Part ITI: Riemannian Geometry (Lent 2017)

Example Sheet 1

1. (i) Prove that any connection V on M uniquely determines a covariant derivative on
the cotangent bundle T* M (still to be denoted by V), such that Vx : Q1(M) — QY(M)
satisfies X(a,Y) = (Vxa,Y) + (o, VxY). Here a € Q}(M), X,Y are vector fields
on M, and (-,-) denotes the evaluation of a 1-form on a tangent vector. In particular,
prove that if a = 3, ajdz? in local coordinates and F;k are the coefficients of V on

0oy <
Txl‘i - ;kai)X k.

Show further that if V is the Levi-Civita of some metric (g;;) on M then the induced

connection is compatible with the dual metric g = (¢%) on T*M in the sense that

X(g(a,ﬁ)) = g(Vxa, B) + g(a, VxB), for each a, B € Q'(M) and vector field X. (It

is natural to call this induced connection the Levi-Civita on T*M).

the tangent bundle then (Vxa); = > (

(ii) Generalize the definition of the induced connection (still denoted by V) to the case
of (0, g)-tensor bundle T*M®4, ¢ > 1, by writing out an appropriate version of ‘Leibniz
formula’ for V. Give the expression for V in local coordinates. Show that if V is the
Levi-Civita of a Riemannian metric g on M then Vg = 0. (Thus a Riemannian metric
is covariant constant, or ‘parallel’; with respect to its Levi-Civita connection.)

2. (i) Let M be a Riemannian manifold. Show that the Levi-Civita covariant derivative
of R(X,Y) € T(EndTM) is given by VzR(X,Y) = [V, R(X,Y)] — R(V;X,Y) —
R(X,VzY). Deduce from this a version of the second Bianchi identity for the Levi-
Civita connection

VxR(Y,Z)+ VyR(Z,X) + V;R(X,Y) = 0. (x)

(ii)) When dim M > 3, show, using (x), that if Ric = fg for some smooth function f,
then f is constant (M then is said to be an FEinstein manifold).

(You might like to consider a map & : I'(Sym? T*M) — T(T*M) = Q' (M) defined by
(0R)(X) = =311 (Ve,h)(es, X), where {e;} is any local orthonormal frame field on M,
and put h = Ric.)

3. For this question, recall that the Riemann curvature tensor (R;; i) of (M, g) defines a
symmetric bilinear form on the fibres of A2T*M. Show that if dim M = 3 then the
Riemann curvature is determined at each point of M by the Ricci curvature Ric(g).
[Hint: the assignment of Ric(g) to R(g) is a linear map, at each point of M. A special
feature of the dimension 3 is that the spaces of 1-forms and 2-forms on R? have the
same dimension.]

4. Prove that the scalar curvature s(p), p € M is given by

/ Ricy(z, z) dx
Sn—1

where w,,_1 is the volume of the unit sphere S"~! in T,M.

n

s(p) =
Wn—1

5. Let G be a Lie group endowed with a Riemannian metric g which is left and right
invariant and let X, Y, Z be left invariant vector fields of G.
(i) Show that ¢([X,Y],Z) + g(Y,[X, Z]) = 0. (Consider the flow of X.)
(7)) Show that VxX = 0. (Hint: consider ¢(Y,VxX).)
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10.

11.

12.

13.

(44i) Show that VxY = [X,Y].
() Prove that R(X,Y)Z = 1[[X,Y], Z].
(v) Suppose that X and Y are orthonormal, and let K (o) be the sectional curvature
of the 2-plane o spanned by X and Y. Prove that

K(0) = 111X, V13

. Let M be a Riemannian manifold. M is said to be locally symmetric if VR = 0, where

R = (Rjj 1) is the curvature tensor of M.

(i) Let M be a locally symmetric space and let « : [0,¢] — M be a geodesic on M.
Let X,Y,Z be parallel vector fields along . Prove that R(X,Y)Z is a parallel
vector field along ~.

(79) Suppose that M is locally symmetric, connected and 2-dimensional. Prove that
M has constant sectional curvature.

(7i) Prove that if M has constant sectional curvature, then it is locally symmetric.

Let N be a connected Riemannian manifold and let f : M — N be a local diffeomor-
phism. Show that one can put a Riemannian metric on M such that f becomes a local
isometry. Show that if M is complete then NV is complete. Is the converse true? Is the
converse true if f is a covering map?

. A geodesic v : [0,00) — M is called a ray if it minimizes the distance between ~(0)

and 7(s) for all s € (0,00). Show that if M is complete and non-compact, there is a
ray leaving from every point in M.

. A Riemannian manifold M is said to be homogeneous if given p and ¢ in M, there

exists an isometry of M taking p to g. Show that a homogeneous Riemannian manifold
is complete.

Let S3 = {(21,22) € C?: |21 + |22|> = 1} and let h : S® — S3 be given by
h(zl,zg) _ (627ri/q21762m‘r/q22)’

where g and r are co-prime integers and ¢ > 1.

(i) Show that G = {id, h, ..., h9" '} is a group of isometries of S (equipped with the
standard metric) that acts in such a way that S3/G is a manifold and the projection
p: 83— S3/G is alocal diffeomorphism. (The manifolds S3/G are called lens spaces.)

(ii) Consider on S$3/G the metric induced by p. Show that all the geodesics of S3/G
are closed, but they could have different lengths.

Let M be a complete Riemannian manifold and let N C M be a closed submanifold.
Let pe M, p & N, and let d(p, N) be the distance from p to N. Show that there exists
a point ¢ € N such that d(p,q) = d(p, N). Show that a minimizing geodesic between p
and g must be orthogonal to N at q.

Let M be an orientable Riemannian manifold of even dimension and positive sectional
curvature. Show that any closed geodesic in M is homotopic to a closed curve with
length strictly smaller than that of ~.

Suppose that for every smooth Riemannian metric on a manifold M, M is complete.
Show that M is compact (Hint: think about rays as in Problem 8.)
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Part ITI: Riemannian Geometry (Lent 2017)

Example Sheet 2

1. Give an example of a non-compact complete Riemannian manifold with Ricci curvature
(strictly) positive-definite at each point.

2. Let G be a Lie group whose Lie algebra g has trivial centre. Suppose that G admits
a bi-invariant (i.e. left- and right-invariant) Riemannian metric. Show that G and its
universal cover are compact. Deduce that SL(2,R) admits no bi-invariant metric.

3. (i) Show that the Hodge star on A?(R*)* determines an orthogonal decomposition

A?(R*)* = AT @ A~ into the £1 eigenspaces and dim AT = dim A~ = 3. Deduce that
on every oriented 4-dimensional Riemannian manifold M there is a decomposition of
2-forms Q*(M) = QT @ Q~, so that a Aa = i\a|§ wy, for every a € QF, where wy is
the volume form. (2-forms in the subspaces QF are called, respectively, the self- and
anti-self-dual forms on M.)
(ii) Now assume that M is a compact 4-dimensional oriented Riemannian manifold.
Show that the expression [ v @A\, for closed a, 3 € Q2(M), induces a well-defined
symmetric bilinear form on the de Rham cohomology HZ2,(M). Let (b (M),b~(M))
denote the signature of this bilinear form. Show that b*(M) = dim H*, where H*
denotes the space of harmonic (anti-)self-dual forms on M.

4. (i) Derive explicit formulas for %, §, and Laplace-Beltrami operator in Euclidean space.
In particular, show that if

o= Z ardxi; A ... ANdg, (I =i1,...,10p),
11<...<ip
then
" 9%
<. <ip =1 "
(ii) For u,v € C*°(M), show that A(uv) = (Au)v—2(du, dv)y+uAv (M is an oriented
Riemannian manifold).
5. Calculate explicitly the expression of the Laplacian for functions:
(a) on the hyperbolic plane H? = {(z,y) € R? : y > 0}, where the metric is
dz? + dy? .
y:
(b) on the unit sphere S C R™*! in local coordinates given by stereographic projec-
tions. (The metric on S™ is the standard ‘round’ metric induced by the embedding.)

g(z,y) =

*Express the Laplacian on the Euclidean R"™!\ {0} in terms of the Laplacian on the
unit sphere S™ (recall that the Euclidean metric can be expressed as g = dr? + r2dS?,
where r = |z|, z € R""! and dS? is the ‘round’ metric on S™). Deduce a formula for
the Laplacian on spherically-symmetric functions f(r).

6. Let o and 3 be n-forms on a compact oriented manifold M™ such that | o= / u B
Prove that o and f differ by an exact form. (Stokes’ theorem may be assumed.)
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10.

Show that the partial differential equation Af = ¢ for a function f € C*°(M) on a
compact oriented Riemannian manifold (M, g), with a given ¢ € C°°(M), has a solution
if and only if [}, pwy = 0. (w, denotes the volume form.) Is the solution unique?
*Discuss the solvability of A(Af) = ¢ when f,¢ € C*°(M) and more generally when
f, ¢ are p-forms.

. Let M be a compact oriented Riemannian manifold and F' a diffeomorphism of M which

preserves the volume form on M. We say that a form « € QP(M) is invariant under F
if «o F' = v and we say that the Laplacian A is invariant under F if AaoF = A(aoF),
for all & € QP(M). Suppose that A and « are invariant under F and « is L2-orthogonal
to each harmonic form on M. Prove that there is an invariant solution 7 of An = a.

. (Holonomy transformations.) Show that the parallel transport defined by the Levi-

Civita connection over any closed loop based at x € M defines an orthogonal linear
transformation of T, M which is in SO(T,M ) when M is oriented.
An orthogonal almost complex structure on a manifold (M, g) is an endomorphism
J of its tangent bundle TM such that J> = —1 and g(JX,JY) = g(X,Y), for all
X,Y € Vect(M). If M admits such J, show that M is orientable and even-dimensional.
Show that w = g(J-, ) defines a 2-form on M with w™ # 0 at each point (dim M = 2n).
Show further that the following statements are equivalent:

(a) VJ =0,
(b) Vw =0,
(c) the parallel transport defined by V along closed loops is represented by elements

of U(n) C SO(2n) (after some natural identifications).

Here V denotes the (induced) Levi-Civita connection on respective vector bundles.
(Each of (a),(b),(c) is in fact equivalent to M being a Kdhler complex manifold with
Kahler form w and J corresponding to multiplication by ¢ in local complex coordinates.)

(i) For any two bilinear forms h,k on tangent spaces to M, define a (0,4)-tensor
(hk)(X.Y,Z,T) = h(X, Z)k(Y,T)+h(Y, T)k(X, Z)—h(X, T)k(Y, Z)—h(Y, Z)k(X,T),
where X,Y,Z,T € T,M. Show that the curvature tensor R = (R;ju) of a Rie-
mannian n-dimensional manifold (M,g), n > 4, has an SO(n)-invariant, orthogo-
mg “g+ niiQ (Ric—%g) - g + W, where W satis-
fies W(X,Y,Z,T) + W(Z,X,Y,T) + W(Y,Z,X,T) = 0 (1st Bianchi identity) and
Yo W(X,e;,Y,e;) =0forall X,Y,Z,T € T, M and where e; is an orthonormal basis
of T, M. (W is called the Weyl tensor of (M, g)).

(ii) Suppose that dim M = 4 and M is oriented. We consider R as a symmetric bi-
linear form on the fibres of A2T*M. Let a bilinear form, B : AT x A~ — R be the
restriction of R defined using the decomposition into self- and anti-self-dual forms as in
Question 3. Show that B is equivalent to the trace-free part Ricg of the Ricci curvature
(with respect to the metric g), that is, ¢"*(Rico)g; = ¢"* Ricg; —3s 53. in local coordi-
nates, where (¢%/) denotes the inverse matrix of g = (g;;) (the summation convention
is assumed).

Show further that R, with respect to the decomposition A? = AT @A™, has the form

W+ 51 B
BT W=+ 51)7

where W+ : AT x AT — R are symmetric bilinear forms with tr W~ + tr W+ = 0 and
W =W+ @W~ is an SO(4)-invariant orthogonal decomposition of the Weyl tensor.

nal decomposition R =
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Part ITI: Riemannian Geometry (Lent 2017)

Example Sheet 3

1. Show that the volume form of a Riemannian manifold is parallel, Vw, = 0, with respect
to the Levi—Civita connection of g.

2. (normal frame fields) Show that for each point p € M of a Riemannian manifold there
exists an orthonormal frame field eq,...,e, defined on some neighbourhood of p and
such that Ve; vanishes at p for each i. [Hint: you might like to first verify that the
coeflicients Fé»k, of the Levi-Civita connection in the geodesic coordinates at p € M,
vanish at p.]

3. Show that for the Levi—Civita connection, the following diagram commutes

T(APT*M) —= T(T*M ® APT* M)

S s

L(APHIT* M),

where alt(§ ® o) = £ A a denotes projection to the subspace of anti-symmetric tensors
(p > 0). Deduce the formula for the exterior derivative of one-forms

do(X,Y) = (Vxa)(Y) — (Vya)(X)

as stated in the Lectures. * Show that these results hold for any torsion-free connection
Von M.

4. (i) The divergence of a (1, 3)-tensor R may be defined as a (0, 3)-tensor (i.e. a tri-linear
function of tangent vectors X,Y, Z)
(divR)(X,Y, Z) = tr(V — (Vv R)(X,Y, 2)).
Show that if R = (R;kl) is the (1, 3)-curvature tensor, then
(divR)(X,Y,Z) = (Vx Ric)(Y, Z) — (Vy Ric)(X, Z).
Deduce that div R = 0 if and only if the Ricci curvature satisfies:
(VxRic)(Y,Z) = (VyRic)(X, Z) forall X,Y,Z.

(7) (M. Berger) On a closed Riemannian manifold (M, g) show that if div R = 0 and
the sectional curvature K > 0, then V Ric = 0. [Hint: use the relation 2tr V Ric = ds
to conclude tr V Ric = 0. Here (tr V Ric)(X) = >, V., Ric(e;, X)), for orthonormal e;.]

5. Show that the co-differential § on p-forms may be equivalently defined by

n n

1) (Xor- 1 Xp) = = S (Term)eis Xo,o o, Xp) = = 3 (i) (Vo) (X -, X,)
i=1 =1
where e; is some/any local orthonormal frame field. (In particular, § and A, are
independent of the choice of orientation and in fact may be defined on non-orientable
manifolds too.)
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. (4) Show that Hol’(M) is a normal subgroup of Hol(M) and that there is a natural,

surjective group homomorphism 71 (M) — Hol(M)/ Hol(M).

(ii) Show that Hol(M) = Hol°(M), where M denotes the universal Riemannian cover
of M.

Determine the holonomy of the unit sphere S™ C R"*! (with the round metric).

. A theorem due to de Rham asserts that if we decompose the tangent bundle of a Rie-

mannian manifold (M, g) into irreducible components according to the holonomy repre-
sentation, TM = 171 ®...® 7, then around each point p € M there is a neighbourhood
U that decomposes into a Riemannian product, (U,g) = (Uy X ... X Uk, 91 + ...+ gk),
so that TU; = 7; for each 1.

Deduce that if the holonomy group of (M, g) has no invariant subspaces (i.e. the
holonomy representation is irreducible) and the Ricci tensor is parallel V Ric = 0, then
M is Einstein (Ric = Ag, for some A € R). [Hint: eigenvalues.]

(This question requires Frobenius theorem.) Suppose that (M, g) admits a parallel
field of k-dimensional tangent subspaces (k < n — 1), i.e. a rank k subbundle of TM
invariant under parallel transport. Show that every such distribution is integrable
(involutive).

Using the skew-symmetric linear maps
XANY :T,M — t,M, XANY(V)=g(X, V)Y —g(Y, V)X,

show that A*’T,M = so(T,M). (Elements X AY of A’T,M are sometimes called
bi-vectors.) Now let R : A’T,M — A?T,M be a linear endomorphism induced by
the curvature (0,4)-tensor. Deduce that the image of fR is contained in the holonomy
algebra R(A?T,M) C bol,(M).

(i) Show that a compact Riemannian manifold with irreducible holonomy representa-
tion and Ric > 0 has finite fundamental group.

(i) Let G be a compact Lie group endowed with a bi-invariant metric. Show that G
admits a finite cover by G’ x T*, where G’ is compact simply connected and 7% is a
torus.

* Show that if G has finite fundamental group, then its Lie algebra has trivial centre.
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