
Part III: Riemannian Geometry (Lent 2017)

Example Sheet 1

1. (i) Prove that any connection ∇ on M uniquely determines a covariant derivative on
the cotangent bundle T ∗M (still to be denoted by ∇), such that ∇X : Ω1(M)→ Ω1(M)
satisfies X〈α, Y 〉 = 〈∇Xα, Y 〉 + 〈α,∇XY 〉. Here α ∈ Ω1(M), X,Y are vector fields
on M , and 〈·, ·〉 denotes the evaluation of a 1-form on a tangent vector. In particular,
prove that if α =

∑
j αjdx

j in local coordinates and Γijk are the coefficients of ∇ on

the tangent bundle then (∇Xα)j =
∑

ik

(∂αj
∂xk
− Γijkαi

)
Xk.

Show further that if ∇ is the Levi–Civita of some metric (gij) on M then the induced
connection is compatible with the dual metric g = (gij) on T ∗M in the sense that
X
(
g(α, β)

)
= g(∇Xα, β) + g(α,∇Xβ), for each α, β ∈ Ω1(M) and vector field X. (It

is natural to call this induced connection the Levi–Civita on T ∗M).

(ii) Generalize the definition of the induced connection (still denoted by ∇) to the case
of (0, q)-tensor bundle T ∗M⊗q, q > 1, by writing out an appropriate version of ‘Leibniz
formula’ for ∇. Give the expression for ∇ in local coordinates. Show that if ∇ is the
Levi–Civita of a Riemannian metric g on M then ∇g = 0. (Thus a Riemannian metric
is covariant constant, or ‘parallel’, with respect to its Levi–Civita connection.)

2. (i) Let M be a Riemannian manifold. Show that the Levi–Civita covariant derivative
of R(X,Y ) ∈ Γ(EndTM) is given by ∇ZR(X,Y ) = [∇Z , R(X,Y )] − R(∇ZX,Y ) −
R(X,∇ZY ). Deduce from this a version of the second Bianchi identity for the Levi–
Civita connection

∇XR(Y,Z) +∇YR(Z,X) +∇ZR(X,Y ) = 0. (∗)
(ii) When dimM ≥ 3, show, using (∗), that if Ric = fg for some smooth function f ,
then f is constant (M then is said to be an Einstein manifold).
(You might like to consider a map δ : Γ(Sym2 T ∗M) → Γ(T ∗M) = Ω1(M) defined by
(δh)(X) = −

∑n
i=1(∇eih)(ei, X), where {ei} is any local orthonormal frame field on M ,

and put h = Ric.)

3. For this question, recall that the Riemann curvature tensor (Rij,kl) of (M, g) defines a
symmetric bilinear form on the fibres of Λ2T ∗M . Show that if dimM = 3 then the
Riemann curvature is determined at each point of M by the Ricci curvature Ric(g).
[Hint: the assignment of Ric(g) to R(g) is a linear map, at each point of M . A special
feature of the dimension 3 is that the spaces of 1-forms and 2-forms on R3 have the
same dimension.]

4. Prove that the scalar curvature s(p), p ∈M is given by

s(p) =
n

ωn−1

∫
Sn−1

Ricp(x, x) dx

where ωn−1 is the volume of the unit sphere Sn−1 in TpM .

5. Let G be a Lie group endowed with a Riemannian metric g which is left and right
invariant and let X,Y, Z be left invariant vector fields of G.

(i) Show that g([X,Y ], Z) + g(Y, [X,Z]) = 0. (Consider the flow of X.)
(ii) Show that ∇XX = 0. (Hint: consider g(Y,∇XX).)
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(iii) Show that ∇XY = 1
2 [X,Y ].

(iv) Prove that R(X,Y )Z = 1
4 [[X,Y ], Z].

(v) Suppose that X and Y are orthonormal, and let K(σ) be the sectional curvature
of the 2-plane σ spanned by X and Y . Prove that

K(σ) =
1

4
|[X,Y ]|2g

6. Let M be a Riemannian manifold. M is said to be locally symmetric if ∇R = 0, where
R = (Rij,kl) is the curvature tensor of M .

(i) Let M be a locally symmetric space and let γ : [0, `] → M be a geodesic on M .
Let X,Y, Z be parallel vector fields along γ. Prove that R(X,Y )Z is a parallel
vector field along γ.

(ii) Suppose that M is locally symmetric, connected and 2-dimensional. Prove that
M has constant sectional curvature.

(iii) Prove that if M has constant sectional curvature, then it is locally symmetric.

7. Let N be a connected Riemannian manifold and let f : M → N be a local diffeomor-
phism. Show that one can put a Riemannian metric on M such that f becomes a local
isometry. Show that if M is complete then N is complete. Is the converse true? Is the
converse true if f is a covering map?

8. A geodesic γ : [0,∞) → M is called a ray if it minimizes the distance between γ(0)
and γ(s) for all s ∈ (0,∞). Show that if M is complete and non-compact, there is a
ray leaving from every point in M .

9. A Riemannian manifold M is said to be homogeneous if given p and q in M , there
exists an isometry of M taking p to q. Show that a homogeneous Riemannian manifold
is complete.

10. Let S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} and let h : S3 → S3 be given by

h(z1, z2) = (e2πi/qz1, e
2πir/qz2),

where q and r are co-prime integers and q > 1.
(i) Show that G = {id, h, . . . , hq−1} is a group of isometries of S3 (equipped with the

standard metric) that acts in such a way that S3/G is a manifold and the projection
p : S3 → S3/G is a local diffeomorphism. (The manifolds S3/G are called lens spaces.)

(ii) Consider on S3/G the metric induced by p. Show that all the geodesics of S3/G
are closed, but they could have different lengths.

11. Let M be a complete Riemannian manifold and let N ⊂ M be a closed submanifold.
Let p ∈M , p 6∈ N , and let d(p,N) be the distance from p to N . Show that there exists
a point q ∈ N such that d(p, q) = d(p,N). Show that a minimizing geodesic between p
and q must be orthogonal to N at q.

12. Let M be an orientable Riemannian manifold of even dimension and positive sectional
curvature. Show that any closed geodesic in M is homotopic to a closed curve with
length strictly smaller than that of γ.

13. Suppose that for every smooth Riemannian metric on a manifold M , M is complete.
Show that M is compact (Hint: think about rays as in Problem 8.)
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1. Give an example of a non-compact complete Riemannian manifold with Ricci curvature
(strictly) positive-definite at each point.

2. Let G be a Lie group whose Lie algebra g has trivial centre. Suppose that G admits
a bi-invariant (i.e. left- and right-invariant) Riemannian metric. Show that G and its
universal cover are compact. Deduce that SL(2,R) admits no bi-invariant metric.

3. (i) Show that the Hodge star on Λ2(R4)∗ determines an orthogonal decomposition
Λ2(R4)∗ = Λ+ ⊕ Λ− into the ±1 eigenspaces and dim Λ+ = dim Λ− = 3. Deduce that
on every oriented 4-dimensional Riemannian manifold M there is a decomposition of
2-forms Ω2(M) = Ω+ ⊕ Ω−, so that α ∧ α = ±|α|2g ωg, for every α ∈ Ω±, where ωg is

the volume form. (2-forms in the subspaces Ω± are called, respectively, the self- and
anti-self-dual forms on M .)

(ii) Now assume that M is a compact 4-dimensional oriented Riemannian manifold.
Show that the expression

∫
M α ∧ β, for closed α, β ∈ Ω2(M), induces a well-defined

symmetric bilinear form on the de Rham cohomology H2
dR(M). Let (b+(M), b−(M))

denote the signature of this bilinear form. Show that b±(M) = dimH±, where H±
denotes the space of harmonic (anti-)self-dual forms on M .

4. (i) Derive explicit formulas for ∗, δ, and Laplace–Beltrami operator in Euclidean space.
In particular, show that if

α =
∑

i1<...<ip

αIdxi1 ∧ . . . ∧ dxip (I = i1, . . . , ip),

then

∆α = −
∑

i1<...<ip

( n∑
i=1

∂2αI

∂xi2
)
dxi1 ∧ . . . ∧ dxip .

(ii) For u, v ∈ C∞(M), show that ∆(uv) = (∆u)v−2〈du, dv〉g +u∆v (M is an oriented
Riemannian manifold).

5. Calculate explicitly the expression of the Laplacian for functions:

(a) on the hyperbolic plane H2 = {(x, y) ∈ R2 : y > 0}, where the metric is

g(x, y) =
dx2 + dy2

y2
;

(b) on the unit sphere Sn ⊂ Rn+1, in local coordinates given by stereographic projec-
tions. (The metric on Sn is the standard ‘round’ metric induced by the embedding.)
∗Express the Laplacian on the Euclidean Rn+1 \ {0} in terms of the Laplacian on the
unit sphere Sn (recall that the Euclidean metric can be expressed as g = dr2 + r2dS2,
where r = |x|, x ∈ Rn+1, and dS2 is the ‘round’ metric on Sn). Deduce a formula for
the Laplacian on spherically-symmetric functions f(r).

6. Let α and β be n-forms on a compact oriented manifold Mn such that
∫
M α =

∫
M β.

Prove that α and β differ by an exact form. (Stokes’ theorem may be assumed.)
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7. Show that the partial differential equation ∆f = ϕ for a function f ∈ C∞(M) on a
compact oriented Riemannian manifold (M, g), with a given ϕ ∈ C∞(M), has a solution
if and only if

∫
M ϕωg = 0. (ωg denotes the volume form.) Is the solution unique?

∗Discuss the solvability of ∆(∆f) = ϕ when f, ϕ ∈ C∞(M) and more generally when
f, ϕ are p-forms.

8. Let M be a compact oriented Riemannian manifold and F a diffeomorphism of M which
preserves the volume form on M . We say that a form α ∈ Ωp(M) is invariant under F
if α◦F = α and we say that the Laplacian ∆ is invariant under F if ∆α◦F = ∆(α◦F ),
for all α ∈ Ωp(M). Suppose that ∆ and α are invariant under F and α is L2-orthogonal
to each harmonic form on M . Prove that there is an invariant solution η of ∆η = α.

9. (Holonomy transformations.) Show that the parallel transport defined by the Levi–
Civita connection over any closed loop based at x ∈ M defines an orthogonal linear
transformation of TxM which is in SO(TxM) when M is oriented.

An orthogonal almost complex structure on a manifold (M, g) is an endomorphism
J of its tangent bundle TM such that J2 = −1 and g(JX, JY ) = g(X,Y ), for all
X,Y ∈ Vect(M). If M admits such J , show that M is orientable and even-dimensional.
Show that ω = g(J ·, ·) defines a 2-form on M with ωn 6= 0 at each point (dimM = 2n).

Show further that the following statements are equivalent:
(a) ∇J = 0,
(b) ∇ω = 0,
(c) the parallel transport defined by ∇ along closed loops is represented by elements

of U(n) ⊂ SO(2n) (after some natural identifications).

Here ∇ denotes the (induced) Levi-Civita connection on respective vector bundles.
(Each of (a),(b),(c) is in fact equivalent to M being a Kähler complex manifold with
Kähler form ω and J corresponding to multiplication by i in local complex coordinates.)

10. (i) For any two bilinear forms h, k on tangent spaces to M , define a (0, 4)-tensor
(h·k)(X,Y, Z, T ) = h(X,Z)k(Y, T )+h(Y, T )k(X,Z)−h(X,T )k(Y, Z)−h(Y,Z)k(X,T ),
where X,Y, Z, T ∈ TxM . Show that the curvature tensor R = (Rij,kl) of a Rie-
mannian n-dimensional manifold (M, g), n ≥ 4, has an SO(n)-invariant, orthogo-

nal decomposition R =
s

2n(n− 1)
g · g +

1

n− 2
(Ric− s

n
g) · g + W , where W satis-

fies W (X,Y, Z, T ) + W (Z,X, Y, T ) + W (Y,Z,X, T ) = 0 (1st Bianchi identity) and∑n
i=1W (X, ei, Y, ei) = 0 for all X,Y, Z, T ∈ TxM and where ei is an orthonormal basis

of TxM . (W is called the Weyl tensor of (M, g)).

(ii) Suppose that dimM = 4 and M is oriented. We consider R as a symmetric bi-
linear form on the fibres of Λ2T ∗M . Let a bilinear form, B : Λ+ × Λ− → R be the
restriction of R defined using the decomposition into self- and anti-self-dual forms as in
Question 3. Show that B is equivalent to the trace-free part Ric0 of the Ricci curvature
(with respect to the metric g), that is, gik(Ric0)kj = gik Rickj −1

4s δ
i
j in local coordi-

nates, where (gij) denotes the inverse matrix of g = (gij) (the summation convention
is assumed).

Show further that R, with respect to the decomposition Λ2 = Λ+⊕Λ−, has the form(
W+ + s

12I B
BT W− + s

12I

)
,

where W± : Λ± × Λ± → R are symmetric bilinear forms with trW− + trW+ = 0 and
W = W+ ⊕W− is an SO(4)-invariant orthogonal decomposition of the Weyl tensor.
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1. Show that the volume form of a Riemannian manifold is parallel, ∇ωg = 0, with respect
to the Levi–Civita connection of g.

2. (normal frame fields) Show that for each point p ∈M of a Riemannian manifold there
exists an orthonormal frame field e1, . . . , en defined on some neighbourhood of p and
such that ∇ei vanishes at p for each i. [Hint: you might like to first verify that the
coefficients Γi

jk of the Levi–Civita connection in the geodesic coordinates at p ∈ M ,

vanish at p.]

3. Show that for the Levi–Civita connection, the following diagram commutes

Γ(ΛpT ∗M)
∇ //

d ((

Γ(T ∗M ⊗ ΛpT ∗M)

alt
��

Γ(Λp+1T ∗M),

where alt(ξ ⊗ α) = ξ ∧ α denotes projection to the subspace of anti-symmetric tensors
(p > 0). Deduce the formula for the exterior derivative of one-forms

dα(X,Y ) = (∇Xα)(Y )− (∇Y α)(X)

as stated in the Lectures. ∗ Show that these results hold for any torsion-free connection
∇ on M .

4. (i) The divergence of a (1, 3)-tensor R may be defined as a (0, 3)-tensor (i.e. a tri-linear
function of tangent vectors X,Y, Z)

(divR)(X,Y, Z) = tr
(
V → (∇VR)(X,Y, Z)

)
.

Show that if R = (Ri
j,kl) is the (1, 3)-curvature tensor, then

(divR)(X,Y, Z) = (∇X Ric)(Y,Z)− (∇Y Ric)(X,Z).

Deduce that divR = 0 if and only if the Ricci curvature satisfies:

(∇X Ric)(Y, Z) = (∇Y Ric)(X,Z) for all X,Y, Z.

(ii) (M. Berger) On a closed Riemannian manifold (M, g) show that if divR = 0 and
the sectional curvature K ≥ 0, then ∇Ric = 0. [Hint: use the relation 2 tr∇Ric = ds
to conclude tr∇Ric = 0. Here (tr∇Ric)(X) =

∑
i∇ei Ric(ei, X)), for orthonormal ei.]

5. Show that the co-differential δ on p-forms may be equivalently defined by

(δη)(X2, . . . , Xp) = −
n∑

i=1

(∇eiη)(ei, X2, . . . , Xp) = −
n∑

i=1

(
i(ei)(∇eiη)

)
(X2, . . . , Xp)

where ei is some/any local orthonormal frame field. (In particular, δ and ∆, are
independent of the choice of orientation and in fact may be defined on non-orientable
manifolds too.)

http://www.dpmms.cam.ac.uk/∼agk22/riemannian3.pdf



6. (i) Show that Hol0(M) is a normal subgroup of Hol(M) and that there is a natural,
surjective group homomorphism π1(M)→ Hol(M)/Hol0(M).

(ii) Show that Hol(M̃) = Hol0(M), where M̃ denotes the universal Riemannian cover
of M .

7. Determine the holonomy of the unit sphere Sn ⊂ Rn+1 (with the round metric).

8. A theorem due to de Rham asserts that if we decompose the tangent bundle of a Rie-
mannian manifold (M, g) into irreducible components according to the holonomy repre-
sentation, TM = τ1⊕ . . .⊕ τk, then around each point p ∈M there is a neighbourhood
U that decomposes into a Riemannian product, (U, g) = (U1 × . . .× Uk, g1 + . . .+ gk),
so that TUi = τi for each i.

Deduce that if the holonomy group of (M, g) has no invariant subspaces (i.e. the
holonomy representation is irreducible) and the Ricci tensor is parallel ∇Ric = 0, then
M is Einstein (Ric = λg, for some λ ∈ R). [Hint: eigenvalues.]

9.∗ (This question requires Frobenius theorem.) Suppose that (M, g) admits a parallel
field of k-dimensional tangent subspaces (k ≤ n − 1), i.e. a rank k subbundle of TM
invariant under parallel transport. Show that every such distribution is integrable
(involutive).

10. Using the skew-symmetric linear maps

X ∧ Y : TpM → tpM, X ∧ Y (V ) = g(X,V )Y − g(Y, V )X,

show that Λ2TpM ∼= so(TpM). (Elements X ∧ Y of Λ2TpM are sometimes called
bi-vectors.) Now let R : Λ2TpM → Λ2TpM be a linear endomorphism induced by
the curvature (0,4)-tensor. Deduce that the image of R is contained in the holonomy
algebra R(Λ2TpM) ⊂ holp(M).

11. (i) Show that a compact Riemannian manifold with irreducible holonomy representa-
tion and Ric ≥ 0 has finite fundamental group.
(ii) Let G be a compact Lie group endowed with a bi-invariant metric. Show that G
admits a finite cover by G′ × T k, where G′ is compact simply connected and T k is a
torus.
∗ Show that if G has finite fundamental group, then its Lie algebra has trivial centre.
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