in [a,b]$, we have

$$
E(1_{\{ \langle M \rangle_b = \langle M \rangle_a \}} N^2_{t \wedge T_\varepsilon}) = E(1_{\{ \langle M \rangle_b = \langle M \rangle_a \}} N^2_{T_\varepsilon}) = E(\langle N \rangle_{t \wedge T_\varepsilon}) = 0.
$$

3.7 Girsanov’s theorem

Proposition. Let M be a continuous local martingale with $M_0 = 0$. Then $\mathcal{E}(M) = Z$ satisfies

$$
dZ_t = Z_t \, dM_t,
$$

i.e.

$$
Z_t = 1 + \int_0^t Z_s \, dM_s.
$$

In particular, $\mathcal{E}(M)$ is a continuous local martingale. Moreover, if $\langle M \rangle$ is uniformly bounded, then $\mathcal{E}(M)$ is a uniformly integrable martingale.
Proof. By Itō’s formula with $X = M - \frac{1}{2}\langle M \rangle$, we have

$$dZ_t = Z_t d\left(M_t - \frac{1}{2}d\langle M \rangle_t \right) + \frac{1}{2} Z_t d\langle M \rangle_t = Z_t \, dM_t.$$

Since M is a continuous local martingale, so is $\int Z_s \, dM_s$. So Z is a continuous local martingale.

Now suppose $\langle M \rangle_{\infty} \leq b < \infty$. Then

$$P \left(\sup_{t \geq 0} M_t \geq a \right) = P \left(\sup_{t \geq 0} M_t \geq a, \langle M \rangle_{\infty} \leq b \right) \leq e^{-a^2/2b},$$

where the final equality is an exercise on the third example sheet, which is true for general continuous local martingales. So we get

$$E \left(\exp \left(\sup_t M_t \right) \right) = \int_0^\infty P(\exp(\sup M_t) \geq \lambda) \, d\lambda \leq 1 + \int_1^\infty e^{-(\log \lambda)^2/2b} \, d\lambda < \infty.$$

Since $\langle M \rangle \geq 0$, we know that

$$\sup_{t \geq 0} E(M)_t \leq \exp (\sup M_t),$$

So $E(M)$ is a uniformly integrable martingale.

Theorem (Girsanov’s theorem). Let M be a continuous local martingale with $M_0 = 0$. Suppose that $E(M)$ is a uniformly integrable martingale. Define a new probability measure

$$dQ = dP \cdot E(M)_\infty$$

Let X be a continuous local martingale with respect to P. Then $X - \langle X, M \rangle$ is a continuous local martingale with respect to Q.

Proof. Define the stopping time

$$T_n = \inf \{ t \geq 0 : |X_t - \langle X, M \rangle_t| \geq n \},$$

and $P(T_n \to \infty) = 1$ by continuity. Since Q is absolutely continuous with respect to P, we know that $Q(T_n \to \infty) = 1$. Thus it suffices to show that $X^{T_n} - \langle X^{T_n}, M \rangle$ is a continuous martingale for any n. Let

$$Y = X^{T_n} - \langle X^{T_n}, M \rangle, \quad Z = E(M).$$

Claim. ZY is a continuous local martingale with respect to P.

We use the product rule to compute

$$d(ZY) = Y_t \, dZ_t + Z_t \, dY_t + d(Y, Z)_t$$

$$= YZ_t \, dM_t + Z_t (dX^{T_n} - d\langle X^{T_n}, M \rangle_t) + Z_t \, d\langle M, X^{T_n} \rangle$$

$$= YZ_t \, dM_t + Z_t \, dX^{T_n}.$$

So we see that ZY is a stochastic integral with respect to a continuous local martingale. Thus ZY is a continuous local martingale.
Claim. \(ZY \) is uniformly integrable.

Since \(Z \) is a uniformly integrable martingale, \(\{ Z_T : T \text{ is a stopping time} \} \) is uniformly integrable. Since \(Y \) is bounded, \(\{ Z_T Y_T : T \text{ is a stopping time} \} \) is also uniformly integrable. So \(ZY \) is a true martingale (with respect to \(P \)).

Claim. \(Y \) is a martingale with respect to \(Q \).

We have

\[
E^Q (Y_t - Y_s \mid \mathcal{F}_s) = E^P (Z_\infty Y_t - Z_\infty Y_s \mid \mathcal{F}_s) \\
= E^P (Z_t Y_t - Z_s Y_s \mid \mathcal{F}_s) = 0.
\]
4 Stochastic differential equations

4.1 Existence and uniqueness of solutions

Theorem (Yamada–Watanabe). Assume weak existence and pathwise uniqueness holds. Then

(i) Uniqueness in law holds.

(ii) For every $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ and B and any $x \in \mathbb{R}^d$, there is a unique strong solution to $E_x(a, b)$.

Theorem. Assume b, σ are Lipschitz in x. Then there is pathwise uniqueness for the $E(\sigma, b)$ and for every $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ satisfying the usual conditions and every (\mathcal{F}_t)-Brownian motion B, for every $x \in \mathbb{R}^d$, there exists a unique strong solution to $E_x(\sigma, b)$.

Proof. To simplify notation, we assume $m = d = 1$.

We first prove pathwise uniqueness. Suppose X, X' are two solutions with $X_0 = X'_0$. We will show that $\mathbb{E}[(X_t - X'_t)^2] = 0$. We will actually put some bounds to control our variables. Define the stopping time $S = \inf\{t \geq 0 : |X_t| \geq n \text{ or } |X'_t| \geq n\}$.

By continuity, $S \to \infty$ as $n \to \infty$. We also fix a deterministic time $T > 0$. Then whenever $t \in [0, T]$, we can bound, using the identity $(a + b)^2 \leq 2a^2 + 2b^2$,

$$
\mathbb{E}((X_{t \wedge S} - X'_{t \wedge S})^2) \leq 2\mathbb{E}\left(\left(\int_0^{t \wedge S} (\sigma(s, X_s) - \sigma(s, X'_s)) dB_s \right)^2\right) + 2\mathbb{E}\left(\left(\int_0^{t \wedge S} (b(s, X_s) - b(s, X'_s)) ds \right)^2\right).
$$

We can apply the Lipschitz bound to the second term immediately, while we can simplify the first term using the (corollary of the) Itô isometry

$$
\mathbb{E}\left(\left(\int_0^{t \wedge S} (\sigma(s, X_s) - \sigma(s, X'_s)) dB_s \right)^2\right) = \mathbb{E}\left(\int_0^{t \wedge S} (\sigma(s, X_s) - \sigma(s, X'_s))^2 ds \right).
$$

So using the Lipschitz bound, we have

$$
\mathbb{E}((X_{t \wedge S} - X'_{t \wedge S})^2) \leq 2K^2(1 + T)\mathbb{E}\left(\int_0^{t \wedge S} |X_s - X'_s|^2 ds \right) \leq 2K^2(1 + T) \int_0^t \mathbb{E}(|X_{s \wedge S} - X'_{s \wedge S}|^2) ds.
$$

We now use Grönwall’s lemma:

Lemma. Let $h(t)$ be a function such that

$$
h(t) \leq c \int_0^t h(s) \, ds
$$

for some constant c. Then

$$
h(t) \leq h(0)e^{ct}.
$$
Applying this to
\[h(t) = E((X_{t\wedge S} - X'_{t\wedge S})^2), \]
we deduce that \(h(t) \leq h(0)e^t = 0 \). So we know that
\[E(|X_{t\wedge S} - X'_{t\wedge S}|^2) = 0 \]
for every \(t \in [0, T] \). Taking \(n \to \infty \) and \(T \to \infty \) gives pathwise uniqueness.

We next prove existence of solutions. We fix \((\Omega, \mathcal{F}, (\mathcal{F}_t)_t)\) and \(B \), and define
\[F(X)_t = X_0 + \int_0^t \sigma(s, X_s) \, dB_s + \int_0^t b(s, X_s) \, ds. \]
Then \(X \) is a solution to \(E_x(a, b) \) iff \(F(X) = X \) and \(X_0 = x \). To find a fixed point, we use Picard iteration. We fix \(T > 0 \), and define the \(T \)-norm of a continuous adapted process \(X \) as
\[\|X\|_T = E\left(\sup_{t \leq T} |X_t|^2\right)^{1/2}. \]
In particular, if \(X \) is a martingale, then this is the same as the norm on the space of \(L^2 \)-bounded martingales by Doob’s inequality. Then
\[B = \{X : \Omega \times [0, T] \to \mathbb{R} : \|X\|_T < \infty\} \]
is a Banach space.

Claim. \(\|F(0)\|_T < \infty \), and
\[\|F(X) - F(Y)\|_T^2 \leq (2T + 8)K^2 \int_0^T \|X - Y\|_t^2 \, dt. \]

We first see how this claim implies the theorem. First observe that the claim implies \(F \) indeed maps \(B \) into itself. We can then define a sequence of processes \(X^i \) by
\[X^0 = x, \quad X^{i+1} = F(X^i). \]
Then we have
\[\|X^{i+1} - X^i\|_T^2 \leq CT \int_0^T \|X^i - X^{i-1}\|_t^2 \, dt \leq \cdots \leq \|X^1 - X^0\|_T^2 \left(\frac{CT^i}{i!}\right). \]
So we find that
\[\sum_{i=1}^{\infty} \|X^i - X^{i-1}\|_T^2 < \infty \]
for all \(T \). So \(X^i \) converges to \(X \) almost surely and uniformly on \([0, T]\), and \(F(X) = X \). We then take \(T \to \infty \) and we are done.

To prove the claim, we write
\[\|F(0)\|_T \leq \|X_0\| + \left\| \int_0^t b(s, 0) \, ds \right\| + \left\| \int_0^t \sigma(s, 0) \, dB_s \right\|_T. \]
The first two terms are constant, and we can bound the last by Doob’s inequality and the Itô isometry:

\[
\left\| \int_0^t \sigma(s,0) \, dB_s \right\|_T \leq 2 \mathbb{E} \left(\left(\int_0^T \sigma(s,0) \, dB_s \right)^2 \right) = 2 \int_0^T \sigma(s,0)^2 \, ds.
\]

To prove the second part, we use

\[
\|F(X) - F(Y)\|^2 \leq 2 \mathbb{E} \left(\sup_{t \leq T} \left| \int_0^t b(s,X - s) - b(s,Y_s) \, ds \right|^2 \right) + 2 \mathbb{E} \left(\sup_{t \leq T} \left| \int_0^t \sigma(s,X_s) - \sigma(s,Y_s) \, dB_s \right|^2 \right).
\]

We can bound the first term with Cauchy–Schwartz by

\[
T \mathbb{E} \left(\int_0^T |b(s,X_s) - b(s,Y_s)|^2 \right) \leq TK^2 \int_0^T \|X - Y\|^2 \, dt,
\]

and the second term with Doob’s inequality by

\[
\mathbb{E} \left(\int_0^T |\sigma(s,X_s) - \sigma(s,Y_s)|^2 \, dB_s \right) \leq 4K^2 \int_0^T \|X - Y\|^2 \, dt.
\]

4.2 Examples of stochastic differential equations

Proof. We only have to compute the covariance. By the Itô isometry, we have

\[
\mathbb{E}((X_t - \mathbb{E}X_t)(X_s - \mathbb{E}X_s)) = \mathbb{E} \left(\int_0^t e^{-\lambda(t-u)} \, dB_u \int_0^s e^{-\lambda(s-u)} \, dB_u \right)
= e^{-\lambda(t+s)} \int_0^{t+s} e^{\lambda u} \, du.
\]

Theorem. The eigenvalues \(\lambda_1(t) \leq \cdots \leq \lambda_N(t)\) satisfies

\[
d\lambda_i^2 = \left(-\frac{\lambda_i}{2} + \frac{1}{N} \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} \right) \, dt + \sqrt{\frac{2}{N\beta}} \, dB^i.
\]

Here \(\beta = 1\), but if we replace symmetric matrices by Hermitian ones, we get \(\beta = 2\); if we replace symmetric matrices by symplectic ones, we get \(\beta = 4\).

4.3 Representations of solutions to PDEs

Proposition. Let \(x \in \mathbb{R}^d\), and \(X\) a solution to \(E_x(\sigma,b)\). Then for every \(f : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}\) that is \(C^1\) in \(\mathbb{R}_+\) and \(C^2\) in \(\mathbb{R}^d\), the process

\[
M^f_t = f(t,X_t) - f(0,X_0) - \int_0^t \left(\frac{\partial}{\partial s} + L \right) f(s,X_s) \, ds
\]

is a continuous local martingale.
Theorem. Assume U has a smooth boundary (or satisfies the exterior cone condition), a, b are Hölder continuous and a is uniformly elliptic. Then for every Hölder continuous $f : \bar{U} \to \mathbb{R}$ and any continuous $g : \partial U \to \mathbb{R}$, the Dirichlet–Poisson process has a solution.

Theorem. Let σ and b be bounded measurable and $\sigma \sigma^T$ uniformly elliptic, $U \subseteq \mathbb{R}^d$ as above. Let u be a solution to the Dirichlet–Poisson problem and X a solution to $E_x(\sigma, b)$ for some $x \in \mathbb{R}^d$. Define the stopping time

$$T_U = \inf\{t \geq 0 : X_t \not\in U\}.$$

Then $E T_U < \infty$ and

$$u(x) = E_x \left(g(X_{T_U}) + \int_0^{T_U} f(X_s) \, ds \right).$$

In particular, the solution to the PDE is unique.

Proof. Our previous proposition applies to functions defined on all of \mathbb{R}^n, while u is just defined on U. So we set

$$U_n = \left\{ x \in U : \text{dist}(x, \partial U) > \frac{1}{n} \right\}, \quad T_n = \inf\{t \geq 0 : X_t \not\in U_n\},$$

and pick $u_n \in C^2_b(\mathbb{R}^d)$ such that $u|_{U_n} = u_n|_{U_n}$. Recalling our previous notation, let

$$M^n_t = (M^{u_n})^T_t = u_n(X_{t \wedge T_n}) - u_n(X_0) - \int_0^{t \wedge T_n} L u_n(X_s) \, ds.$$

Then this is a continuous local martingale that is bounded by the proposition, and is bounded, hence a true martingale. Thus for $x \in U$ and n large enough, the martingale property implies

$$u(x) = u_n(x) = E \left(u(X_{t \wedge T_n}) - \int_0^{t \wedge T_n} L u(X_s) \, ds \right)$$

$$= E \left(u(X_{t \wedge T_n}) + \int_0^{t \wedge T_n} f(X_s) \, ds \right).$$

We would be done if we can take $n \to \infty$. To do so, we first show that $E[T_U] < \infty$.

Note that this does not depend on f and g. So we can take $f = 1$ and $g = 0$, and let v be a solution. Then we have

$$E(t \wedge T_n) = E \left(- \int_0^{t \wedge T_n} L v(X_s) \, ds \right) = v(x) - E(v(X_{t \wedge T_n})).$$

Since v is bounded, by dominated/monotone convergence, we can take the limit to get

$$E(T_U) < \infty.$$

Thus, we know that $t \wedge T_n \to T_U$ as $t \to \infty$ and $n \to \infty$. Since

$$E \left(\int_0^{T_U} |f(X_s)| \, ds \right) \leq \|f\|_{\infty} E[T_U] < \infty,$$
the dominated convergence theorem tells us

\[E \left(\int_0^{t \wedge T_n} f(X_s) \, ds \right) \to E \left(\int_0^{T_n} f(X_s) \, ds \right). \]

Since \(u \) is continuous on \(\bar{U} \), we also have

\[E(u(X_t \wedge T_n)) \to E(u(T_n)) = E(g(T_n)). \]

Theorem. For every \(f \in C^2_b(\mathbb{R}^d) \), there exists a solution to the Cauchy problem.

In particular,

\[u(t, x) = E_x(f(X_t)). \]

Proof. The martingale has \(\partial \theta + L \), but the heat equation has \(\partial \theta - L \). So we set \(g(s, x) = u(t - s, x) \). Then

\[\left(\frac{\partial}{\partial s} + L \right) g(s, x) = -\frac{\partial}{\partial t} u(t - s, x) + Lu(t - s, x) = 0. \]

So \(g(s, x) - g(0, X_0) \) is a martingale (boundedness is an exercise), and hence

\[u(t - s, X_s) = g(s, X_s) = E(g(t, X_t) \mid F_s) = E(u(0, X_t) \mid F_s) = E(f(X_t) \mid X_s). \]

Theorem (Feynman–Kac formula). Let \(f \in C^2_b(\mathbb{R}^d) \) and \(V \in C_b(\mathbb{R}^d) \) and suppose that \(u : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R} \) satisfies

\[\frac{\partial u}{\partial t} = Lu + Vu \quad \text{on } \mathbb{R}_+ \times \mathbb{R}^d \]

\[u(0, \cdot) = f \quad \text{on } \mathbb{R}^d, \]

where \(Vu = V(x)u(x) \) is given by multiplication.

Then for all \(t > 0 \) and \(x \in \mathbb{R}^d \), and \(X \) a solution to \(E_x(\sigma, b) \). Then

\[u(t, x) = E_x \left(f(X_t) \exp \left(\int_0^t V(X_s) \, ds \right) \right). \]