Part III — Stochastic Calculus and Applications
Definitions
Based on lectures by R. Bauerschmidt
Notes taken by Dexter Chua
Lent 2018

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

- Brownian motion. Existence and sample path properties.
- Stochastic calculus for continuous processes. Martingales, local martingales, semimartingales, quadratic variation and cross-variation, Itô’s isometry, definition of the stochastic integral, Kunita–Watanabe theorem, and Itô’s formula.

Pre-requisites

Knowledge of measure theoretic probability as taught in Part III Advanced Probability will be assumed, in particular familiarity with discrete-time martingales and Brownian motion.
Contents

0 Introduction 3

1 The Lebesgue–Stieltjes integral 4

2 Semi-martingales 5
 2.1 Finite variation processes .. 5
 2.2 Local martingale ... 5
 2.3 Square integrable martingales ... 6
 2.4 Quadratic variation ... 6
 2.5 Covariation ... 6
 2.6 Semi-martingale .. 6

3 The stochastic integral 7
 3.1 Simple processes .. 7
 3.2 Itô isometry ... 7
 3.3 Extension to local martingales ... 7
 3.4 Extension to semi-martingales ... 7
 3.5 Itô formula ... 8
 3.6 The Lévy characterization ... 8
 3.7 Girsanov’s theorem ... 8

4 Stochastic differential equations 9
 4.1 Existence and uniqueness of solutions 9
 4.2 Examples of stochastic differential equations 9
 4.3 Representations of solutions to PDEs 9
0 Introduction

Definition (Gaussian space). Let (Ω, \mathcal{F}, P) be a probability space. Then a subspace $S \subseteq L^2(\Omega, \mathcal{F}, P)$ is called a Gaussian space if it is a closed linear subspace and every $X \in S$ is a centered Gaussian random variable.

Definition (Gaussian white noise). A Gaussian white noise on \mathbb{R}_+ is an isometry WN from $L^2(\mathbb{R}_+)$ into some Gaussian space. For $A \subseteq \mathbb{R}_+$, we write $WN(A) = WN(1_A)$.
1 The Lebesgue–Stieltjes integral

Definition (Signed measure). A signed measure on \([0,T]\) is a difference \(\mu = \mu_+ - \mu_-\) of two positive measures on \([0,T]\) of disjoint support. The decomposition \(\mu = \mu_+ - \mu_-\) is called the Hahn decomposition.

Definition (Total variation). The total variation of a signed measure \(\mu = \mu_+ - \mu_-\) is \(|\mu| = \mu_+ + \mu_-\).

Definition (Total variation). The total variation of a function \(a : [0,T] \rightarrow \mathbb{R}\) is

\[
V_a(t) = |a(0)| + \sup \left\{ \sum_{i=1}^{n} |a(t_i) - a(t_{i-1})| : 0 = t_0 < t_1 < \cdots < t_n = T \right\}.
\]

We say \(a\) has bounded variation if \(V_a(T) < \infty\). In this case, we write \(a \in BV\).

Definition (Càdlàg). A function \(a : [0,T] \rightarrow \mathbb{R}\) is càdlàg if it is right-continuous and has left-limits.

Definition (Lebesgue–Stieltjes integral). Let \(a : [0,T] \rightarrow \mathbb{R}\) be càdlàg of bounded variation and let \(\mu\) be the associated signed measure. Then for \(h \in L^1([0,T], |\mu|)\), the Lebesgue–Stieltjes integral is defined by

\[
\int_s^t h(r) \, da(r) = \int_{[s,t]} h(r) \mu(dr),
\]

where \(0 \leq s \leq t \leq T\), and

\[
\int_s^t h(r) \, |da(r)| = \int_{[s,t]} h(r) |\mu|(dr).
\]

We also write

\[
h \cdot a(t) = \int_0^t h(r) \, da(r).
\]

Definition (Finite variation). A càdlàg function \(a : [0, \infty) \rightarrow \mathbb{R}\) is of finite variation if \(a|_{[0,T]} \in BV[0,1]\) for all \(T > 0\).
2 Semi-martingales

Definition (Càdlàg adapted process). A càdlàg adapted process is a map $X : \Omega \times [0, \infty) \to \mathbb{R}$ such that

- (i) X is càdlàg, i.e. $X(\omega, \cdot) : [0, \infty) \to \mathbb{R}$ is càdlàg for all $\omega \in \Omega$.
- (ii) X is adapted, i.e. $X_t = X(\cdot, t)$ is \mathcal{F}_t-measurable for every $t \geq 0$.

Notation. We will write $X \in \mathcal{G}$ to denote that a random variable X is measurable with respect to a σ-algebra \mathcal{G}.

2.1 Finite variation processes

Definition (Finite variation process). A finite variation process is a càdlàg adapted process A such that $A(\omega, \cdot) : [0, \infty) \to \mathbb{R}$ has finite variation for all $\omega \in \Omega$. The total variation process V of a finite variation process A is

$$V_t = \int_0^t |dA_s|.$$

Definition $((H \cdot A)_t)$. Let A be a finite variation process and H a process such that for all $\omega \in \Omega$ and $t \geq 0$,

$$\int_0^t H_s(\omega) \, |dA_s(\omega)| < \infty.$$

Then define a process $((H \cdot A)_t)_{t \geq 0}$ by

$$(H \cdot A)_t = \int_0^t H_s \, dA_s.$$

Definition (Previsible process). A process $H : \Omega \times [0, \infty) \to \mathbb{R}$ is previsible if it is measurable with respect to the previsible σ-algebra \mathcal{P} generated by the sets $E \times (s, t]$, where $E \in \mathcal{F}_s$ and $s < t$. We call the generating set Π.

Definition (Simple process). A process $H : \Omega \times [0, \infty) \to \mathbb{R}$ is simple, written $H \in \mathcal{E}$, if

$$H(\omega, t) = \sum_{i=1}^n H_{i-1}(\omega) 1_{(t_{i-1}, t_i]}(t)$$

for random variables $H_{i-1} \in \mathcal{F}_{i-1}$ and $0 = t_0 < \cdots < t_n$.

2.2 Local martingale

Definition (Local martingale). A càdlàg adapted process X is a local martingale if there exists a sequence of stopping times T_n such that $T_n \to \infty$ almost surely, and X^{T_n} is a martingale for every n. We say the sequence T_n reduces X.
2.3 Square integrable martingales

Definition (\mathcal{M}^2). Let

$$\mathcal{M}^2 = \left\{ X : \Omega \times [0, \infty) \rightarrow \mathbb{R} : X \text{ is càdlàg martingale with } \sup_{t \geq 0} \mathbb{E}(X_t^2) < \infty \right\}.$$

$$\mathcal{M}^2_c = \left\{ X \in \mathcal{M}^2 : X(\omega, \cdot) \text{ is continuous for every } \omega \in \Omega \right\}.$$

We define an inner product on \mathcal{M}^2 by

$$(X, Y)_{\mathcal{M}^2} = \mathbb{E}(X_\infty Y_\infty),$$

which in particular induces a norm

$$\|X\|_{\mathcal{M}^2} = \left(\mathbb{E}(X_\infty^2) \right)^{1/2}.$$

We will prove this is indeed an inner product soon. Here recall that for $X \in \mathcal{M}^2$, the martingale convergence theorem implies $X_t \to X_\infty$ almost surely and in L^2.

2.4 Quadratic variation

Definition (Uniformly on compact sets in probability). For a sequence of processes (X^n) and a process X, we say that $X^n \to X$ u.c.p. iff

$$\mathbb{P} \left(\sup_{s \in [0,t]} |X^n_s - X_s| > \varepsilon \right) \to 0 \text{ as } n \to \infty \text{ for all } t > 0, \varepsilon > 0.$$

Definition (Quadratic variation). $\langle M \rangle$ is called the quadratic variation of M.

2.5 Covariation

Definition (Covariation). Let M, N be two continuous local martingales. Define the covariation (or simply the bracket) between M and N to be process

$$\langle M, N \rangle_t = \frac{1}{4}(\langle M + N \rangle_t - \langle M - N \rangle_t).$$

2.6 Semi-martingale

Definition (Semi-martingale). A (continuous) adapted process X is a (continuous) semi-martingale if

$$X = X_0 + M + A,$$

where $X_0 \in \mathcal{F}_0$, M is a continuous local martingale with $M_0 = 0$, and A is a continuous finite variation process with $A_0 = 0$.

Definition (Quadratic variation). Let $X = X_0 + M + A$ and $X' = X'_0 + M' + A'$ be (continuous) semi-martingales. Set

$$\langle X \rangle = \langle M \rangle, \quad \langle X, X' \rangle = \langle M, M' \rangle.$$
3 The stochastic integral

3.1 Simple processes

Definition (Simple process). The space of simple processes E consists of functions $H : \Omega \times [0, \infty) \rightarrow \mathbb{R}$ that can be written as

$$H_t(\omega) = \sum_{i=1}^{n} H_{i-1}(\omega)1_{[t_{i-1}, t_i]}(t)$$

for some $0 \leq t_0 \leq t_1 \leq \cdots \leq t_n$ and bounded random variables $H_i \in F_{t_i}$.

Definition $(H \cdot M)$. For $M \in \mathcal{M}^2$ and $H \in \mathcal{E}$, we set

$$\int_0^t H \, dM = (H \cdot M)_t = \sum_{i=1}^{n} H_{i-1}(M_{t_i \wedge t} - M_{t_{i-1} \wedge t}).$$

3.2 Itô isometry

Definition ($L^2(M)$). Let $M \in \mathcal{M}^2_c$. Define $L^2(M)$ to be the space of (equivalence classes of) previsible $H : \Omega \times [0, \infty) \rightarrow \mathbb{R}$ such that

$$\|H\|_{L^2(M)} = \|H\|_M = \mathbb{E} \left(\int_0^\infty H_s^2 \, d\langle M \rangle_s \right)^{1/2} < \infty.$$

For $H, K \in L^2(M)$, we set

$$(H, K)_{L^2(M)} = \mathbb{E} \left(\int_0^\infty H_s K_s \, d\langle M \rangle_s \right).$$

Definition (Stochastic integral). $H \cdot M$ is the stochastic integral of H with respect to M and we also write

$$(H \cdot M)_t = \int_0^t H_s \, dM_s.$$

3.3 Extension to local martingales

Definition ($L^2_{bc}(M)$). Let $L^2_{bc}(M)$ be the space of previsible H such that

$$\int_0^t H_s^2 \, d\langle M \rangle_s < \infty \text{ a.s.}$$

for all finite $t > 0$.

3.4 Extension to semi-martingales

Definition (Locally bounded previsible process). A previsible process H is locally bounded if for all $t \geq 0$, we have

$$\sup_{s \leq t} |H_s| < \infty \text{ a.s.}$$
Definition (Stochastic integral). Let $X = X_0 + M + A$ be a continuous semi-martingale, and H a locally bounded previsible process. Then the stochastic integral $H \cdot X$ is the continuous semi-martingale defined by

$$H \cdot X = H \cdot M + H \cdot A,$$

and we write

$$(H \cdot X)_t = \int_0^T H_s \, dX_s.$$
4 Stochastic differential equations

4.1 Existence and uniqueness of solutions

Definition (Stochastic differential equation). Let \(d, m \in \mathbb{N} \), \(b : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d \), \(\sigma : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^{d \times m} \) be locally bounded (and measurable). A solution to the stochastic differential equation \(E(\sigma, b) \) given by
\[
\mathrm{d}X_t = b(t, X_t) \, \mathrm{d}t + \sigma(t, X_t) \, \mathrm{d}B_t
\]
consists of
(i) a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})\) obeying the usual conditions;
(ii) an \(m \)-dimensional Brownian motion \(B \) with \(B_0 = 0 \); and
(iii) an \((\mathcal{F}_t)\)-adapted continuous process \(X \) with values in \(\mathbb{R}^d \) such that
\[
X_t = X_0 + \int_0^t \sigma(s, X_s) \, \mathrm{d}B_s + \int_0^t b(s, X_s) \, \mathrm{d}s.
\]
If \(X_0 = x \in \mathbb{R}^d \), then we say \(X \) is a \((weak) \) solution to \(E_x(\sigma, b) \). It is a \(strong \) solution if it is adapted with respect to the canonical filtration of \(B \).

Definition (Uniqueness of solutions). For the stochastic differential equation \(E(\sigma, b) \), we say there is
- \textit{uniqueness in law} if for every \(x \in \mathbb{R}^d \), all solutions to \(E_x(\sigma, b) \) have the same distribution.
- \textit{pathwise uniqueness} if when \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})\) and \(B \) are fixed, any two solutions \(X, X' \) with \(X_0 = X'_0 \) are indistinguishable.

Definition (Lipschitz coefficients). The coefficients \(b : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d \), \(\sigma : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^{d \times m} \) are Lipschitz in \(x \) if there exists a constant \(K > 0 \) such that for all \(t \geq 0 \) and \(x, y \in \mathbb{R}^d \), we have
\[
|b(t, x) - b(t, y)| \leq K|x - y| \\
|\sigma(t, x) - \sigma(t, y)| \leq |x - y|
\]

4.2 Examples of stochastic differential equations

Definition (Gaussian orthogonal ensemble). The \textit{Gaussian Orthogonal Ensemble} \(\text{GOE}_N \) is the standard Gaussian measure on \(\mathcal{H}_N \), i.e. \(H \sim \text{GOE}_N \) if
\[
H = \sum_{r=1}^{\dim \mathcal{H}_N} H_i X_i
\]
where each \(X_i \) are iid standard normals.

4.3 Representations of solutions to PDEs

Definition (Uniformly elliptic). We say \(a : \bar{U} \to \mathbb{R}^{d \times d} \) is \textit{uniformly elliptic} if there is a constant \(c > 0 \) such that for all \(\xi \in \mathbb{R}^d \) and \(x \in \bar{U} \), we have
\[
\xi^T a(x) \xi \geq c|\xi|^2.
\]