
Part III — Modular Forms and L-functions

Theorems with proof

Based on lectures by A. J. Scholl
Notes taken by Dexter Chua

Lent 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Modular Forms are classical objects that appear in many areas of mathematics, from
number theory to representation theory and mathematical physics. Most famous is,
of course, the role they played in the proof of Fermat’s Last Theorem, through the
conjecture of Shimura-Taniyama-Weil that elliptic curves are modular. One connection
between modular forms and arithmetic is through the medium of L-functions, the
basic example of which is the Riemann ζ-function. We will discuss various types of
L-function in this course and give arithmetic applications.

Pre-requisites

Prerequisites for the course are fairly modest; from number theory, apart from basic

elementary notions, some knowledge of quadratic fields is desirable. A fair chunk of the

course will involve (fairly 19th-century) analysis, so we will assume the basic theory of

holomorphic functions in one complex variable, such as are found in a first course on

complex analysis (e.g. the 2nd year Complex Analysis course of the Tripos).
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1 Some preliminary analysis

1.1 Characters of abelian groups

Theorem (Pontryagin duality). Pontryagin duality If G is locally compact,

then G→ ˆ̂
G is an isomorphism.

Proposition. Let G be a finite abelian group. Then |Ĝ| = |G|, and G and Ĝ
are in fact isomorphic, but not canonically.

Proof. By the classification of finite abelian groups, we know G is a product of
cyclic groups. So it suffices to prove the result for cyclic groups Z/NZ, and the
result is clear since

Ẑ/NZ = µN ∼= Z/NZ.

1.2 Fourier transforms

Proposition. If f ∈ S(R), then f̂ ∈ S(R), and the Fourier inversion formula

ˆ̂
f = f(−x)

holds.

Proposition.

f(x) =
∑
n∈Z

cn(f)e2πinx =
∑

n∈Z∼=Ĝ

cn(f)χn(x).

Proposition. For a function f : Z/NZ→ C, we have

f(x) =
1

N

∑
ζ∈µN

ζxf̂(ζ).

Proof. We see that both sides are linear in f , and we can write each function f
as

f =
∑

a∈Z/NZ

f(a)δa,

where

δa(x) =

{
1 x = a

0 x 6= a
.

So we wlog f = δa. Thus we have

f̂(ζ) = ζ−a,

and the RHS is
1

N

∑
ζ∈µN

ζx−a.

We now note the fact that∑
ζ∈µN

ζk =

{
N k ≡ 0 (mod N)

0 otherwise
.

So we know that the RHS is equal to δa, as desired.
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1 Some preliminary analysisIII Modular Forms and L-functions (Theorems with proof)

Theorem. Let G be a locally compact abelian group G. Then there is a Haar
measure on G, unique up to scaling.

Theorem (Fourier inversion theorem). Given a locally compact abelian group
G with a fixed Haar measure, there is some constant C such that for “suitable”
f : G→ C, we have

ˆ̂
f(g) = Cf(−g),

using the canonical isomorphism G→ ˆ̂
G.

Theorem (Poisson summation formula). Let f ∈ S(Rn). Then∑
a∈Zn

f(a) =
∑
b∈Zn

f̂(b).

Proof. Let

g(x) =
∑
a∈Zn

f(x+ a).

This is now a function that is invariant under translation of Zn. It is easy to
check this is a well-defined C∞ function on Rn/Zn, and so has a Fourier series.
We write

g(x) =
∑
b∈Zn

cb(g)e2πib·x,

with

cb(g) =

∫
Rn/Zn

e−2πib·xg(x) dx =
∑
a∈Zn

∫
[0,1]n

e−2πib·xf(x+ a) dx.

We can then do a change of variables x 7→ x − a, which does not change the
exponential term, and get that

cb(g) =

∫
Rn

e−2πib·xf(x) dx = f̂(b).

Finally, we have ∑
a∈Zn

f(a) = g(0) =
∑
b∈Zn

cb(x) =
∑
b∈Zn

f̂(b).

1.3 Mellin transform and Γ-function

Lemma. Suppose f : R>0 → C is such that

– yNf(y)→ 0 as y →∞ for all N ∈ Z

– there exists m such that |ymy(f)| is bounded as y → 0

Then M(f, s) converges and is an analytic function of s for Re(s) > m.

Proof. We know that for any 0 < r < R <∞, the integral∫ R

r

ysf(y)
dy

y

5
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is analytic for all s since f is continuous.
By assumption, we know

∫∞
R
→ 0 as R→∞ uniformly on compact subsets

of C. So we know ∫ ∞
r

ysf(y)
dy

y

converges uniformly on compact subsets of C.
On the other hand, the integral

∫ r
0

as r → 0 converges uniformly on compact
subsets of {s ∈ C : Re(s) > m} by the other assumption. So the result
follows.

Proposition.
M(f(αy), s) = α−sM(f, s)

for α > 0.

Proposition.
sΓ(s) = Γ(s+ 1).

Proposition. For an integer n ≥ 1, we have

Γ(n) = (n− 1)!.

Proposition.

(i) The Weierstrass product : We have

Γ(s)−1 = eγss
∏
n≥1

(
1 +

s

n

)
e−s/n

for all s ∈ C. In particular, Γ(s) is never zero. Here γ is the Euler-
Mascheroni constant , given by

γ = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
.

(ii) Duplication and reflection formulae:

π
1
2 Γ(2s) = 22s−1Γ(s)Γ

(
s+

1

2

)
and

Γ(s)Γ(1− s) =
π

sinπz
.
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2 Riemann ζ-function

Proposition (Euler product formula). We have

ζ(s) =
∏

p prime

1

1− p−s
.

Proof. Euler’s proof was purely formal, without worrying about convergence.
We simply note that∏

p prime

1

1− p−s
=
∏
p

(1 + p−s + (p2)−s + · · · ) =
∑
n≥1

n−s,

where the last equality follows by unique factorization in Z. However, to prove
this properly, we need to be a bit more careful and make sure things converge.

Saying the infinite product
∏
p convergence is the same as saying

∑
p−s

converges, by basic analysis, which is okay since we know ζ(s) converges absolutely
when Re(s) > 1. Then we can look at the difference

ζ(s)−
∏
p≤X

1

1− p−s
= ζ(s)−

∏
p≤X

(1 + p−s + p−2s + · · · )

=
∏
n∈NX

n−s,

where NX is the set of all n ≥ 1 such that at least one prime factor is ≥ X. In
particular, we know ∣∣∣∣∣∣ζ(s)−

∏
p≤X

1

1− p−s

∣∣∣∣∣∣ ≤
∑
n≥X

|n−s| → 0

as X →∞. So the result follows.

Theorem. If Re(s) > 1, then

(2π)−sΓ(s)ζ(s) =

∫ ∞
0

ys

e2πy − 1

dy

y
= M(f, s),

where

f(y) =
1

e2πy − 1
.

Proof. We can write

f(y) =
e−2πy

1− e−2πy
=
∑
n≥1

e−2πny

for y > 0.
As y → 0, we find

f(y) ∼ 1

2πy
.

So when Re(s) > 1, the Mellin transform converges, and equals∑
n≥1

M(e−2πny, s) =
∑
n≥1

(2πn)−sM(e−y, s) = (2π)−sΓ(s)ζ(s).
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Corollary. ζ(s) has a meromorphic continuation to C with a simple pole at
s = 1 as its only singularity, and

res
s=1

ζ(s) = 1.

Proof. We can write

M(f, s) = M0 +M∞ =

(∫ 1

0

+

∫ ∞
1

)
ys

e2πy − 1

dy

y
.

The second integral M∞ is convergent for all s ∈ C, hence defines a holomorphic
function.

For any fixed N , we can expand

f(y) =

N−1∑
n=−1

cny
n + yNgN (y)

for some g ∈ C∞(R), as f has a simple pole at y = 0, and

c−1 =
1

2π
.

So for Re(s) > 1, we have

M0 =

N−1∑
n=−1

cn

∫ 1

0

yn+s−1 dy +

∫ N

0

yN+s−1gN (y) dy

=

N−1∑
n=−1

cn
s+ n

ys+n +

∫ 1

0

gN (y)ys+N−1 dy.

We now notice that this formula makes sense for Re(s) > −N . Thus we have
found a meromorphic continuation of

(2π)−sΓ(s)ζ(s)

to {Re(s) > N}, with at worst simple poles at s = 1−N, 2−N, · · · , 0, 1. Also,
we know Γ(s) has a simple pole at s = 0,−1,−2, · · · . So ζ(s) is analytic at
s = 0,−1,−2, · · · . Since c−1 = 1

2π and Γ(1) = 1, we get

res
s=1

ζ(s) = 1.

Corollary. There are infinitely many primes.

Proposition. Bn = 0 if n is odd and n ≥ 3.

Proof. Consider

f(t) =
t

et − 1
+
t

2
=

∑
n≥0,n6=1

Bn
tn

n!
.

We find that

f(t) =
t

2

et + 1

et − 1
= f(−t).

So all the odd coefficients must vanish.
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Corollary. We have

ζ(0) = B1 = −1

2
, ζ(1− n) = −Bn

n

for n > 1. In particular, for all n ≥ 1 integer, we know ζ(1−n) ∈ Q and vanishes
if n > 1 is odd.

Proof. We know
(2π)−sΓ(s)ζ(s)

has a simple pole at s = 1− n, and the residue is cn−1, where

1

e2πy − 1
=
∑
n≥−1

cny
n.

So we know

cn−1 = (2π)n−1Bn
n!
.

We also know that

res
s=1−n

Γ(s) =
(−1)n−1

(n− 1)!
,

we get that

ζ(1− n) = (−1)n−1Bn
n
.

If n = 1, then this gives − 1
2 . If n is odd but > 1, then this vanishes. If n is even,

then this is −Bn

n , as desired.

Proposition.

M

(
Θ(y)− 1

2
,
s

2

)
= π−s/2Γ

(s
2

)
ζ(s).

Proof. The left hand side is∑
n≥1

M
(
e−πn

2y,
s

2

)
=
∑
n≥1

(πn2)−s/2M
(
e−y,

s

2

)
= π−s/2Γ

(s
2

)
ζ(s).

Theorem (Functional equation for Θ-function). If y > 0, then

Θ

(
1

y

)
= y1/2Θ(y), (∗)

where we take the positive square root. More generally, taking the branch of
√

which is positive real on the positive real axis, we have

ϑ

(
−1

z

)
=
(z
i

)1/2

ϑ(z).

Proof. By analytic continuation, it suffices to prove (∗). Let

gt(x) = e−πtx
2

= g1(t1/2x).

In particular,

g1(x) = e−πx
2

.
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Now recall that ĝ1 = g1. Moreover, the Fourier transform of f(αx) is 1
α f̂(y/α).

So
ĝt(y) = t−1/2ĝ1(t−1/2y) = t−1/2g1(t−1/2y) = t−1/2e−πy

2/t.

We now apply the Poisson summation formula:

Θ(t) =
∑
n∈Z

e−πn
2t =

∑
n∈Z

gt(n) =
∑
n∈Z

ĝt(n) = t−1/2Θ(1/t).

Theorem (Functional equation for ζ-function).

Z(s) = Z(1− s).

Moreover, Z(s) is meromorphic, with only poles at s = 1 and 0.

Proof. For Re(s) > 1, we have

2Z(s) = M
(

Θ(y)− 1,
s

2

)
=

∫ ∞
0

[Θ(y)− 1]ys/2
dy

y

=

(∫ 1

0

+

∫ ∞
1

)
[Θ(y)− 1]ys/2

dy

y

The idea is that using the functional equation for the Θ-function, we can relate

the
∫ 1

0
part and the

∫∞
1

part. We have∫ 1

0

(Θ(y)− 1)ys/2
dy

y
=

∫ 1

0

(Θ(y)− y−1/2)ys/2
dy

y
+

∫ 1

0

(
y

s−1
2 − y1/2

) dy

y

=

∫ 1

0

(y−1/2Θ(1/y)− y−1/2)
dy

y
+

2

s− 1
− 2

s
.

In the first term, we change variables y ↔ 1/y, and get

=

∫ ∞
1

y1/2(Θ(y)− 1)y−s/2
dy

y
+

2

s− 1
− 2

s
.

So we find that

2Z(s) =

∫ ∞
1

(Θ(y)− 1)(ys/2 + y
1−s

2 )
dy

y
+

2

s− 1
− 2

s
= 2Z(1− s).

Note that what we’ve done by separating out the y
s−1

2 − ys/2 term is that we
separated out the two poles of our function.

10



3 Dirichlet L-functionsIII Modular Forms and L-functions (Theorems with proof)

3 Dirichlet L-functions

Proposition. If χ ∈ ̂(Z/NZ)×, then there exists a unique M | N and a primitive

χ∗ ∈ ̂(Z/MZ)× that is equivalent to χ.

Proposition.

L(χ, s) =
∏

prime p-N

1

1− χ(p)p−s
.

Proposition. Suppose M | N and χM ∈ ̂(Z/MZ)× and χN ∈ ̂(Z/NZ)× are
equivalent. Then

L(χM , s) =
∏
p-M
p|N

1

1− χM (p)p−s
L(χN , s).

In particular,
L(χM , s)

L(χN , s)
=
∏
p-M
p|N

1

1− χM (p)p−s

is analytic and non-zero for Re(s) > 0.

Theorem.

(i) L(χ, s) has a meromorphic continuation to C, which is analytic except for
at worst a simple pole at s = 1.

(ii) If χ 6= χ0 (the trivial character), then L(χ, s) is analytic everywhere. On
the other hand, L(χ0, s) has a simple pole with residue

ϕ(N)

N
=
∏
p|N

(
1− 1

p

)
,

where ϕ is the Euler function.

Proof. More generally, let φ : Z/NZ→ C be any N -periodic function, and let

L(φ, s) =

∞∑
n=1

φ(n)n−s.

Then

(2π)−sΓ(s)L(φ, s) =

∞∑
n=1

φ(n)M(e−2πny, s) = M(f(y), s),

where
f(y) =

∑
n≥1

φ(n)e−2πny.

We can then write

f(y) =

N∑
n=1

∞∑
r=0

φ(n)e−2π(n+rN)y =

N∑
n=1

φ(n)
e−2πny

1− e−2πNy
=

N∑
n=1

φ(n)
e2π(N−n)y

e2πNy − 1
.
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As 0 ≤ N − n < N , this is O(e−2πy) as y →∞. Copying for ζ(s), we write

M(f, s) =

(∫ 1

0

+

∫ ∞
1

)
f(y)ys

dy

y
≡M0(s) +M∞(s).

The second term is analytic for all s ∈ C, and the first term can be written as

M0(s) =

N∑
n=1

φ(n)

∫ 1

0

e2π(N−n)y

e2πNy − 1
ys

dy

y
.

Now for any L, we can write

e2π(N−n)y

e2πNy − 1
=

1

2πNy
+

L−1∑
r=0

cr,ny
r + yLgL,n(y)

for some gL,n(y) ∈ C∞[0, 1]. Hence we have

M0(s) =

N∑
n=1

φ(n)

(∫ 1

0

1

2πNy
ys

dy

y
+

∫ 1

0

L−1∑
r=0

cr,ny
r+s−1 dy

)
+G(s),

where G(s) is some function analytic for Re(s) > −L. So we see that

(2π)−sΓ(s)L(φ, s) =

N∑
n=1

φ(n)

(
1

2πN(s− 1)
+
c0,n
s

+ · · ·+ cL−1,n

s+ L− 1

)
+G(s).

As Γ(s) has poles at s = 0,−1, · · · , this cancels with all the poles apart from the
one at s = 1.

The first part then follows from taking

φ(n) =

{
χ(n) (n,N) = 1

0 (n,N) ≥ 1
.

By reading off the formula, since Γ(1) = 1, we know

res
s=1

L(χ, s) =
1

N

N∑
n=1

φ(n).

If χ 6= χ0, then this vanishes by the orthogonality of characters. Otherwise, it is
|(Z/NZ)×|/N = ϕ(N)/N .

Theorem. If χ 6= χ0, then L(χ, 1) 6= 0.

Proof. The trick is the consider all characters together. We let

ζN (s) =
∏

χ∈ ̂(Z/NZ)×

L(χ, s) =
∏
p-N

∏
χ

(1− χ(p)p−s)−1

for Re(s) > 1. Now we know L(χ0, s) has a pole at s = 1, and is analytic
everywhere else. So if any other L(χ, 1) = 0, then ζN (s) is analytic on Re(s) > 0.
We will show that this cannot be the case.

We begin by finding a nice formula for the product of (1− χ(p)p−s)−1 over
all characters.
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Claim. If p - N , and T is any complex number, then∏
χ∈ ̂(Z/NZ)×

(1− χ(p)T ) = (1− T fp)ϕ(N)/fp ,

where fp is the order of p in (Z/nZ)×.
So

ζN (s) =
∏
p-N

(1− p−fps)−ϕ(N)/fp .

To see this, we write f = fp, and, for convenience, write

G = (Z/NZ)×

H = 〈p〉 ⊆ G.

We note that Ĝ naturally contains Ĝ/H = {χ ∈ Ĝ : χ(p) = 1} as a subgroup.
Also, we know that

|Ĝ/H| = |G/H| = ϕ(N)/f.

Also, the restriction map
Ĝ

Ĝ/H
→ Ĥ

is obviously injective, hence an isomorphism by counting orders. So∏
χ∈Ĝ

(1−χ(p)T ) =
∏
χ∈Ĥ

(1−χ(p)T )ϕ(N)/f =
∏
ζ∈µf

(1−ζT )ϕ(N)/f = (1−T f )ϕ(N)/f .

We now notice that when we expand the product of ζN , at least formally, then we
get a Dirichlet series with non-negative coefficients. We now prove the following
peculiar property of such Dirichlet series:

Claim. Let
D(s) =

∑
n≥1

ann
−s

be a Dirichlet series with real an ≥ 0, and suppose this is absolutely convergent
for Re(s) > σ > 0. Then if D(s) can be analytically continued to an analytic
function D̃ on {Re(s) > 0}, then the series converges for all real s > 0.

Let ρ > σ. Then by the analytic continuation, we have a convergent Taylor
series on {|s− ρ| < ρ}

D(s) =
∑
k≥0

1

k!
D(k)(ρ)(s− ρ)k.

Moreover, since ρ > σ, we can directly differentiate the Dirichlet series to obtain
the derivatives:

D(k)(ρ) =
∑
n≥1

an(− log n)kn−ρ.

So if 0 < x < ρ, then

D(x) =
∑
k≥0

1

k!
(p− x)k

∑
n≥1

an(log n)kn−ρ

 .
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Now note that all terms in this sum are all non-negative. So the double series
has to converge absolutely as well, and thus we are free to rearrange the sum as
we wish. So we find

D(x) =
∑
n≥1

ann
−ρ
∑
k≥0

1

k!
(ρ− x)k(log n)l

=
∑
n≥1

ann
−ρe(ρ−x) logn

=
∑
n≥1

ann
−ρnρ−x

=
∑
n≥1

ann
−x,

as desired.
Now we are almost done, as

ζN (s) = L(χ0, s)
∏
χ 6=χ0

L(χ, s).

We saw that L(χ0, s) has a simple pole at s = 1, and the other terms are all
holomorphic at s = 1. So if some L(χ, 1) = 0, then ζN (s) is holomorphic for
Re(s) > 0 (and in fact everywhere). Since the Dirichlet series of ηN has ≥ 0
coefficients, by the lemma, it suffices to find some point on R>0 where the
Dirichlet series for ζN doesn’t converge.

We notice

ζN (x) =
∏
p-N

(1 + p−fpx + p−2fpx + · · · )ϕ(N)/fp ≥
∑
p-N

p−ϕ(N)x.

It now suffices to show that
∑
p−1 = ∞, and thus the series for ζN (x) is not

convergent for x = 1
ϕ(N) .

Claim. We have ∑
p prime

p−x ∼ − log(x− 1)

as x→ 1+. On the other hand, if χ 6= χ0 is a Dirichlet character mod N , then∑
p-N

χ(p)p−x

is bounded as x→ 1+.

Of course (and crucially, as we will see), the second part is not needed for
the proof, but it is still nice to know.

To see this, we note that for any χ, we have

logL(χ, x) =
∑
p-N

− log(1− χ(p)p−x) =
∑
p-N

∑
r≥1

χ(p)rp−rx

r
.

14
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So ∣∣∣∣∣∣logL(χ, x)−
∑
p-N

χ(p)p−x

∣∣∣∣∣∣ <
∑
p-N

∑
r≥2

p−rx

=
∑
p-N

p−2x

1− p−x

≤
∑
n≥1

n−2

1/2
,

which is a (finite) constant for C <∞. When χ = χ0, N = 1, then∣∣∣∣∣log ζ(x)−
∑
p

p−x

∣∣∣∣∣
is bounded as x→ 1+. But we know

ζ(s) =
1

s− 1
+O(s).

So we have ∑
p

p−x ∼ log(x− 1).

When χ 6= χ0, then L(χ, 1) 6= 0, as we have just proved! So logL(χ, x) is
bounded as x→ 1+. and so we are done.

Theorem (Dirichlet’s theorem on primes in arithmetic progressions). Let a ∈ Z
be such that (a,N) = 1. Then there exists infinitely many primes p ≡ a
(mod N).

Proof. We want to show that the series∑
p prime

p≡a mod N

p−x

is unbounded as x→ 1+, and in particular must be infinite. We note that for
(x,N) = 1, we have

∑
χ∈ ̂(Z/NZ)×

χ(x) =

{
ϕ(N) x ≡ 1 (mod N)

0 otherwise
,

since the sum of roots of unity vanishes. We also know that χ is a character, so
χ(a)−1χ(p) = χ(a−1p). So we can write∑

p prime
p≡a mod N

p−x =
1

ϕ(N)

∑
χ∈(Z/NZ)×

χ(a)−1
∑
all p

χ(p)p−x,

Now if χ = χ0, then the sum is just∑
p-N

p−x ∼ − log(x− 1)

15
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as x→ 1+. Moreover, all the other sums are bounded as x→ 1+. So∑
p≡a mod N

p−x ∼ − 1

ϕ(N)
log(x− 1).

So the whole sum must be unbounded as x → 1+. So in particular, the sum
must be infinite.

Theorem (Cebotarev density theorem). Cebotarev density theorem Let L/K
be a Galois extension. Then for any conjugacy class C ⊆ Gal(L/K), there exists
infinitely many p with [σp] = C.

16
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4 The modular group

Theorem. The group SL2(R) admits the Iwasawa decomposition

SL2(R) = KAN = NAK,

where

K = SO(2), A =

{(
r 0
0 1

r

)}
, N =

{(
1 x
0 1

)}
Proof. This is just Gram–Schmidt orthogonalization. Given g ∈ GL2(R), we
write

ge1 = e′1, ge2 = e′2,

By Gram-Schmidt, we can write

f1 = λ1e
′
1

f2 = λ2e
′
1 + µe′2

such that
‖f1‖ = ‖f2‖ = 1, (f1, f2) = 0.

So we can write (
f1 f2

)
=
(
e′1 e′2

)(λ1 λ2

0 µ

)
Now the left-hand matrix is orthogonal, and by decomposing the inverse of(
λ1 λ2

0 µ

)
, we can write g =

(
e′1 e′2

)
as a product in KAN .

Theorem. Let

D =

{
z ∈ H : −1

2
≤ Re z ≤ 1

2
, |z| > 1

}
∪ {z ∈ H : |z| = 1,Re(z) ≥ 0}.

1
2

1− 1
2

−1

ρ = eπi/3
i

Then D is a fundamental domain for the action of Γ̄ on H, i.e. every orbit
contains exactly one element of D.

The stabilizer of z ∈ D in Γ is trivial if z 6= i, ρ, and the stabilizers of i and ρ
are

Γ̄i = 〈S〉 ∼=
Z

2Z
, Γ̄ρ = 〈TS〉 ∼=

Z
3Z
.

Finally, we have Γ̄ = 〈S, T 〉 = 〈S, TS〉.

17
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Proof. Let Γ̄∗ = 〈S, T 〉 ⊆ Γ̄. We will show that if z ∈ H, then there exists γ ∈ Γ̄∗

such that γ(z) ∈ D.
Since z 6∈ R, we know Z + Zz = {cz + d : c, d ∈ Z} is a discrete subgroup of

C. So we know
{|cz + d| : c, d ∈ Z}

is a discrete subset of R, and is in particular bounded away from 0. Thus, we
know {

Im γ(z) =
Im(z)

|cz + d|2
: γ =

(
a b
c d

)
∈ Γ̄∗

}
is a discrete subset of R>0 and is bounded above. Thus there is some γ ∈ Γ̄∗

with Im γ(z) maximal. Replacing γ by Tnγ for suitable n, we may assume
|Re γ(z)| ≤ 1

2 .
We consider the different possible cases.

– If |γ(z)| < 1, then

ImSγ(z) = Im
−1

γ(z)
=

Im γ(z)

|γ(z)|2
> Im γ(z),

which is impossible. So we know |γ(z)| ≥ 1. So we know γ(z) lives in the
closure of D.

– If Re(γ(z)) = − 1
2 , then Tγ(z) has real part + 1

2 , and so T (γ(z)) ∈ D.

– If − 1
2 < Re(z) < 0 and |γ(z)| = 1, then |Sγ(z)| = 1 and 0 < ReSγ(z) < 1

2 ,
i.e. Sγ(z) ∈ D.

So we can move it to somewhere in D.

We shall next show that if z, z′ ∈ D, and z′ = γ(z) for γ ∈ Γ̄, then z = z′.
Moreover, either

– γ = 1; or

– z = i and γ = S; or

– z = ρ and γ = TS or (TS)2.

It is clear that this proves everything.
To show this, we wlog

Im(z′) =
Im z

|cz + d|2
≥ Im z

where

γ =

(
a b
c d

)
,

and we also wlog c ≥ 0.
Therefore we know that |cz + d| ≤ 1. In particular, we know

1 ≥ Im(cz + d) = c Im(z) ≥ c
√

3

2

since z ∈ D. So c = 0 or 1.

18
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– If c = 0, then

γ = ±
(

1 m
0 1

)
for some m ∈ Z, and this z′ = z +m. But this is clearly impossible. So we
must have m = 0, z = z′, γ = 1 ∈ PSL2(Z).

– If c = 1, then we know |z + d| ≤ 1. So z is at distance 1 from an integer.
As z ∈ D, the only possibilities are d = 0 or −1.

◦ If d = 0, then we know |z| = 1. So

γ =

(
a −1
1 0

)
for some a ∈ Z. Then z′ = a− 1

z . Then

∗ either a = 0, which forces z = i, γ = S; or

∗ a = 1, and z′ = 1− 1
z , which implies z = z′ = ρ and γ = TS.

◦ If d = −1, then by looking at the picture, we see that z = ρ. Then

|cz + d| = |z − 1| = 1,

and so

Im z′ = Im z =

√
3

2
.

So we have z′ = ρ as well. So

aρ+ b

ρ− 1
= ρ,

which implies
ρ2 − (a+ 1)ρ− b = 0

So ρ = −1, a = 0, and γ = (TS)2.

Proposition. The measure

dµ =
dx dy

y2

is invariant under PSL2(R). If Γ ⊆ PSL2(Z) is of finite index, then µ(Γ\H) <∞.

Proof. Consider the 2-form associated to µ, given by

η =
dx ∧ dy

y2
=
idz ∧ dz̄

2(Im z)2
.

We now let

γ =

(
a b
c d

)
∈ SL2(R).

Then we have

Im γ(z) =
Im z

|cz + d|2
.
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Moreover, we have

dγ(z)

dz
=
a(cz + d)− c(az + b)

(cz + d)2
=

1

(cz + d)2
.

Plugging these into the formula, we see that η is invariant under γ.
Now if Γ̄ ≤ PSL2(Z) has finite index, then we can write PSL2(Z) as a union

of cosets

PSL2(Z) =

n∐
i=1

γ̄γi,

where n = (PSL2(Z) : Γ̄). Then a fundamental domain for Γ̄ is just

n⋃
i=1

γi(D),

and so
µ(Γ̄ \H) =

∑
µ(γiD) = nµ(D).

So it suffices to show that µ(D) is finite, and we simply compute

µ(D) =

∫
D

dx dy

y2
≤
∫ x= 1

2

x=− 1
2

∫ y=∞

y=
√

2/2

dx dy

y2
<∞.
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5 Modular forms of level 1

5.1 Basic definitions

Theorem. Gk is a modular form of weight k and level 1. Moreover, its q-
expansion is

Gk(z) = 2ζ(k)

1− 2k

Bk

∑
n≥1

σk−1(n)qn

 , (1)

where
σr(n) =

∑
1≤d|n

dr.

Proposition. Let (e1, · · · , ed) be some basis for Rd. Then if r ∈ R, the series∑′

m∈Zd

‖m1e1 + · · ·+mded‖−r

converges iff r > d.

Proof. The function

(xi) ∈ Rd 7→

∥∥∥∥∥∑
i=1

xiei

∥∥∥∥∥
is a norm on Rd. As any 2 norms on Rd are equivalent, we know this is equivalent
to the sup norm ‖ · ‖∞. So the series converges iff the corresponding series

′∑
m∈Zd

‖m‖−r∞

converges. But if 1 ≤ N ≤ Z, then the number of m ∈ Zd such that ‖m‖∞ = N
is (2N + 1)d − (2N − 1)d ∼ 2ddNd−1. So the series converges iff∑

N≥1

N−rNd−1

converges, which is true iff r > d.

Proof of theorem. Then convergence of the Eisenstein series by applying this
to R2 ∼= C. So the series is absolutely convergent. Therefore we can simply
compute

Gk(z + 1) =

′∑
m,n

1

(mz + (m+ n))k
= Gk(z).

Also we can compute

Gk

(
−1

z

)
=

′∑
m,n

=
zk

(−m+ nz)k
= zkGk(z).

So Gk satisfies the invariance property. To show that Gk is holomorphic, and
holomorphic at infinity, we’ll derive the q-expansion (1).
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Lemma.
∞∑

n=∞

1

(n+ w)k
=

(−2πi)k

(k − 1)!

∞∑
d=1

dk−1e2πidw

for any w ∈ H and k ≥ 2.

Proof. Let

f(x) =
1

(x+ w)k
.

We compute

f̂(y) =

∫ ∞
−∞

e−2πixy

(x+ w)k
dx.

We replace this with a contour integral. We see that this has a pole at −w. If
y > 0, then we close the contour downwards, and we have

f̂(y) = −2πiResz=−w
e−2πiyz

(z + w)k
= −2πi

(−2πiy)k−1

(k − 1)!
e2πiyw.

If y ≤ 0, then we close in the upper half plane, and since there is no pole, we
have f̂(y) = 0. So we have

∞∑
n=−∞

1

(n+ w)k
=
∑
n∈Z

f(n) =
∑
d∈Z

f̂(d) =
(−2πi)k

(k − 1)!

∑
d≥1

dk−1e2πidw

by Poisson summation formula.

Proposition.

(i) j(γδ, z) = j(γ, δ(z))j(δ, z) (in fancy language, we say j is a 1-cocycle).

(ii) j(γ−1, z) = j(γ, γ−1(z))−1.

(iii) γ : ϕ 7→ f |
k

γ is a (right) action of G = GL2(R)+ on functions on H. In

other words,
f |
k

γ |
k

δ = f |
k

(γδ).

Proof.

(i) We have

j(γδ, z)

(
γδ(z)

1

)
= γδ

(
z
1

)
= j(δ, z)γ

(
δ(z)

1

)
= j(δ, z)j(γ, δ(z))

(
z
1

)
(ii) Take δ = γ−1.

(iii) We have

((f |
k

γ)|
k

δ)(z) = (det δ)k/2j(δ, z)−k(f |
k

γ)(δ(z))

= (det δ)k/2j(δ, z)−k(det γ)k/2j(γ, δ(z))−kf(γδ(z))

= (det γδ)k/2j(γδ, z)−kf(γδ(z))

= (f |
k

γδ)(z).
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5.2 The space of modular forms

Proposition. Let f be a weak modular form (i.e. it can be meromorphic at ∞)
of weight k and level 1. If f is not identically zero, then ∑

z0∈D\{i,ρ}

ordz0(f)

+
1

2
ordi(f) +

1

3
ordρ f + ord∞(f) =

k

12
,

where ord∞ f is the least r ∈ Z such that ar(f) 6= 0.

Proof. Note that the function f̃(q) is non-zero for 0 < |q| < ε for some small ε
by the principle of isolated zeroes. Setting

ε = e−2πR,

we know f(z) 6= 0 if Im z ≥ R.
In particular, the number of zeroes of f in D is finite. We consider the

integral along the following contour, counterclockwise.

ρρ2 i

1
2 + iR− 1

2 + iR

C ′C

We assume f has no zeroes along the contour. Otherwise, we need to go around
the poles, which is a rather standard complex analytic maneuver we will not go
through.

For ε sufficiently small, we have∫
Γ

f ′(z)

f(z)
dz = 2πi

∑
z0∈D\{i,ρ}

ordz0f

by the argument principle. Now the top integral is

∫ − 1
2 iR

1
2 +iR

f ′

f
dz = −

∫
|q|=ε

df̃
dq

f̃(q)
dq = −2πi ord∞ f.

As f ′

f has at worst a simple pole at z = i, the residue is ordi f . Since we are
integrating along only half the circle, as ε→ 0, we pick up

−πi res = −πi ordi f.

Similarly, we get − 2
3πi ordρ f coming from ρ and ρ2.
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So it remains to integrate along the bottom circular arcs. Now note that
S : z 7→ − 1

z maps C to C ′ with opposite orientation, and

df(Sz)

f(Sz)
= k

dz

z
+

df(z)

f(z)

as
f(Sz) = zkf(z).

So we have∫
C

+

∫
C′

f ′

f
dz =

∫
C′

f ′

f
dz −

(
k

z
dz +

f ′

f
dz

)
−−k

∫
C′

dz

z

→ k

∫ i

ρ

dz

z

=
πik

6
.

So taking the limit ε→ 0 gives the right result.

Corollary. If k < 0, then Mk = {0}.

Corollary. If k = 0, then M0 = C, the constants, and S0 = {0}.

Proof. If f ∈ M0, then g = f − f(1). If f is not constant, then ordi g ≥ 1, so
the LHS is > 0, but the RHS is = 0. So f ∈ C.

Of course, a0(f) = f . So S0 = {0}.

Corollary.

dimMk ≤ 1 +
k

12
.

In particular, they are finite dimensional.

Proof. We let f0, · · · , fd be d+ 1 elements of Mk, and we choose distinct points
z1, · · · , zd ∈ D \ {i, ρ}. Then there exists λ0, · · · , λd ∈ C, not all 0, such that

f =

d∑
i=0

λifi

vanishes at all these points. Now if d > k
12 , then LHS is > k

12 . So f ≡ 0. So (fi)
are linearly dependent, i.e. dimMk < d+ 1.

Corollary. M2 = {0} and Mk = CEk for 4 ≤ k ≤ 10 (k even). We also have
E8 = E2

4 and E10 = E4E6.

Proof. Only M2 = {0} requires proof. If 0 6= f ∈M2, then this implies

a+
b

2
+
c

3
=

1

6

for integers a, b, c ≥ 0, which is not possible.
Alternatively, if f ∈M2, then f2 ∈M4 and f3 ∈M6. This implies E3

4 = E2
6 ,

which is not the case as we will soon see.
Note that we know E8 = E2

4 , and is not just a multiple of it, by checking the
leading coefficient (namely 1).
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Corollary. The cusp form of weight 12 is

E3
4 − E2

6 = (1 + 240q + · · · )3 − (1− 504q + · · · )2 = 1728q + · · · .

Proposition. ∆(z) 6= 0 for all z ∈ H.

Proof. We have∑
z0 6=i,ρ

ordz0 ∆ +
1

2
ordi ∆ +

1

3
ordρ ∆ + ord∞∆ =

k

12
= 1.

Since ordρ ∆ = 1, it follows that there can’t be any other zeroes.

Proposition. The map f 7→ ∆f is an isomorphism Mk−12(Γ(1)) → Sk(Γ(1))
for all k > 12.

Proof. Since ∆ ∈ S12, it follows that if f ∈ Mk−1, then ∆f ∈ Sk. So the map
is well-defined, and we certainly get an injection Mk−12 → Sk. Now if g ∈ Sk,
since ord∞∆ = 1 ≤ ord∞ g and ∆ 6= H. So g

∆ is a modular form of weight
k − 12.

Theorem.

(i) We have

dimMk(Γ(1)) =


0 k < 0 or k odd⌊
k
12

⌋
k > 0, k ≡ 2 (mod 12)

1 +
⌊
k
12

⌋
otherwise

(ii) If k > 4 and even, then
Mk = Sk ⊕ CEk.

(iii) Every element of Mk is a polynomial in E4 and E6.

(iv) Let

b =

{
0 k ≡ 0 (mod 4)

1 k ≡ 2 (mod 4)
.

Then
{hj = ∆jEb6E

(k−12j−6b)/4
4 : 0 ≤ j < dimMk}.

is a basis for Mk, and

{hj : 1 ≤ j < dimMk}

is a basis for Sk.

Proof.

(ii) Sk is the kernel of the homomorphism Mk → C sending f 7→ a0(f). So the
complement of Sk has dimension at most 1, and we know Ek is an element
of it. So we are done.
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(i) For k < 12, this agrees with what we have already proved. By the
proposition, we have

dimMk−12 = dimSk.

So we are done by induction and (ii).

(iii) This is true for k < 12. If k ≥ 12 is even, then we can find a, b ≥ 0 with
4a+ 6b = k. Then Ea4E

b
6 ∈Mk, and is not a cusp form. So

Mk = CEa4Eb6 ⊕∆Mk−12.

But ∆ is a polynomial in E4, E6, So we are done by induction on k.

(iv) By (i), we know k − 12j − 6k ≥ 0 for j < dimMk, and is a multiple of 4.
So hj ∈Mk. Next note that the q-expansion of hj begins with qj . So they
are all linearly independent.

5.3 Arithmetic of ∆

Proposition.

(i) τ(n) ∈ Z for all n ≥ 1.

(ii) τ(n) = σ11(n) (mod 691)

Proof.

(i) We have
1728∆ = (1 + 240A3(q))3 − (1− 504A5(q))2,

where
Ar =

∑
n≥1

σr(n)qn.

We can write this as

1728∆ = 3 · 240A3 + 3 · 2402A2
3 + 2403A3

3 + 2 · 504A5 − 5042A2
5.

Now recall the deep fact that 1728 = 123 and 504 = 21 · 24.

Modulo 1728, this is equal to

720A3 + 1008A5.

So it suffices to show that

5σ3 + 7σ5(n) ≡ 0 (mod 12).

In other words, we need

5d3 + 7d5 ≡ 0 (mod 12),

and we can just check this manually for all d.
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(ii) Consider

E3
4 = 1 +

∑
n≥1

bnq
n

with bn ∈ Z. We also have

E12 = 1 +
65520

691

∑
n≥1

σ11(n)qn.

Also, we know
E12 − E3

4 ∈ S12.

So it is equal to λ∆ for some λ ∈ Q. So we find that for all n ≥ 1, we have

665520

691
σ11(n)− bn = λτ(n).

In other words,
65520σ11(n)− 691bn = µτ(n)

for some τ ∈ Q.

Putting n = 1, we know τ(1) = 1, σ11(1) = 1, and b1 ∈ Z. So µ ∈ Z and
µ ≡ 65520 (mod 691). So for all n ≥ 1, we have

65520σ11(n) ≡ 65520τ(n) (mod 691).

Since 691 and 65520 are coprime, we are done.

Lemma.

(i) Suppose dimMk = d+ 1 ≥ 1. Then there exists a basis {gj : 0 ≤ j ≤ d}
for Mk such that

– gj ∈Mk(Z) for all j ∈ {0, · · · , d}.
– an(gj) = δnj for all j, n ∈ {0, · · · , d}.

(ii) For any R, Mk(R) ∼= Rd+1 generated by {gj}.

Proof.

(i) We take our previous basis hj = ∆jEb6E
(k−12j−6b)/4
4 ∈ Mk(Z). Then we

have an(hn) = 1, and aj(hn) = 0 for all j < n. Then we just row reduce.

(ii) The isomorphism is given by

Mk(R) Rd+1

f (an(f))

d∑
j=0

cjgj (cn)
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6 Hecke operators

6.1 Hecke operators and algebras

Theorem. Let G = GL2(Q), and Γ ⊆ SL2(Z) a subgroup of finite index. Then
(G,Γ) satisfies (H).

Proof. We first consider the case Γ = SL2(Z). We first suppose

g =

(
a b
c d

)
∈ Mat2(Z),

and det g = ±N , N ≥ 1. We claim that

g−1Γg ∩ Γ ⊇ Γ(N),

from which it follows that

(Γ : Γ ∩ g−1Γg) <∞.

So given γ ∈ Γ(N), we need to show that gγg−1 ∈ Γ, i.e. it has integer coefficients.
We consider

±N ·gγg−1 =

(
a b
c d

)
γ

(
d −b
−c a

)
≡
(
a b
c d

)(
d −b
−c a

)
≡ NI ≡ 0 (mod N).

So we know that gγg−1 must have integer entries. Now in general, if g′ ∈ GL2(Q),
then we can write

g′ =
1

M
g

for g with integer entries, and we know conjugating by g and g′ give the same
result. So (G,Γ) satisfies (H).

The general result follows by a butterfly. Recall that if (G : H) < ∞ and
(G : H ′) < ∞, then (G : H ∩H ′) < ∞. Now if Γ ⊆ Γ(1) = SL2(Z) is of finite
index, then we can draw the diagram

Γ(1) g−1Γ(1)g

Γ Γ(1) ∩ g−1Γ(1)g g−1Γg

Γ ∩ g−1Γ(1)G Γ(1) ∩ g−1Γg

Γ ∩ g−1Γg

finite finite finite finite

Each group is the intersection of the two above, and so all inclusions are of finite
index.

Proposition.
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(i) m|[ΓgΓ] depends only on ΓgΓ.

(ii) m|[ΓgΓ] ∈MΓ.

Proof.

(i) If g′i = γigi for γi ∈ Γ, then∑
mg′i =

∑
mγigi =

∑
mgi

as m ∈MΓ.

(ii) Just write it out, using the fact that {Γgi} is invariant under Γ.

Theorem. There is a product on H(G,Γ) making it into an associative ring,
the Hecke algebra of (G,Γ), with unit [ΓeΓ] = [Γ], such that for every G-module
M , we have MΓ is a right H(G,Γ)-module by the operation (∗).
Proof. Take M = Z[Γ \G], and let

ΓgΓ =
∐

Γgi

ΓhΓ =
∐

Γhj .

Then ∑
i

[Γgi] ∈MΓ,

and we have ∑
i

[Γgi]|[ΓhΓ] =
∑
i,j

[Γgihj ] ∈MΓ,

and this is well-defined. This gives us a well-defined product on H(G,Γ). Ex-
plicitly, we have

[ΓgΓ] · [ΓhΓ] = Θ−1

∑
i,j

[Γgihj ]

 .

It should be clear that this is associative, as multiplication in G is associative,
and [Γ] = [ΓeΓ] is a unit.

Now if M is any right G-module, and m ∈MΓ, we have

m|[ΓgΓ]|[ΓhΓ] =
(∑

mgi

)
|[ΓhΓ] =

∑
mgihj = m([ΓgΓ] · [ΓhΓ]).

So MΓ is a right H(G,Γ)-module.

Proposition. We write

ΓgΓ =

r∐
i=1

Γgi

ΓhΓ =

s∐
j=1

Γhj .

Then
[ΓgΓ] · [ΓhΓ] =

∑
k∈S

σ(k)[ΓkΓ],

where σ(k) is the number of pairs (i, j) such that Γgihj = Γk.

Proof. This is just a simple counting exercise.
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6.2 Hecke operators on modular forms

Proposition.

(i) Let γ ∈ Mat2(Z) and det γ = n ≥ 1. Then

ΓγΓ = Γ

(
n1 0
0 n2

)
Γ

for unique n1, n2 ≥ 1 and n2 | n1, n1n2 = n.

(ii) {
γ ∈ Mat2(Z) : det γ = n

}
=
∐

Γ

(
n1 0
0 n2

)
Γ,

where we sum over all 1 ≤ n2 | n1 such that n = n1n2.

(iii) Let γ, n1, n2 be as above. if d ≥ 1, then

Γ(d−1γ)Γ = Γ

(
n1/d 0

0 n2/d

)
Γ,

Proof. This is the Smith normal form theorem, or, alternatively, the fact that
we can row and column reduce.

Corollary. The set{[
Γ

(
r1 0
0 r2

)
Γ

]
: r1, r2 ∈ Q>0,

r1

r2
∈ Z

}
is a basis for H(G,Γ) over Z.

Theorem.

(i) R(mn) = R(m)R(n) and R(m)T (n) = T (n)R(m) for all m,n ≥ 1.

(ii) T (m)T (n) = T (mn) whenever (m,n) = 1.

(iii) T (p)T (pr) = T (pr+1) + pR(p)T (pr−1) of r ≥ 1.

Corollary. H(G,Γ) is commutative, and is generated by {T (p), R(p), R(p)−1 :
p prime}.

Proof. We know that T (n1, n2), R(p) and R(p)−1 generate H(G,Γ), because[
Γ

(
p 0
0 p

)
Γ

] [
Γ

(
n1 0
0 n2

)
Γ

]
=

[
Γ

(
pn1 0
0 pn2

)
Γ

]
In particular, when n2 | n1, we can write

T (n1, n2) = R(n2)T

(
n1

n2
, 1

)
.
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So it suffices to show that we can produce any T (n, 1) from the T (m) and R(m).
We proceed inductively. The result is immediate when n is square-free, because
T (n, 1) = T (n). Otherwise,

T (n) =
∑

1≤n2|n1
n1n2=n

T (n1, n2)

=
∑

1≤n2|n1
n1n2=n

R(n2)T

(
n1

n2
, 1

)

= T (n, 1) +
∑

1<n2|n1
n1n2=n

R(n2)T

(
n1

n2
, 1

)
.

So {T (p), R(p), R(p)−1} does generate H(G,Γ), and by the theorem, we know
these generators commute. So H(G,Γ) is commutative.

Proof of theorem.

(i) We have[
Γ

(
a 0
0 a

)
Γ

]
[ΓγΓ] =

[
Γ

(
a 0
0 a

)
γΓ

]
= [ΓγΓ]

[
Γ

(
a 0
0 a

)
Γ

]
by the formula for the product.

(ii) Recall we had the isomorphism Θ : H(G,Γ) 7→ Z[Γ \G]Γ, and

Θ(T (n)) =
∑
γ∈Πn

[Γγ]

for some Πn. Moreover, {γZ2 | γ ∈ Πn} is exactly the subgroups of Z2 of
index n.

On the other hand,

Θ(T (m)T (n)) =
∑

δ∈Πm,γ∈Πn

[Γδγ],

and
{δγZ2 | δ ∈ Πm} = {subgroups of γZ2 of index n}.

Since n and m are coprime, every subgroup Λ ⊆ Z2 of index mn is
contained in a unique subgroup of index n. So the above sum gives exactly
Θ(T (mn)).

(iii) We have

Θ(T (pr)T (p)) =
∑

δ∈Πpr ,γ∈Πp

[Γδγ],

and for fixed γ ∈ Πp, we know {δγZ2 : δ ∈ Πpr} are the index pr subgroups
of Z2.

On the other hand, we have

Θ(T (pr+1)) =
∑

ε∈Πpr+1

[Γε],
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where {εZ2} are the subgroups of Z2 of index pr+1.

Every Λ = εZ2 of index pr+1 is a subgroup of some index p subgroup
Λ′ ∈ Z2 of index pr. If Λ 6⊆ pZ2, then Λ′ is unique, and Λ′ = Λ + pZ2. On
the other hand, if Λ ⊆ pZ2, i.e.

ε =

(
p 0
0 p

)
ε′

for some ε′ of determinant pr−1, then there are (p+1) such Λ′ corresponding
to the (p+ 1) order p subgroups of Z2/pZ2.

So we have

Θ(T (pr)T (p)) =
∑

ε∈Πpr+1\(pIΓpr−1 )

[Γε] + (p+ 1)
∑

ε′∈Πpr−1

[ΓpIε′]

=
∑

ε∈Πpr+1

[Γε] + p
∑

ε′∈Πpr−1

[ΓpIε′]

= T (pr+1) + pR(p)T (pr−1).

Proposition.

(i) T kmnT
k
mT

k
n if (m,n) = 1, and

T kpr+1 = T kprT
k
p − pk−1T kpr−1 .

(ii) If f ∈Mk, then Tnf ∈Mk. Similarly, if f ∈ Sk, then Tnf ∈ Sk.

(iii) We have

an(Tmf) =
∑

1≤d|(m,n)

dk−1amn/d2(f).

In particular,
a0(Tmf) = σk−1(m)a0(f).

Proof.

(i) This follows from the analogous relations for T (n), plus f |R(n) = f .

(ii) This follows from (iii), since Tn clearly maps holomorphic f to holomorphic
f .

(iii) If r ∈ Z, then

qr |
k

T (m) = mk/2
∑

e|m,0≤b<e

e−k exp

(
2πi

mzr

e2
+ 2πi

br

e

)
,

where we use the fact that the elements of Πm are those of the form

Πm =

{(
a b
0 e

)
: ae = m, 0 ≤ b < e

}
.
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Now for each fixed e, the sum over b vanishes when r
e 6∈ Z, and is e

otherwise. So we find

qr |
k

T (m) = mk/2
∑
e|(n,r)

e1−kqmr/e
2

.

So we have

Tm(f) =
∑
r≥0

ar(f)
∑

e|(m,r)

(m
e

)k−1

qmr/e
2

=
∑

1≤d|m

ek−1
∑

ams/d(f)qds

=
∑
n≥0

∑
d|(m,n)

dk−1amn/d2qn,

where we put n = ds.

Corollary. Let f ∈Mk be such that

Tn(f) = λf

for some m > 1 and λ ∈ C. Then

(i) For every n with (n,m) = 1, we have

amn(f) = λan(f).

If a0(f) 6= 0, then λ = σk−1(m).

Proof. This just follows from above, since

an(Tmf) = λan(f),

and then we just plug in the formula.

Corollary. Let 0 6= f ∈Mk, and k ≥ 4 with Tmf = λmf for all m ≥ 1. Then

(i) If f ∈ Sk, then a1(f) 6= 0 and

f = a1(f)
∑
n≥1

λnq
n.

(ii) If f 6∈ Sk, then
f = a0(f)Ek.

Proof.

(i) We apply the previous corollary with n = 1.

(ii) Since a0(f) 6= 0, we know an(f) = σk−1(m)a1(f) by (both parts of) the
corollary. So we have

f = a0(f) + a1(f)
∑
n≥1

σk−1(n)qn = A+BEk.

But since F and Ek are modular forms, and k 6= 0, we know A = 0.
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Theorem. There exists a basis for Sk consisting of normalized Hecke eigenforms.

Partial proof. We know that {Tn} are commuting operators on Sk.

Fact. There exists an inner product on Sk for which {Tn} are self-adjoint.

Then by linear algebra, the {Tn} are simultaneously diagonalized.
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7 L-functions of eigenforms

Proposition. Let f ∈ Sk(Γ(1)). Then L(f, s) converges absolutely for Re(s) >
k
2 + 1.

Lemma. If
f =

∑
n≥1

anq
n ∈ Sk(Γ(1)),

then
|an| � nk/2

Proof. Recall from the example sheet that if f ∈ Sk, then yk/2|f | is bounded on
the upper half plane. So

|an(f)| =

∣∣∣∣∣ 1

2π

∫
|q|=r

q−nf̃(q)
dq

q

∣∣∣∣∣
for r ∈ (0, 1). Then for any y, we can write this as∣∣∣∣∫ 1

0

e−2πin(x+iy)f(x+ iy)dx

∣∣∣∣ ≤ e2πny sup
0≤x≤1

|f(x+ iy)| � e2πnyy−k/2.

We now pick y = 1
n , and the result follows.

Proposition. Suppose f is a normalized eigenform. Then

L(f, s) =
∏

p prime

1

1− app−s + pk−1−2s
.

Proof. We look at

(1− app−s + pk−1−2s)(1 + app
−s + ap2p−2s + · · · )

= 1 +
∑
r≥2

(apr + pk−1apr−2 − apar−1
p )p−rs.

Since we have an eigenform, all of those coefficients are zero. So this is just 1.
Thus, we know

1 + app
−s + ap2p−2s + · · · = 1

1− app−s + pk−1−2s
.

Also, we know that when (m,n) = 1, we have

amn = aman,

and also a1 = 1. So we can write

L(f, s) =
∏
p

(1 + app
−s + ap2p−2s + · · · ) =

∏
p

1

1− app−s + pk−1−2s
.
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Theorem. If f ∈ Sk then, L(f, s) is entire, i.e. has an analytic continuation to
all of C. Define

Λ(f, s) = (2π)−sΓ(s)L(f, s) = M(f(iy), s).

Then we have
Λ(f, s) = (−1)k/2Λ(f, k − s).

Theorem. Suppose we have a function

0 6= f(z) =
∑
n≥1

anq
n,

with an = O(nR) for some R, and there exists N > 0 such that

f |
k

(
0 −1
N 0

)
= cf

for some k ∈ Z>0 and c ∈ C. Then the function

L(s) =
∑
n≥1

ann
−s

is entire. Moreover, c2 = (−1)k, and if we set

Λ(s) = (2π)−sΓ(s)L(s), ε = c · ik ∈ {±1},

then
Λ(k − s) = εNs−k/2Λ(s).

Proof. By definition, we have

cf(z) = f |
k

(
0 −1
N 0

)
= N−k/2z−kf

(
− 1

Nz

)
.

Applying the matrix once again gives

f |
k

(
0 −1
N 0

)
|
k

(
0 −1
N 0

)
= f |

k

(−N 0
0 −N

)
= (−1)kf(z),

but this is equal to c2f(z). So we know

c2 = (−1)k.

We now apply the Mellin transform. We assume Re(s)� 0, and then we have

Λ(f, s) = M(f(iy), s) =

∫ ∞
0

f(iy)ys
dy

y
=

(∫ ∞
1/
√
N

+

∫ 1/
√
N

0

)
f(iy)ys

dy

y
.

By a change of variables, we have∫ 1/
√
N

0

f(iy)ys
dy

y
=

∫ ∞
1/
√
N

f

(
i

Ny

)
N−sy−s

dy

y

=

∫ ∞
1/
√
N

cikNk/2−sf(iy)yk−s
dy

y
.
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So

Λ(f, s) =

∫ ∞
1/
√
N

f(iy)(ys + εNk/2−syk−s)
dy

y
,

where
ε = ikc = ±1.

Since f → 0 rapidly for y → ∞, this integral is an entire function of s, and
satisfies the functional equation

Λ(f, k − s) = εNs− k
2 Λ(f, s).

Theorem (Mellin inversion theorem). Let f : (0,∞) → C be a C∞ function
such that

– for all N,n ≥ 0, the function yNf (n)(y) is bounded as y →∞; and

– there exists k ∈ Z such that for all n ≥ 0, we have yn+kf (n)(y) bounded
as y → 0.

Let Φ(s) = M(f, s), analytic for Re(s) > k. Then for all σ > k, we have

f(y) =
1

2πi

∫ σ+i∞

σ−i∞
Φ(s)y−s ds.

Proof. The idea is to reduce this to the inversion of the Fourier transform. Fix
a σ > k, and define

g(x) = e2πσxf(e2πx) ∈ C∞(R).

Then we find that for any N,n ≥ 0, the function eNxg(n)(x) is bounded as
x→ +∞. On the other hand, as x→ −∞, we have

g(n)(x)�
n∑
j=0

e2π(σ+j)x|f (j)(e2πx)|

�
n∑
j=0

e2π(σ+j)xe−2π(j+k)x

� e2π(σ−k)x.

So we find that g ∈ S(R). This allows us to apply the Fourier inversion formula.
By definition, we have

ĝ(−t) =

∫ ∞
−∞

e2πσxf(e2πx)e2πixt dx

=
1

2π

∫ ∞
0

yσ+itf(y)
dy

y
=

1

2π
Φ(σ + it).

Applying Fourier inversion, we find

f(y) = y−σg

(
log y

2π

)
= y−σ

1

2π

∫ ∞
−∞

e−2πit(log y/2π)Φ(σ + it) dt

=
1

2πi

∫ σ+i∞

σ−i∞
Φ(s)y−s ds.
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Theorem. Let
L(s) =

∑
n≥1

ann
−s

be a Dirichlet series such that an = O(nR) for some R. Suppose there is some
even k ≥ 4 such that

– L(s) can be analytically continued to {Re(s) > k
2 − ε} for some ε > 0;

– |L(s)| is bounded in vertical strips {σ0 ≤ Re s ≤ σ1} for k
2 ≤ σ0 < σ1.

– The function
Λ(s) = (2π)−sΓ(s)L(s)

satisfies
Λ(s) = (−1)k/2Λ(k − s)

for k
2 − ε < Re s < k

2 + ε.

Then
f =

∑
n≥1

anq
n ∈ Sk(Γ(1)).

Proof. Holomorphicity of f on H follows from the fact that an = O(nR), and
since it is given by a q series, we have f(z + 1) = f(z). So it remains to show
that

f

(
−1

z

)
= zkf(z).

By analytic continuation, it is enough to show this for

f

(
i

y

)
= (iy)kf(iy).

Using the inverse Mellin transform (which does apply in this case, even if it
might not meet the conditions of the version we proved), we have

f(iy) =
1

2πi

∫ σ+i∞

σ−i∞
Λ(s)y−s ds

=
1

2πi

∫ k
2 +i∞

k
2−i∞

Λ(s)y−s ds

=
(−1)k/2

2πi

∫ k
2 +i∞

k
2−i∞

Λ(k − s)y−s ds

=
(−1)k/2

2πi

∫ k
2 +i∞

k
2−i∞

Λ(s)ys−k ds

= (−1)k/2y−kf

(
i

y

)
.

Note that for the change of contour, we need∫ σ±iT

k
2±iT

Λ(s)y−s ds→ 0

as T →∞. To do so, we need the fact that Γ(σ + iT )→ 0 rapidly as T → ±∞
uniformly for σ in any compact set, which indeed holds in this case.
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Proposition. We have

M(f, s) = (2π)−sΓ(s)ζ(s)ζ(s− 1).

Proof. Doing the usual manipulations, it suffices to show that∑
σ1(m)m−s = ζ(s)ζ(s− 1).

We know if (m,n) = 1, then

σ1(mn) = σ1(m)σ1(n).

So we have∑
m≥1

σ1(m)m−s =
∏
p

(1 + (p+ 1)p−s + (p2 + p+ 1)p−2s + · · · ).

Also, we have

(1− p−s)(1 + (p+ 1)p−s + (p2 + p+ 1)p−2s + · · · )

= 1 + p1−s + p2−2s + · · · = 1

1− p1−s .

Therefore we find ∑
σ1(m)m−s = ζ(s)ζ(s− 1).

Proposition.

M(f, s) =
s− 1

4π
Z(s)Z(s− 1) = −M(f, 2− s).

Theorem. We have

f(y) + y−2f

(
1

y

)
=

1

24
− 1

4π
y−1 +

1

24
y−2.

Proof. We will apply the Mellin inversion formula. To justify this application,
we need to make sure our f behaves sensibly ass y → 0,∞. We use the absurdly
terrible bound

σ1(m) ≤
∑

1≤d≤m

d ≤ m2.

Then we get

f (n)(y)�
∑
m≥1

m2+ne−2πmy

This is certainly very well-behaved as y → ∞, and is � y−N for all N . As
y → 0, this is

� 1

(1− e2πy)n+3
� y−n−3.

So f satisfies conditions of our Mellin inversion theorem with k = 3.
We pick any σ > 3. Then the inversion formula says

f(y) =
1

2πi

∫ σ+i∞

σ−i∞
M(f, s)y−s ds.
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So we have

f

(
1

y

)
=

1

2πi

∫ σ+i∞

σ−i∞
−M(f, 2− s)ys ds

=
−1

2πi

∫ 2−σ+i∞

2−σ−i∞
M(f, s)y2−s ds

So we have

f(y) + y−2f

(
1

y

)
=

1

2πi

(∫ σ+i∞

σ−i∞
−
∫ 2+σ+i∞

2−σ−i∞

)
M(f, s)y−s ds.

This contour is pretty simple. It just looks like this:

×× ×210

Using the fact that M(f, s) vanishes quickly as | Im(s)| → ∞, this is just the
sum of residues

f(y) + y−2f

(
1

y

)
=

∑
s0=0,1,2

res
s=s0

M(f, s)y−s0 .

It remains to compute the residues. At s = 2, we have

res
s=2

M(f, s) =
1

4π
Z(2) res

s=1
Z(s) =

1

4π
· π

6
· 1 =

1

24
.

By the functional equation, this implies

res
s=0

M(f, s) =
1

24
.

Now it remains to see what happens when s = 1. We have

res
s=1

M(f, s) =
1

4π
res
s=1

Z(s) res
s=0

Z(s) = − 1

4π
.

So we are done.

Corollary.

E2

(
−1

z

)
= z2E2(z) +

12z

2πi
.
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Proof. We have

E2(iy) = 1− 24f(y)

= 1− 24y−2f

(
1

y

)
− 1 +

6

π
y−1 + y−2

= y−2

(
1− 24f

(
1

y

))
+

6

π
y−1

= y−2E

(
−1

iy

)
+

6

π
y−1.

Then the result follows from setting z = iy, and then applying analytic con-
tinuiation.

Corollary.

∆(z) = q
∏
m≥1

(1− qm)24.

Proof. Let D(z) be the right-hand-side. It suffices to show this is a modular
form, since S12(Γ(1)) is one-dimensional. It is clear that this is holomorphic on
H, and D(z + 1) = D(z). If we can show that

D |
12

(
0 −1
1 0

)
= D,

then we are done. In other words, we need to show that

D

(
−1

z

)
= z12D(z).

But we have

D′(z)

D(z)
= 2πi− 24

∑
m≥1

2πimq

1− qm

= 2πi

1− 24
∑
m,d≥1

mqmd


= 2πiE2(z)

So we know

d

dz

(
logD

(
−1

z

))
=

1

z2

D′

D

(
−1

z

)
=

1

z2
2πiE2

(
−1

z

)
=
D′

D
(z) + 12

d

dz
log z.

So we know that

logD

(
−1

z

)
= logD + 12 log z + c,

41



7 L-functions of eigenformsIII Modular Forms and L-functions (Theorems with proof)

for some locally constant function c. So we have

D

(
−1

z

)
= z12D(z) · C

for some other constant C. By trying z = i, we find that C = 1 (since D(i) 6= 0
by the infinite product). So we are done.
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8 Modular forms for subgroups of SL2(Z)

8.1 Definitions

Lemma. Let Γ ≤ Γ(1) be a subgroup of finite index, and γ1, · · · , γi be right
coset representatives of Γ̄ in Γ(1), i.e.

Γ(1) =

d∐
i=1

Γ̄γi.

Then
d∐
i=1

γiD

is a fundamental domain for Γ.

Proposition. Let Γ have ν cusps of widths m1, · · · ,mν . Then

ν∑
i=1

mi = (Γ(1) : Γ̄).

Proof. There is a surjective map

π : Γ̄ \ Γ(1)→ cusps

given by sending
Γ̄ · γ 7→ Γ̄ · γ(∞).

It is then an easy group theory exercise that |π−1([α])| = mα.

Proposition. Let Γ ⊆ Γ(1) be of finite index, and g ∈ G = GL2(Q)+. Then
Γ′ = g−1Γg ∩ Γ(1) also has finite index in Γ(1), and if f ∈Mk(Γ) or Sk(Γ), then
f |
k

g ∈Mk(Γ′) or Sk(Γ′) respectively.

Proof. We saw that (G,Γ) has property (H). So this implies the first part. Now
if γ ∈ Γ′, then gγg−1 ∈ Γ. So

f |
k

gγg−1 = f ⇒ f |
k

g |
k

γ = f |
k

g.

The conditions (ii’) and (iii’) are clear.

Theorem. We have

Mk(Γ) =

{
0 k < 0

C k = 0
,

and

dimCMk(Γ) ≤ 1 +
k

12
(Γ(1) : Γ).

for all k > 0.
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Proof. Let

Γ(1) =

d∐
i=1

Γγi.

We let
f ∈Mk(Γ),

and define
Nf =

∏
1≤i≤d

f |
k

γi.

We claim that Nf ∈Mkd(Γ(1)), and Nf = 0 iff f = 0. The latter is obvious by
the principle of isolated zeroes.

Indeed, f is certainly holomorphic on H, and if γ ∈ Γ(1), then

Nf |
k

γ =
∏
i

f |
k

γiγ = Nf .

As f ∈Mk(Γ), each f |
k

γi is holomorphic at ∞.

– If k < 0, then Nf ∈Mkd(Γ(1)) = 0. So f = 0.

– If k ≥ 0, then suppose dimMk(G) > N . Pick z1, · · · , zN ∈ D \ {i, ρ}
distinct. Then there exists 0 6= f ∈Mk(Γ) with

f(z1) = · · · = f(zN ) = 0.

So
Nf (z1) = · · · = Nf (zN ) = 0.

Then by our previous formula for zeros of modular forms, we know N ≤ kd
12 .

So dimMk(Γ) ≤ 1 + kd
12 .

– If k = 0, then M0(Γ) has dimension ≤ 1. So M0(Γ) = C.

8.2 The Petersson inner product

Proposition.

(i) 〈 · , · 〉 is a Hermitian inner product on Sk(Γ).

(ii) 〈 · , · 〉 is invariant under translations by GL2(Q)+. In other words, if
γ ∈ GL2(Q)+, then

〈f |
k

γ, g |
k

γ〉 = 〈f, g〉.

(iii) If f, g ∈ Sk(Γ(1)), then

〈Tnf, g〉 = 〈f, Tng〉.

Proof.
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(i) We know 〈f, g〉 is C-linear in f , and 〈f, g〉 = 〈g, f〉. Also, if 〈f, f〉 = 0,
then ∫

Γ\H
yk−2|f |2 dx dy = 0,

but since f is continuous, and y is never zero, this is true iff f is identically
zero.

(ii) Let f ′ = f |
k

γ and g′ = g |
k

γ ∈ Sk(Γ′), where Γ′ = Γ ∩ γ−1Γγ. Then

ykf ′ḡ′ = yk
(det γ)k

|cz + d|2k
· f(γ(z))g(γ(z)) = (Im γ(z))kf(γ(z))g(γ(z)).

Now Im γ(z) is just the y of γ(z). So it follows that Then we have

〈f ′, g′〉 =
1

v(Γ′)

∫
DΓ′

ykfḡ
dx dy

y2

∣∣∣∣
γ(z)

=
1

v(Γ′)

∫
γ(DΓ′ )

ykfḡ
dx dy

y2
.

Now γ(DΓ′) is a fundamental domain for γΓ′γ−1 = γΓγ−1Γ, and note that
v(Γ′) = v(γΓ′γ−1) by invariance of measure. So 〈f ′, g′〉 = 〈f, g〉.

(iii) Note that Tn is a polynomial with integer coefficients in {Tp : p | n}. So it
is enough to do it for n = p. We claim that

〈Tpf, g〉 = p
k
2−1(p+ 1)〈f |

k

δ, g〉,

where δ ∈ Mat2(Z) is any matrix with det(δ) = p.

Assuming this, we let

δa = pδ−1 ∈ Mat2(Z),

which also has determinant p. Now as

g |
k

( p 0
0 p

)
= g,

we know

〈Tpf, g〉 = p
k
2−1(p+ 1)〈f |

k

δ, g〉

= p
k
2−1(p+ 1)〈f, g |

k

δ−1〉

= p
k
2−1(p+ 1)〈f, g |

k

δa〉

= 〈f, Tpg〉

To prove the claim, we let

Γ(1)

(
p 0
0 1

)
Γ(1) =

∐
0≤j≤p

Γ(1)δγi
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for some γi ∈ Γ(1). Then we have

〈Tpf, g〉 = p
k
2−1

〈∑
j

f |
k

δγj , g

〉
= p

k
2−1

∑
j

〈f |
k

δγj , g |
k

γj〉

= p
k
2−1(p+ 1)〈f |

k

δ, g〉,

using the fact that g |
k

γj = g.

8.3 Examples of modular forms

Theorem.

(i) If γ ∈ Γ(1), then
Gr,k |

k

γ = Grγ,k.

(ii) If Nr ∈ Z2, then Gr,k ∈Mk(Γ(N)).

Proof.

(i) If g ∈ GL2(R)+ and u ∈ R2, then

1

(u1z + u2)k
|
k

g =
(det g)k/2

((au1 + cu2)z + (bu1 + du2))k
=

(det g)k/2

(v1z + v2)k
,

where v = n · g. So

Gr,k |
k

γ =
∑′

m

1

(((m + r)1γ)z + ((m + r)γ)2)k

=
∑
m′

1

((m′1 + r′1)z +m′2 + r′2)k

= Grγ,k(z),

where m′ = mγ and r′ = rγ.

(ii) By absolute convergence, Gr,k is holomorphic on the upper half plane.
Now if Nr ∈ Z2 and γ ∈ Γ(N), then Nrγ ≡ Nr (mod N). So rγ ≡ r
(mod Z2). So we have

Gr,k |
k

γ = Grγ,k = Gr,k.

So we get invariance under Γ(N). So it is enough to prove Gr,k is holo-
morphic at cusps, i.e. Gr,k |

k

γ is holomorphic at ∞ for all γ ∈ Γ(1). So it is

enough to prove that for all r, Gr,k is holomorphic at ∞.

We can write

Gr,k =

( ∑
m1+r1>0

+
∑

m1+r1=0

+
∑

m1+r1<0

)
1

((m1 + r1)z +m2 + r2)k
.
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The first sum is∑
m1+r1>0

=
∑

m1>−r1

∑
m2∈Z

1

([(m1 + r1)z + r2] +m2)k
.

We know that (m1 + r1)z+ r2 ∈ H. So we can write this as a Fourier series∑
m1>−r1

∑
d≥1

(−2π)k

(k − 1)!
dk−1e2πr2dq(m1+r1)d.

We now see that all powers of q are positive. So this is holomorphic.

The sum over m1 + r1 = 0 is just a constant. So it is fine.

For the last term, we have∑
m1+r1<0

=
∑

m1<−r1

∑
m2∈Z

(−1)k

((−m1 − r1)z − r2 −m2)k
,

which is again a series in positive powers of q−m1−r1 .

Theorem.

(i) ϑ4(z) = ϑ3(z ± 1) and θ2(z + 1) = eπi/4ϑ2(z).

(ii)

ϑ3

(
−1

z

)
=
(z
i

)1/2

ϑ3(z)

ϑ4

(
−1

z

)
=
(z
i

)1/2

ϑ2(z)

Proof.

(i) Immediate from definition, e.g. from the fact that eπi = 1.

(ii) The first part we’ve seen already. To do the last part, we use the Poisson
summation formula. Let

ht(x) = e−πt(x+1/2)2

= gt

(
x+

1

2

)
,

where
gt(x) = e−πtx

2

.

We previously saw

ĝt(y) = t−1/2e−πy
2/t.

We also have

ĥt(y) =

∫
e−2πixygt

(
x+

1

2

)
dx

=

∫
e−2πi(x−1/2)ygt(x) dx

= eπiy ĝt(y).
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So by the Poisson summation formula,

ϑ2(it) =
∑
n∈Z

ht(n) =
∑
n∈Z

ĥt(n) =
∑
n∈Z

(−1)nt−1/2e−πn
2/t = t−1/2ϑ4

(
i

t

)
.

Corollary.

(i) Let

F =

ϑ4
2

ϑ4
3

ϑ4
4

 .

Then

F (z + 1) =

−1 0 0
0 0 1
0 1 0

F, z−2F

(
−1

z

)
=

 0 0 −1
0 −1 0
−1 0 0

F

(ii) ϑ4
j ∈M2(Γ) for a subgroup Γ ≤ Γ(1) of finite index. In particular, ϑ4

j |
z
γ is

holomorphic at ∞ for any γ ∈ GL2(Q)+.

Proof.

(i) Immediate from the theorem.

(ii) We know Γ(1) = 〈S, T 〉, where T = ±( 1 1
0 1 ) and S = ±

(
0 −1
1 0

)
. So by (i),

there is a homomorphism ρ : Γ(1)→ GL3(Z) and ρ(−I) = I with

F |
2
γ = ρ(γ)F,

where ρ(γ) is a signed permutation. In particular, the image of ρ is finite,
so the kernel Γ = ker ρ has finite index, and this is the Γ we want.

It remains to check holomorphicity. But each ϑj is holomorphic at ∞.
Since F |

2
γ = ρ(γ)F , we know ϑ4

j |
2

is a sum of things holomorphic at ∞,

and is hence holomorphic at ∞.

Theorem. Let f(z) = ϑ(2z)4. Then f(z) ∈M2(Γ0(4)), and moreover, f |
2
W4 =

−f .

Lemma. Γ0(4) is generated by

−I, T =

(
1 1
0 1

)
, U =

(
1 0
4 1

)
= W4

(
1 −1
0 1

)
W−1

4 .

Proof. It suffices to prove that Γ0(4) is generated by T and U = ±( 1 0
4 1 ).

Let

γ = ±
(
a b
c d

)
∈ Γ0(4).

We let
s(γ) = a2 + b2.
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As c is even, we know a ≡ 1 (mod 2). So s(γ) ≥ 1, and moreover s(γ) = 1 iff
b = 0, a = ±1, iff γ = Tn for some n.

We now claim that if s(γ) 6= 1, then there exists δ ∈ {T±1, U±1} such that
s(γδ) < s(γ). If this is true, then we are immediately done.

To prove the claim, if s(γ) 6= 1, then note that |a| 6= |2b| as a is odd.

– If |a| < |2b|, then min{|b±a|} < |b|. This means s(γT±1) = a2 +(b±a)2 <
s(γ).

– If |a| > |2b|, then min{|a ± 4b|} < |a|, so s(γU±1) = (a ± 4b)2 + b2 <
s(γ).

Proof of theorem. It is enough to prove that

f |
2
T = f |

2
U = f.

This is now easy to prove, as it is just a computation. Since ϑ(z + 2) = ϑ(z), we
know

f |
2
T = f(z + 1) = f(z).

We also know that

f |
2
W4 = 4(4z)−2f

(
−1

4z

)
=

1

4z2
ϑ

(
− 1

2z

)4

= −f(z),

as

ϑ

(
−1

z

)
=
(z
i

)1/2

ϑ(z).

So we have
f |

2
U = f |

2
W4 |

2
T−1 |

2
W4 = (−1)(−1)f = f.

Proposition. We have g ∈M2(Γ0(2)), and g |
2
W2 = −g.

Proof. We compute

g |
2
W2 =

2

(2z)2
g

(
− 1

2z

)
=

1

z2
E2

(
−1

z

)
− 2

(2z)2
E2

(
−1

2z

)
= E2(z) +

1

2πiz
− 2

(
E2(2z) +

12

2πi · 2z

)
= −g(z).

We also have
g |

2
T = g(z + 1) = g(z),

and so
g |

2
( 1 0

2 1 ) = g |
2
W2T

−1W−1
2 = g.

Moreover, g is holomorphic at ∞, and hence so is g |
2
W2 = −g. So g is also

holomorphic at 0 = W2(∞). As ∞ has width 1 and 0 has width 2, we see
that these are all the cusps, and so g is holomorphic at the cusps. So g ∈
M2(Γ0(2)).
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Theorem.
M2(Γ0(4)) = Cg ⊕ Ch.

Theorem (Lagrange’s 4-square theorem). For all n ≥ 1, we have

r4(n) = 8
(
σ1(n)− 4σ1

(n
4

))
= 8

∑
d|n4-d

d.

In particular, r4(n) > 0.
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9 Hecke theory for Γ0(N)

Theorem. Let f ∈ Sk(Γ0(N))ε, where ε = ±1. Then define

L(f, s) =
∑
n≥1

ann
−s.

Then L(f, s) is am entire function, and satisfies the functional equation

Λ(f, s) = (2π)−sΓ(s)L(f, s) = ε(−N)k/2Λ(f, k − s).

Proof. We have f |
k

WN = εf , and then we can apply our earlier result.

Theorem (Strong multiplicity one for SL2(Z)). Let f, g ∈ Sk(Γ(1)) be normal-
ized Hecke eigenforms, i.e.

f |Tp = λpf λp = ap(f)

g|Tp = µpg µp = ap(g).

Suppose there exists a finite set of primes S such that such that for all p 6∈ S,
then λp = µp. Then f = g.

Idea of proof. We use the functional equations

Λ(f, k − s) = (−1)k/2Λ(f, s)

Λ(g, k − s) = (−1)k/2Λ(g, s)

So we know
L(f, k − s)
L(f, s)

=
L(g, k − s)
L(g, s)

.

Since these are eigenforms, we have an Euler product

L(f, s) =
∏
p

(1− λpp−s + pk−1−2s)−1,

and likewise for g. So we obtain∏
p

1− λpps−k + p2s−k−1

1− λpp−s + pk−1−2s
=
∏
p

1− µpps−k + p2s−k−1

1− µpp−s + pk−1−2s
.

Now we can replace this
∏
p with

∏
p∈S . Then we have some very explicit

rational functions, and then by looking at the appropriate zeroes and poles, we
can actually get λp = µp for all p.

Proposition. Tp, Up send Sk(Γ0(N)) to Sk(Γ0(N)), and they all commute.

Proof. Tp, Up do correspond to double coset actions

Γ0(N)
(

1 0
0 p

)
Γ0(N) =

{
Γ0(N)

(
p 0
0 1

)
q
∐
b Γ0(N)

(
1 b
0 p

)
p - N∐

b Γ0(N)
(

1 b
0 p

)
p | N

.

Commutativity is checked by carefully checking the effect on the q-expansions.

51



9 Hecke theory for Γ0(N)III Modular Forms and L-functions (Theorems with proof)

Theorem (Atkin–Lehner). The Hecke algebra H(G,Γ0(N)) fixes Sk(Γ0(N))new

and Sk(Γ0(N))old, and on Sk(Γ0(N))new, it acts as a commutative subalgebra
of the endomorphism ring, is closed under adjoint, and hence is diagonalizable.
Moreover, strong multiplicity one holds, i.e. if S is a finite set of primes, and we
have {λp : p 6∈ S} given, then there exists at most one N ≥ 1 and at most one
f ∈ Sk(Γ0(N), 1)new (up to scaling, obviously) for which

Tpf = λpf for all p - N, p 6∈ S.
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10 Modular forms and rep theory

Proposition.

– We have L∗kf = 0 iff f is holomorphic.

– If f ∈WK(Γ(1)), then g ≡ L∗kf ∈Wk−2(Γ(1)).

Proof. The first part is clear. For the second part, note that we have

f(γ(z)) = (cz + d)kf(z).

We now differentiate both sides with respect to z̄. Then (after a bit of analysis),
we find that

(cz̄ + d)−2 ∂f

∂z̄
(γ(z)) = (cz + d)k

∂f

∂z̄
.

On the other hand, we have

(Im γ(z))2 =
y2

|cz + d|4
.

So we find

g(γ(z)) = −2i
y2

|2z + d|4
(cz̄ + d)2(cz + d)k

∂f

∂z̄
= (cz + d)k−2g(z).

The growth condition is easy to check.

Theorem (Maass). Let SMaass(Γ(1), λ) be the space of Maass cusp forms with
eigenvalue λ. This space is finite-dimensional, and is non-zero if and only if
λ ∈ {λn : n ≥ 0}, where {λn} is a sequence satisfying

0 < λ0 < λ1 < λ2 < · · · → ∞.

Proposition. If f |
k

γ = f , then (R∗kf) |
k+2

γ = R∗kf .

Proposition. For Γ ⊆ Γ(1), there is a bijection between functions f : H → C
such that f |

k

γ = f for all γ ∈ Γ, and functions Φ : G→ C such that Φ(γg) = Φ(g)

for all γ ∈ Γ and Φ(grθ) = eikθΦ(g).

Proof. Given an f , we define

Φ(g) = (ci+ d)−kf(g(i)) = j(g, i)−kf(g(i)).

We can then check that

Φ(γg) = j(γg, i)−kf(γ(g(i)))

= j(γg, i)−kj(γ, g(i))kf(g(i))

= Φ(g).

On the other hand, using the fact that rθ is in the stabilizer of i, we obtain

Φ(grθ) = j(grθ, i)
−kf(grθ(i))

= j(grθ, i)
−kf(g(i))

= j(g, rθ(i))j(rθ, 1)f(g(i))

= Φ(g)j(rθ, i)
−k.

But j(rθ, i) = − sin θ + cos θ. So we are done.
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Proposition. The set of cuspoidal automorphic forms bijects with representa-
tions of sl2 generated by holomorphic cusp forms f and their conjugates f̄ , and
Maass cusp forms.

The holomorphic cusp forms f generate a representation of sl2 with lowest
weight; The conjugates of holomorphic cusp forms generate those with highest
weight, while the Maass forms generate the rest.
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