Part III — Modular Forms and L-functions

Theorems with proof

Based on lectures by A. J. Scholl
Notes taken by Dexter Chua

Lent 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what
was actually lectured, and in particular, all errors are almost surely mine.

Modular Forms are classical objects that appear in many areas of mathematics, from
number theory to representation theory and mathematical physics. Most famous is,
of course, the role they played in the proof of Fermat’s Last Theorem, through the
conjecture of Shimura-Taniyama-Weil that elliptic curves are modular. One connection
between modular forms and arithmetic is through the medium of L-functions, the
basic example of which is the Riemann (-function. We will discuss various types of
L-function in this course and give arithmetic applications.

Pre-requisites

Prerequisites for the course are fairly modest; from number theory, apart from basic
elementary notions, some knowledge of quadratic fields is desirable. A fair chunk of the
course will involve (fairly 19th-century) analysis, so we will assume the basic theory of
holomorphic functions in one complex variable, such as are found in a first course on
complex analysis (e.g. the 2nd year Complex Analysis course of the Tripos).



Contents IIT Modular Forms and L-functions (Theorems with proof)

Contents
0 Introduction

1 Some preliminary analysis
1.1 Characters of abelian groups . . . . . . ... .. ... .. ..
1.2 Fourier transforms . . . . . . . . .. ... ... ...
1.3 Mellin transform and I-function . . . . .. .. ... ... ....

2 Riemann (-function
3 Dirichlet L-functions
4 The modular group

5 Modular forms of level 1
5.1 Basic definitions . . . . . . . ...
5.2 The space of modular forms . . . . . ... ... ... ... ...,
5.3 Arithmeticof A. . . . . . . ..

6 Hecke operators
6.1 Hecke operators and algebras . . . .. ... ... ... .. ...,
6.2 Hecke operators on modular forms . . . ... ... ... .....

7 L-functions of eigenforms

8 Modular forms for subgroups of SLs(Z)
8.1 Definitions . . . . . . . ..
8.2 The Petersson inner product . . . .. ... .. ... ...
8.3 Examples of modular forms . . . . ... ... ... .. ... ...

9 Hecke theory for I'y(N)

10 Modular forms and rep theory

11

17

21
21
23
26

28
28
30

35

43
43
44
46

51

53



0 Introduction  III Modular Forms and L-functions (Theorems with proof)

0 Introduction
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1 Some preliminary analysis

1.1 Characters of abelian groups

Theorem (Pontryagin duality). Pontryagin duality If G is locally compact,

then G — G is an isomorphism.

Proposition. Let G be a finite abelian group. Then |G| = |G|, and G and G
are in fact isomorphic, but not canonically.

Proof. By the classification of finite abelian groups, we know G is a product of
cyclic groups. So it suffices to prove the result for cyclic groups Z/NZ, and the
result is clear since

Z/NZ = uy = Z/NZ. O

1.2 Fourier transforms

Proposition. If f € S(R), then f € S(R), and the Fourier inversion formula

f=f(-a)
holds.
Proposition.
flz) = Z C7z(f)€27rmac = Z en(f)xn(2).
nez nez~G
Proposition. For a function f: Z/NZ — C, we have
1 v s
flo)y =5 > ¢ f©)
Cenn
Proof. We see that both sides are linear in f, and we can write each function f

f=> f@3d,

a€Z/NT.

where

So we wlog f = d,. Thus we have

Q) =¢,

1 r—a
N2

CeEnN

and the RHS is

We now note the fact that

5 Ck:{N k=0 (mod N)

Cemn 0 otherwise

So we know that the RHS is equal to d,, as desired. O
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Theorem. Let G be a locally compact abelian group G. Then there is a Haar
measure on (G, unique up to scaling.

Theorem (Fourier inversion theorem). Given a locally compact abelian group
G with a fixed Haar measure, there is some constant C' such that for “suitable”
f:G — C, we have

flg) = Cf(=9),
using the canonical isomorphism G — é
Theorem (Poisson summation formula). Let f € S(R™). Then
> fla)=" f).
a€Zm bezZn

Proof. Let
g(z) =Y flz+a).

a€zZm™

This is now a function that is invariant under translation of Z™. It is easy to
check this is a well-defined C* function on R™/Z", and so has a Fourier series.

We write '
g(m) — Z Cb(g)627rzb~ac7
bez™

with
e(g) = / e 2T g () do = Z / e 2T f(z + a) da.
R /77 aczn [0,1]™

We can then do a change of variables x — x — a, which does not change the
exponential term, and get that

(@) = [ e ) do = )
Finally, we have

S fa) =90) = 3 a@) = 3 F). 0
bezn

aczZn bezn

1.3 Mellin transform and I'-function
Lemma. Suppose f : Rsy — C is such that
~yNf(y) - 0asy — oo forall N € Z
— there exists m such that |y™y(f)| is bounded as y — 0
Then M (f, s) converges and is an analytic function of s for Re(s) > m.

Proof. We know that for any 0 < r < R < oo, the integral

RS dy
/T yf(y);



1 Some preliminatyl ddelgsdar Forms and L-functions (Theorems with proof)

is analytic for all s since f is continuous.
By assumption, we know |’ ;o — 0 as R — oo uniformly on compact subsets

of C. So we know - d
RN
/r ¥ f(y) "

converges uniformly on compact subsets of C.

On the other hand, the integral for as r — 0 converges uniformly on compact
subsets of {s € C : Re(s) > m} by the other assumption. So the result
follows. O

Proposition.
M(f(ay),s) =a "M(f,s)
for a > 0.

Proposition.
s'(s) =T(s+1).

Proposition. For an integer n > 1, we have
I'(n) =(n—1)L
Proposition.

(i) The Weierstrass product: We have

I'(s)™' =es H (1 + %) es/m

n>1

for all s € C. In particular, T'(s) is never zero. Here v is the Fuler-
Mascheroni constant, given by

1 1
v = lim (1++~~~+logn).
2 n

n—oo

(ii) Duplication and reflection formulae:

73T(2s) = 22711 (s)T" <3 + ;)
and
D(s)D(1—s) = ——.
sinz
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2 Riemann (-function

Proposition (Euler product formula). We have

= I —

1—p*
p prime p

Proof. Euler’s proof was purely formal, without worrying about convergence.
We simply note that

I | (RN — Y0,

p primc n>1

where the last equality follows by unique factorization in Z. However, to prove
this properly, we need to be a bit more careful and make sure things converge.

Saying the infinite product Hp convergence is the same as saying Y p~*
converges, by basic analysis, which is okay since we know ((s) converges absolutely
when Re(s) > 1. Then we can look at the difference

(-l = =¢@ - [Ja+r+r®+)

I

neNx

where Ny is the set of all n > 1 such that at least one prime factor is > X. In
particular, we know

(s) =

<> [ [=0

pSX n>X
as X — oo. So the result follows. O

Theorem. If Re(s) > 1, then

20T = [ TV W g,

ey —1y
where )
FW) = oy
Proof. We can write
727Ty 9
—2mny
FW) =1 == =Y e
n>1
for y > 0.
As y — 0, we find
1
fly) ~ %

So when Re(s) > 1, the Mellin transform converges, and equals

Z M(e™2™Y s) = Z(Zﬂ'n)*sM(e*y,s) = (2m)7°T'(s)((s). O

n>1 n>1
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Corollary. ((s) has a meromorphic continuation to C with a simple pole at
s = 1 as its only singularity, and

el =1

Proof. We can write

1 [e%e] s
_ _ yo dy
M(f7s)—M0+Moo—</0 +/1 )e%y_ly.

The second integral M, is convergent for all s € C, hence defines a holomorphic
function.
For any fixed N, we can expand

N-1

f) = e+ an(y)

n=—1

for some g € C*°(R), as f has a simple pole at y = 0, and

C_1 = —.
2w

So for Re(s) > 1, we have

N-1 1 N
Mo= ) Cn/ yrtet dy+/ y" g (y) dy
0 0

n=—1
N-—-1 1
c _
= > 7"95+”+/ gn(y)y* N1 dy.
=S +n 0

We now notice that this formula makes sense for Re(s) > —N. Thus we have
found a meromorphic continuation of

(2m) T (s)¢(s)
to {Re(s) > N}, with at worst simple poles at s =1— N,2— N,---,0,1. Also,

we know I'(s) has a simple pole at s = 0,—1,—2,---. So ((s) is analytic at
s=0,—-1,-2,---. Since c_1 = % and T'(1) = 1, we get
res ¢(s) =1. O

Corollary. There are infinitely many primes.
Proposition. B, =0 if n is odd and n > 3.
Proof. Consider

et —1
n>0,n#1
We find that b
te +
)= -—— = f(—1).
£l = 5 St = £
So all the odd coefficients must vanish. O
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Corollary. We have

B,

O =Bi=—y C(1-m=-"0

for n > 1. In particular, for all n > 1 integer, we know ((1 —n) € Q and vanishes
if n > 1 is odd.

Proof. We know
(2m)°T'(s)¢(s)

has a simple pole at s =1 — n, and the residue is ¢,,_1, where

1
e2my — 1 = Z Cnyn.

n>—1
So we know B
Cp—1 — (271')"71”77
We also know that
rs = U
res §) = —"——
s=1-n (n—1)! ’
we get that
(- = (-1
= -
If n =1, then this gives —%. If n is odd but > 1, then this vanishes. If n is even,
then this is —%, as desired. O]
Proposition.

2 72
Proof. The left hand side is

Z M (ef’mzy, %) = Z(ﬂ'nQ)fs/ZM (efy, ;) =721 (;) ¢(s). O

n>1 n>1

M (@(y)—l 8) = w2 (2 ¢(o)

Theorem (Functional equation for O-function). If y > 0, then

o (;) — y20(y), (+)

where we take the positive square root. More generally, taking the branch of v
which is positive real on the positive real axis, we have

1 2\ 1/2
a(=2)=(3) ).
()"
Proof. By analytic continuation, it suffices to prove (x). Let
gi(x) = 7™ = g (t%0),

In particular,
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Now recall that g1 = g;. Moreover, the Fourier transform of f(az)is X f Fly/a).

So

i - q - - - — —ry?
Gily) =t 12 (47 2y) = 712 (71 Py) = ¢ RemY

We now apply the Poisson summation formula:
o) =Y ¢ =D aln) =D auln) =17120(1/1). O
nez nez nez

Theorem (Functional equation for {-function).
Z(s)=2Z(1—s).
Moreover, Z(s) is meromorphic, with only poles at s = 1 and 0.

Proof. For Re(s) > 1, we have
s
27(s) = M (@(y) —1, 5)

_ * _ MQdy
JRCORRE

([

The idea is that using the functional equation for the ©-function, we can relate
the fol part and the [ part. We have

1 dy 1 dy 1 oa dy
o 12y :/ o) =172y, .s/29Y +/ =1 12\ Y
/0( (y) — Dy " 0( () —y %)y A (y y ) )

1
= [oeam -y 22
0

s—1 s
In the first term, we change variables y +» 1/y, and get
o d 2 2
= V2(9(y) — y—/2Y L 4 _ 2
| vem -y 2o -2
So we find that

dy 2 2

22(9) = [0 - 2+ ') L+ 2o -2 2z )

Note that what we’ve done by separating out the y% — y*/2 term is that we

separated out the two poles of our function. O

10
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3 Dirichlet L-functions

—

Proposition. If x € (Z/NZ)*, then there exists a unique M | N and a primitive

—

X+ € (Z/MZ)* that is equivalent to .

Proposition.

1
Lix,s)= [ ——F——
1_ —S

orime PN x(p)p

S —

Proposition. Suppose M | N and xu € (Z/MZ)* and xn € (Z/NZ)* are
equivalent. Then

1

T

L(XM’ S) = H
ptM
p|N

In particular,

iy 1—xm(pp—*

pIN
is analytic and non-zero for Re(s) > 0.
Theorem.

(i) L(x,s) has a meromorphic continuation to C, which is analytic except for
at worst a simple pole at s = 1.

(ii) If x # xo (the trivial character), then L(y,s) is analytic everywhere. On
the other hand, L(xo, s) has a simple pole with residue

M - H 11— 1
N p/)’
pIN
where ¢ is the Euler function.

Proof. More generally, let ¢ : Z/NZ — C be any N-periodic function, and let

L(g,s) = 3 dlmn~".
n=1

Then
(2m) " T(s)L(¢,5) = Y _ p(n)M(e™>™, 5) = M(f(y), ),
where

fy)=>_ bn)e ™.

n>1
We can then write
N = N e—2mny N e2m(N—n)y
fly) = 231 ZO¢(H)€_27T(n+TN)y = z:l )T —amny = 221 1) vy =7

11
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As 0 < N —n < N, this is O(e=?7Y) as y — oo. Copying for ((s), we write

5) = (/+/°°) Flo) L = Mals) + M)

The second term is analytic for all s € C, and the first term can be written as

1 e2m(N—n)y dy

N
s) = Z¢(”)/O mys -
n=1

Y
Now for any L, we can write
eQw(N—n)y 1 L-1

_ r L
e2nNy _ 1 2Ny + Tz:; ¢rny” + Y 9L (y)

for some gz, ,,(y) € C*°[0,1]. Hence we have

N 1 1 dy 1L-1
— 57 r+s—1 d G
3 o) (/ o T L y>+ (5)
where G(s) is some function analytic for Re(s) > —L. So we see that
1 Co.n CL—-1,n
s - 2 PR e kL G(s).
(2m)~"T(s qu <2szl)+ s +S+L1>+ ()

As T'(s) has poles at s = 0, —1, - - -, this cancels with all the poles apart from the
one at s = 1.
The first part then follows from taking

- X(n> (nvN) =
o(n) = {0 (n,N)>1

By reading off the formula, since I'(1) = 1, we know

resL (x, s Z¢

If x # X0, then this vanishes by the orthogonality of characters. Otherwise, it is
[(Z/NZ)*|/N = ¢(N)/N. O

Theorem. If x # xo, then L(y,1) # 0.
Proof. The trick is the consider all characters together. We let
)= I Lo =1]1]0-x@p
XE(Z/NZ)* PIN X

for Re(s) > 1. Now we know L(xo,s) has a pole at s = 1, and is analytic
everywhere else. So if any other L(x, 1) = 0, then (y(s) is analytic on Re(s) > 0.
We will show that this cannot be the case.

We begin by finding a nice formula for the product of (1 — x(p)p~*)~! over
all characters.

12
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Claim. If p{ N, and T is any complex number, then
II —x@71) =70,
XE(Z/NZ)*

where f, is the order of p in (Z/nZ)*.

So
CN(S) = H(l _p_fps)_‘P(N)/fp.
ptN
To see this, we write f = f,,, and, for convenience, write
G = (Z/N7)*
H=(p) CG.

We note that G naturally contains (?/?I ={x € G- x(p) = 1} as a subgroup.
Also, we know that
|G/H| = |G/H| = ¢(N)/[.

Also, the restriction map

G 5
G/H
is obviously injective, hence an isomorphism by counting orders. So
[Ta—xm1) = [T 0=x)T)?™7 = T] 1 =¢T)#™H = (1-T7)#0/1.
x€G xeH Cepy

We now notice that when we expand the product of (, at least formally, then we
get a Dirichlet series with non-negative coefficients. We now prove the following
peculiar property of such Dirichlet series:

D(s) = Z apn”?®

n>1

Claim. Let

be a Dirichlet series with real a,, > 0, and suppose this is absolutely convergent
for Re(s) > o0 > 0. Then if D(s) can be analytically continued to an analytic
function D on {Re(s) > 0}, then the series converges for all real s > 0.

Let p > 0. Then by the analytic continuation, we have a convergent Taylor
series on {|s — p| < p}

1
D(s) = 32 =D (p)(s — p)".
k>0
Moreover, since p > o, we can directly differentiate the Dirichlet series to obtain
the derivatives:
D) (p) = Z an(—logn)kn=".

n>1

So if 0 < x < p, then

13
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Now note that all terms in this sum are all non-negative. So the double series
has to converge absolutely as well, and thus we are free to rearrange the sum as
we wish. So we find

_ 1
D)= Y amn™ Y 11(p ) (logn)
n>1 k>0
— Z ann—pe(p—x) logn
n>1

= E apn” Pnf~*

n>1

= g a,n"",

n>1

as desired.
Now we are almost done, as

(v (s) = Lixo,s) ] L(x.9)-

X7#X0

We saw that L(xo,s) has a simple pole at s = 1, and the other terms are all
holomorphic at s = 1. So if some L(x,1) = 0, then {x(s) is holomorphic for
Re(s) > 0 (and in fact everywhere). Since the Dirichlet series of nx has > 0
coefficients, by the lemma, it suffices to find some point on Ry where the
Dirichlet series for (x doesn’t converge.

We notice
CN(CC) = H(l _|_p7fpz _|_p72fp:E + .- )‘P(N)/fp > ZP7W(N)1
pIN ptN
It now suffices to show that Y p~! = oo, and thus the series for (x(z) is not
convergent for x = ﬁ.

Claim. We have
S e~ —loga - 1)

p prime

as x — 17. On the other hand, if x # xg is a Dirichlet character mod N, then

> o xep "

ptN
is bounded as x — 1.

Of course (and crucially, as we will see), the second part is not needed for
the proof, but it is still nice to know.
To see this, we note that for any y, we have

T —TT

log L(x, ) = Z —log(1—x(p)p~®) = Z Z M'

T
ptN pfN r>1

14
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So

log L(x, = ZX EEDI N A

which is a (finite) constant for C' < co. When x = xo, N = 1, then

log ¢ (= Zp*””

is bounded as x — 1. But we know

1

C(S):jJFO()

So we have

Zp ¥ ~log(z —1).

When x # xo, then L(x,1) ;é 0, as we have just proved! So log L(y,x) is
bounded as x — 1. and so we are done. O

Theorem (Dirichlet’s theorem on primes in arithmetic progressions). Let a € Z
be such that (a, N) = 1. Then there exists infinitely many primes p = a
(mod N).

Proof. We want to show that the series
> v
p prime

p=a mod N

is unbounded as  — 11, and in particular must be infinite. We note that for
(z, N) =1, we have

Z x(a:):{(p(N) z=1 .(modN)7

TTND 0 otherwise
XE(Z/NTZ)*

since the sum of roots of unity vanishes. We also know that y is a character, so

x(a)"tx(p) = x(a~tp). So we can write
L1 ) »
> U= ™) > x@D xp
p prime v XE(Z/NZ)* all p

p=a mod N

Now if x = xo, then the sum is just

Zp T~ —log(z—1)

ptN

15
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as ¢ — 17. Moreover, all the other sums are bounded as z — 1. So

S e —ﬁlog(m _).

p=a mod N

So the whole sum must be unbounded as x — 1. So in particular, the sum
must be infinite. O

Theorem (Cebotarev density theorem). Cebotarev density theorem Let L/K
be a Galois extension. Then for any conjugacy class C' C Gal(L/K), there exists
infinitely many p with [o,] = C.

16
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4 The modular group

Theorem. The group SLo(R) admits the Iwasawa decomposition

SLy(R) = KAN = NAK,

k=som. a={(; N} v={(; 1)}

Proof. This is just Gram—Schmidt orthogonalization. Given g € GL2(R), we
write

where

ger = 637 gea = 6/27
By Gram-Schmidt, we can write
= )\16/1
fa = Aae) + peh

such that
Ifill = lfll =1, (f1, f2) = 0.

(i fo) = (¢ €b) <)E)1 /\2>

So we can write

I
Now the left-hand matrix is orthogonal, and by decomposing the inverse of
(/:)1 )/\f), we can write g = (¢} €5) as a product in KAN. O

Theorem. Let

1 1
D:{zG’H:—2§R6z§2,|z|>1}u{z€’H:|z:1,Re(z)20}.

Then D is a fundamental domain for the action of I' on H, i.e. every orbit
contains exactly one element of D.
The stabilizer of z € D in I is trivial if z # 4, p, and the stabilizers of ¢ and p

are 7
Li=(S)= o, T,=(Is)= .

Finally, we have T = (S, T) = (S, TS).

17
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Proof. Let I'* = (S, T) C T'. We will show that if z € , then there exists v € T'*
such that v(z) € D.
Since z € R, we know Z + Zz = {cz+d : ¢,d € Z} is a discrete subgroup of
C. So we know
{lez+d| :¢,d € Z}

is a discrete subset of R, and is in particular bounded away from 0. Thus, we

know Im(2)
m(z a b —
{Im'y(z) = 7|cz T Ty = (c d) el }

is a discrete subset of R+ and is bounded above. Thus there is some v € I'*
with Im~(z) maximal. Replacing v by T"v for suitable n, we may assume
Rey(2)] < 3.

We consider the different possible cases.

— If |y(2)|] < 1, then
—1 _ Imy(2)
(z) (2P

which is impossible. So we know |y(z)| > 1. So we know 7(z) lives in the
closure of D.

Im Sv(z) =Im > Im~y(z),

— If Re(7(2)) = —3, then Ty(2) has real part +3, and so T'(y(z)) € D.

— If =1 < Re(z) < 0and |y(z)| =1, then |Sy(z)| = 1 and 0 < Re Sv(z) < 3,
ie. Sv(z) € D.

So we can move it to somewhere in D.

We shall next show that if z, 2’ € D, and 2’ = y(z) for v € [, then z = /.
Moreover, either

- v=1;0r

—z=1dand y=S5; or

— z=pand~y =TS or (TS)>.

It is clear that this proves everything.
To show this, we wlog

~ Imz S
ez +d?2 T

_fa b
’y - c d 9
and we also wlog ¢ > 0.

Therefore we know that |cz 4+ d| < 1. In particular, we know

V3

1>Im(cz +d) = clm(z) > e

Im(z") Im 2z

where

since z € D. Soec=0or 1.

18



4 The modular gréllpModular Forms and L-functions (Theorems with proof)

1 m
=+ )

for some m € Z, and this 2z’ = z +m. But this is clearly impossible. So we
must have m =0, z = 2/, v = 1 € PSLy(Z).

— If ¢=0, then

— If ¢ =1, then we know |z + d| < 1. So z is at distance 1 from an integer.
As z € D, the only possibilities are d = 0 or —1.

o If d =0, then we know |z| = 1. So

_fa -1
=\ o
for some a € Z. Then 2/ = a — % Then
x either a = 0, which forces z =14, vy = S5; or
* a=1,and 2 =1 — 1, which implies z = 2’ = p and v = T'S.

o If d = —1, then by looking at the picture, we see that z = p. Then
lez+d|=|z—1| =1,

and so

V3

Imz =Imz=—.

2
So we have 2’ = p as well. So
ap+b
p—1 "7

which implies
PP —(a+1)p—b=0

Sop=—1,a=0, and v = (TS)>. O
Proposition. The measure
dx dy
dp = —
Y

is invariant under PSLa(R). If I' C PSLy(Z) is of finite index, then pu(I'\H) < oc.

Proof. Consider the 2-form associated to pu, given by

y? 2(Tm 2)2°

v = (‘Z Z) € SLy(R).

_ Imz
ez +d)?’

_dzAdy  idzAdz

We now let

Then we have

Im~(2)

19
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Moreover, we have

dv(2) _ a(cz +d) — claz +b) _ 1
dz (cz+d)? (cz+d)?’

Plugging these into the formula, we see that 7 is invariant under
Now if I' < PSL2(Z) has finite index, then we can write PSLy(Z) as a union
of cosets

PSLy(Z H Vi

where n = (PSLy(Z) : T'). Then a fundamental domain for T is just

and so
p(T\H) =" p(D) = nu(D).

So it suffices to show that (D) is finite, and we simply compute

dz d y= dz d
(D) = / Y < / / Y <. O
v2/2 Y
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5  Modular forms dfliddeldhlar Forms and L-functions (Theorems with proof)

5 Modular forms of level 1

5.1 Basic definitions

Theorem. Gj is a modular form of weight k£ and level 1. Moreover, its g¢-
expansion is

Gr(z) = 2¢(k 1—7zak 1( ) (1)

n>1
where
-
1<d|n
Proposition. Let (ey,--- ,eq) be some basis for R?. Then if r € R, the series

!
Z [mier + -+ maqeql| ™"
mecZd

converges iff r > d.
Proof. The function

(z;) € RY s

Exe,

is a norm on R?. As any 2 norms on R? are equivalent, we know this is equivalent

to the sup norm || - ||o. So the series converges iff the corresponding series
/
> Imll
mezad

converges. But if 1 < N < Z, then the number of m € Z¢ such that |mljec = N
s (2N + 1) — (2N — 1)4 ~ 2¢dN9=1. So the series converges iff

Z N—rNd—l

N>1
converges, which is true iff r > d. O

Proof of theorem. Then convergence of the Eisenstein series by applying this
to R? = C. So the series is absolutely convergent. Therefore we can simply

compute
!/

Grlz+1) = Z (mz + (7ln+n))k = Gr(2).

m,n

Also we can compute

G (—i) = X/: = (_mim)k = 2"Gy(2).

m,n

So G, satisfies the invariance property. To show that G is holomorphic, and
holomorphic at infinity, we’ll derive the g-expansion (1). O
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5  Modular forms dfliddeldhlar Forms and L-functions (Theorems with proof)

Lemma. i
= 1 (—2mi) = k—1_2mid
— d Tiaw
n;o (nt+wk (k- 1) ; c
for any w € H and k > 2.
Proof. Let
1
= arar
We compute
R 0o 6727riwy d

We replace this with a contour integral. We see that this has a pole at —w. If
y > 0, then we close the contour downwards, and we have
. 6727riyz (_Z,ITiy)kfl
= —2miRes,—_y ——— = —2mi————
Jy) = =2miRes.——w Ty =~
If y < 0, then we close in the upper half plane, and since there is no pole, we
have f(y) = 0. So we have

2miyw

- 1 ? (—2mi)* k—1_2midw
n;m CEL =n%f(n) :dng(d) =G dzd e
by Poisson summation formula. O
Proposition.

(i) 7(vd,2) = j(v,9(2))j(d, z) (in fancy language, we say j is a 1-cocycle).
(i) (v 2) = j(rny (=)

(ili) v : ¢ — f|vis a (right) action of G = GL2(R)™ on functions on H. In

k
other words,
flv6 = Fl(v0).
k k k
Proof.
(i) We have

§(78.2) (761(2)> - @ =J0n (5(1Z)> T @

(i) Take § =~~L.
(iii) We have
((fp)y)(Z) = (det 6)"/2;(8, Z)”“(f}lj)@(Z))
= (det 6)"/?(8,2) 7 (det 7)*/?j(7,6(2)) " F(v8(2))

= (detv0)*/2j(vd, 2) * f(76(2))
= (fl|€75)(z)- O
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5.2 The space of modular forms

Proposition. Let f be a weak modular form (i.e. it can be meromorphic at co)
of weight k and level 1. If f is not identically zero, then

1 1 k
Z ordz, (f) | + §0rdi(f) +gord, f+ ordes(f) = TE
z0€D\{i,p}

where ordy f is the least r € Z such that a,(f) # 0.

Proof. Note that the function f(g) is non-zero for 0 < |¢| < & for some small &
by the principle of isolated zeroes. Setting

c = e—27rR7

we know f(z) #0if Imz > R.
In particular, the number of zeroes of f in D is finite. We consider the
integral along the following contour, counterclockwise.

—5 +iR 3 +iR

M
2 )

pee [y
We assume f has no zeroes along the contour. Otherwise, we need to go around
the poles, which is a rather standard complex analytic maneuver we will not go

through.
For e sufficiently small, we have

J

by the argument principle. Now the top integral is

—%iR f/
/ —dz = —/ —— dg = —2miorde f.
1+in [ lal== f(q)

As le has at worst a simple pole at z = i, the residue is ord; f. Since we are
integrating along only half the circle, as € — 0, we pick up

]}(z) dz = 2mi Z ord,, s

(2) 20€D\ (i}

%‘&;

—mires = —miord; f.

Similarly, we get —27iord, f coming from p and p?.
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So it remains to integrate along the bottom circular arcs. Now note that
Sz —% maps C to C’ with opposite orientation, and

df(52) _,dz , df(z)
z

f(8z) f(z)
as
f(Sz) = 2"f(2).
So we have
/+ f—ldz: f/dz<kdz+f/dz)k dz
c o f o f z f oz
— k;/z dz
o Z
ik
=5
So taking the limit € — 0 gives the right result. O

Corollary. If k < 0, then M;, = {0}.
Corollary. If k = 0, then My = C, the constants, and Sy = {0}.

Proof. If f € My, then g = f — f(1). If f is not constant, then ord; g > 1, so
the LHS is > 0, but the RHS is = 0. So f € C.
Of course, ag(f) = f. So Sy = {0}. O

Corollary.

k
dm M <14 —.
m M < +12

In particular, they are finite dimensional.

Proof. We let fy, -, fq be d+ 1 elements of My, and we choose distinct points
21, ,24 € D\ {4, p}. Then there exists Ao, -, Aq € C, not all 0, such that

d
F=Y N
1=0

vanishes at all these points. Now if d > %, then LHS is > % So f=0. So (f;)

are linearly dependent, i.e. dim Mj < d + 1. O

Corollary. My = {0} and My = CEy, for 4 < k < 10 (k even). We also have
Eg = EZ and E10 = E4E6.

Proof. Only My = {0} requires proof. If 0 # f € Ma, then this implies

b ¢ 1
a—+ 5 + 376
for integers a, b, ¢ > 0, which is not possible.
Alternatively, if f € Ma, then f2 € My and f3 € Mg. This implies E = E2,
which is not the case as we will soon see.
Note that we know Eg = E2, and is not just a multiple of it, by checking the
leading coefficient (namely 1). O
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Corollary. The cusp form of weight 12 is

E} —E2=(14+240g+---)* — (1 —504q+---)?> = 1728¢ + - - - .
Proposition. A(z) # 0 for all z € H.
Proof. We have

1 1 k
E OrdZOA+iordiA+§OrdpA+0rdooA:E:L
20#£1,p

Since ord, A = 1, it follows that there can’t be any other zeroes. O

Proposition. The map f — Af is an isomorphism Mj_12(I'(1)) — Si(T'(1))
for all k£ > 12.

Proof. Since A € Sy, it follows that if f € My_q, then Af € Si. So the map
is well-defined, and we certainly get an injection Mj_15 — Si. Now if g € Si,
since ordeg A = 1 < ordeo g and A # H. So £ is a modular form of weight

k—12. O
Theorem.
(i) We have
0 k <0 ork odd
dim M(T(1)) = < | & ] k>0,k=2 (mod 12)

1+ L%J otherwise

(ii) If & > 4 and even, then
My, = S & CEy.

(iii) Every element of M}, is a polynomial in F4 and FEg.

(iv) Let

b 0 k=0 (mod 4)
)1 k=2 (mod4)’

Then ) .
{h; = NNEYEFTI2760/4 0 < j < dim My}

is a basis for M}, and
{h; 11 <j < dim M}
is a basis for Sj.
Proof.

(ii) Sk is the kernel of the homomorphism M} — C sending f +— ag(f). So the
complement of Sy has dimension at most 1, and we know Ej, is an element
of it. So we are done.
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(i) For k < 12, this agrees with what we have already proved. By the
proposition, we have
dim Mk_lg = dim Sk.

So we are done by induction and (ii).

(iii) This is true for k < 12. If k > 12 is even, then we can find a,b > 0 with
4a + 6b = k. Then E§ES € My, and is not a cusp form. So

M, = CE{ES ® AMy_15.
But A is a polynomial in Ey4, Fg, So we are done by induction on k.

(iv) By (i), we know k — 125 — 6k > 0 for j < dim M}, and is a multiple of 4.
So h; € Mj. Next note that the g-expansion of h; begins with ¢’. So they
are all linearly independent. O

5.3 Arithmetic of A

Proposition.
(i) 7(n) € Z for all n > 1.
(i) 7(n) = o11(n) (mod 691)
Proof.

(i) We have
1728A = (1 + 240A43(q))® — (1 — 50445(q))?,

where

A, = Z ar(n)q".

n>1

We can write this as
1728A = 3 - 240A3 + 3 - 2407 A3 + 2403 A3 + 2 - 504 A5 — 5042 A2.

Now recall the deep fact that 1728 = 123 and 504 = 21 - 24.
Modulo 1728, this is equal to

720A3 + 1008A45.
So it suffices to show that
503 + 7o5(n) =0 (mod 12).
In other words, we need
5d* +7d° =0 (mod 12),

and we can just check this manually for all d.
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(ii) Consider
Bl =14 bug"

n>1

with b,, € Z. We also have

65520
E12 =1 + W ZUH(’I'L)(]”.

n>1

Also, we know
E12 — Ez S 512.

So it is equal to AA for some A € Q. So we find that for all n > 1, we have

665520

o1 o11(n) — by, = Ar(n).

In other words,
65520011 (n) — 691b,, = u7(n)

for some 7 € Q.

Putting n = 1, we know 7(1) =1, 611(1) = 1, and by € Z. So p € Z and
i = 65520 (mod 691). So for all n > 1, we have

65520011 (n) = 655207(n) (mod 691).
Since 691 and 65520 are coprime, we are done. O

Lemma.

(i) Suppose dim My = d+ 1 > 1. Then there exists a basis {g; : 0 < j < d}
for Mj, such that

— g; € My(Z) for all j € {0,---,d}.
— an(g;) = 0p; for all j,n € {0,---,d}.

(ii) For any R, My (R) = R**! generated by {g;}.
Proof.

(i) We take our previous basis h; = AJELEF12770/4 ¢ £ (7). Then we
have a,(hyn) =1, and a;j(h,) = 0 for all j < n. Then we just row reduce.

(ii) The isomorphism is given by
Mi(R) +— Rt!

[ (an(f))

d
> g (cn)
7=0
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6 Hecke operators

6.1 Hecke operators and algebras

Theorem. Let G = GL2(Q), and T' C SLy(Z) a subgroup of finite index. Then
(G,T) satisfies (H).

Proof. We first consider the case I' = SLy(Z). We first suppose

g= (i Z) € Mats(Z),
and detg = +N, N > 1. We claim that
g 'TgNT D I(N),
from which it follows that
(T:TNg 'T'g) < .

So given v € I'(IV), we need to show that gyg~! € I, i.e. it has integer coefficients.
We consider

1 _fa b d —b\_fa b d -b\ _ ., _
+N-gvg —(C d)ﬁy(c a>:<c d)(c a):NI:O (mod N).

So we know that gyg~! must have integer entries. Now in general, if ¢’ € GL2(Q),
then we can write L
r_ =
g = Mg

for g with integer entries, and we know conjugating by g and ¢’ give the same
result. So (G,T") satisfies (H).

The general result follows by a butterfly. Recall that if (G : H) < oo and
(G:H') < o0, then (G: HNH') < 0o. Now if I' C I'(1) = SL2(Z) is of finite
index, then we can draw the diagram

9~ 'T(1)g
finite nlte ﬁmt/ Wte
\ L(1)Ng='T(1)g 9~'Tg
rng r(1)Ga I(1)ng 'I'g
I'ng Ty

Each group is the intersection of the two above, and so all inclusions are of finite
index. O
Proposition.

28



6 Hecke operatorsIll Modular Forms and L-functions (Theorems with proof)

(i) m|[['gI'] depends only on I'gl'.
(ii) m|[[gl'] € MT.

Proof.
(i) If g} = 7ig; for v; € T, then

> mgi=> myigi =Y _ myg
asm € M".

(ii) Just write it out, using the fact that {I'g;} is invariant under T'. O

Theorem. There is a product on H(G,T') making it into an associative ring,
the Hecke algebra of (G,T'), with unit [Tel'] = [T'], such that for every G-module
M, we have M is a right H(G,T')-module by the operation ().

Proof. Take M = Z[T"\ G], and let

Igl = [[Tg:

ThT =[] Th;.
Then

Z[Fgl] (S MF,

7

S Cgl[Thr] = 3 [Tgih] € M,

i i.j
and this is well-defined. This gives us a well-defined product on H(G,T). Ex-
plicitly, we have

and we have

[CgT] - [TAT] = ©~1 | > " [Tgihy]
4,J
It should be clear that this is associative, as multiplication in G is associative,
and [[] = [[el'] is a unit.
Now if M is any right G-module, and m € M", we have

m|[Cgr)|[TAT] = (3 mg:) IIPAL] = Y mgih; = m([TgT] - [PAT)).

So M" is a right H(G,T)-module. O
Proposition. We write
Tgl =[] Ty
i=1
Ihl' = [ Th;.
j=1

Then
[rgT] - [PAT] = 3 (k) [Tk,
keS
where (k) is the number of pairs (4, j) such that I'g;h; = I'k.

Proof. This is just a simple counting exercise. O
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6.2 Hecke operators on modular forms
Proposition.

(i) Let v € Mato(Z) and dety =n > 1. Then

_ nq 0
ryrr=r (O n2> r
for unique ny,m9 > 1 and ng | ny, ning = n.
(i)
{’y € Mato(Z) : dety = n} = HI‘ 0 r
0 no ’
where we sum over all 1 < ny | ny such that n = nins.

(iii) Let ~,n1,ns be as above. if d > 1, then
-1 _ n1/d 0
I(d '7)1"-1"( i n2/d)r,

Proof. This is the Smith normal form theorem, or, alternatively, the fact that
we can row and column reduce. O]

Corollary. The set

{[r (’3 7?2) r} €L z}
is a basis for H(G,T) over Z.
Theorem.
(i) R(mn) = R(m)R(n) and R(m)T(n) = T(n)R(m) for all m,n > 1.
(ii) T(m)T(n) = T(mn) whenever (m,n) = 1.
(i) T()T (") =T(p"™*") +pR(P)T(p" ") of r > 1.

Corollary. H(G,T) is commutative, and is generated by {T(p), R(p), R(p)~ ' :
p prime}.

Proof. We know that T'(n1,n2), R(p) and R(p)~! generate H(G,T'), because

p O ny 0 _ pni O
R L N
In particular, when ny | ny, we can write

Tmhm)szgT(?,Q.

2
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So it suffices to show that we can produce any T'(n, 1) from the T'(m) and R(m).
We proceed inductively. The result is immediate when n is square-free, because
T(n,1) = T(n). Otherwise,

T(n) = Z T(nl,ng)

1<nz|ny
ninz2=n
= Y R)T ("11)
n2
1<nz|n,
nina=n
ni
=T 1 — .
(n,1) + E R(n2)T (n2 , 1)
1<nz|ny
ninz2=—n

So {T'(p), R(p), R(p)~'} does generate H(G,T'), and by the theorem, we know
these generators commute. So H(G,TI') is commutative. O

Proof of theorem.
(i) We have

o) rn=[r( )] =l @ o

by the formula for the product.
(i) Recall we had the isomorphism © : #(G,T') = Z[I'\ G]', and

o(T(n)) = Y [I]

~v€ellL,

for some II,,. Moreover, {yZ? | v € II,,} is exactly the subgroups of Z? of
index n.
On the other hand,

O(T(m)T(n) = >  [é),

€y, ,yEll,

and
{67vZ? | § € I,,,} = {subgroups of yZ? of index n}.

Since n and m are coprime, every subgroup A C Z2? of index mn is
contained in a unique subgroup of index n. So the above sum gives exactly

(T (mn)).
(iii) We have
(T )T(p)= Y [T,

0€ll,r ,y€Ell,

and for fixed v € II,,, we know {67Z? : § € II,- } are the index p” subgroups
of Z2.

On the other hand, we have

o(rpT) = ) [,

EEHprJrl
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where {¢Z?} are the subgroups of Z? of index p"*!.

Every A = ¢Z? of index p"*! is a subgroup of some index p subgroup
N € 72 of index p". If A € pZ?, then A’ is unique, and A’ = A + pZ2. On
the other hand, if A C pZ?, i.e.

_ (P 0\ ,
c= (O p) .

for some €’ of determinant p”~1, then there are (p+1) such A’ corresponding
to the (p + 1) order p subgroups of Z?/pZ2.

So we have
o(T(p")T'(p)) = > Tel+(p+1) Y [TpIe]
EEHPT+1 \(p[rpy‘71) E’EHPT—I
= > [Fel+p Y [Iple]
EEHPT+1 Elenpr—l
=T+ pR(p)T(P ). O
Proposition.

(i) T* TET* if (m,n) =1, and

mn—m=—n

k k mk k—1mk
Tk =TT - pFiTh

(ii) If f € My, then T, f € My. Similarly, if f € S, then T, f € Si.

(iii) We have
an(Tnf) = D d" lamna(f).

1<d|(m.n)

In particular,
ao(Tinf) = or—1(m)ao(f).

Proof.
(i) This follows from the analogous relations for T'(n), plus f|R(n) = f.

(ii) This follows from (iii), since T}, clearly maps holomorphic f to holomorphic

f
(iii) If r € Z, then

b
qr]LT(m) = mb/? Z e Fexp (2772‘77;7” + 27rier) ,

e|m,0<b<e

where we use the fact that the elements of II,,, are those of the form

Hm:{<8 z>:ae=m,0§b<e}.
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Now for each fixed e, the sum over b vanishes when £ ¢ Z, and is e
otherwise. So we find

qT\T(m) :mk/Q Z el—kqmr/62.
k

el(n,r)

So we have

() =Yt Y (2) g

r>0 el(m,r)

= Z ekilzams/d(f)qu

1<d|m

:Z Z dk_lamn/dzqn7

n>0d|(m,n)
where we put n = ds. [
Corollary. Let f € M), be such that
Tn(f) =Af
for some m > 1 and A € C. Then
(i) For every n with (n,m) = 1, we have
a'rnn(f) = ACI”VL(.f.)
If ap(f) # 0, then A = o1 (m).
Proof. This just follows from above, since
an(Tmf) = Aan(f)a
and then we just plug in the formula. O
Corollary. Let 0 # f € My, and k > 4 with T,,,f = A\, f for all m > 1. Then
(i) If f € Sk, then a1(f) # 0 and

f=ai(f)) rag™

n>1

(ii) If f & Sk, then
f=ao(f)Ek.

Proof.
(i) We apply the previous corollary with n = 1.

(ii) Since ag(f) # 0, we know a,(f) = ox_1(m)a1(f) by (both parts of) the
corollary. So we have

f=ao(f)+ai(f) D or-1(n)g" = A+ BE;.

n>1

But since F' and Ej are modular forms, and k # 0, we know A =0. [
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Theorem. There exists a basis for Sy consisting of normalized Hecke eigenforms.

Partial proof. We know that {T},} are commuting operators on Sk.
Fact. There exists an inner product on Sy for which {7}, } are self-adjoint.

Then by linear algebra, the {T},} are simultaneously diagonalized. O
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7 L-functions of eigenforms

Proposition. Let f € S;(I'(1)). Then L(f,s) converges absolutely for Re(s) >
k

5+ 1L

2

Lemma. If

= ang" € Sp(I(1)),

n>1

then

an| < n*/?

Proof. Recall from the example sheet that if f € Sy, then y*/2|f| is bounded on

the upper half plane. So
1 / —n £ dq
P g "flg)—
27 Jig=r q

for r € (0,1). Then for any y, we can write this as

lan(f)] =

Se27rny sup |f(1‘+1y)| <<e27rnyy7k/2.

0<z<1

1
/ e 2mn(@ ) £ (0 4 jy)da

0

We now pick y = 1, and the result follows. O

n

Proposition. Suppose f is a normalized eigenform. Then

L) = ] !

1— app—s +pk—1—23'

p prime

Proof. We look at

(L= app™ +p" )L+ app™ +app™ + )
=1+ Z(apr + pk;_la/pr72 - apa;_l)p_’"s.

r>2

Since we have an eigenform, all of those coefficients are zero. So this is just 1.
Thus, we know

1

1+app_s+ap2p_28+"' = 1—a pfs +pk71725.
p.

Also, we know that when (m,n) = 1, we have
Amn = GmQn,

and also a; = 1. So we can write

L(f,s):H(1+app75+apzp*25+...):H 1 0

1— —s k—1—2s"
p p app=* +p
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Theorem. If f € Sy then, L(f,s) is entire, i.e. has an analytic continuation to
all of C. Define

A(f,s) = 2m) T (s)L(f, s) = M(f(iy), s).

Then we have
A(f» S) = (_l)k/2A(f7 k— S)'

Theorem. Suppose we have a function

0 f(2) =Y ang",

n>1

with a,, = O(n®) for some R, and there exists N > 0 such that
(%) =cf

for some k € Z~( and ¢ € C. Then the function

= E apn”?®

n>1
is entire. Moreover, ¢ = (—1)*, and if we set

A(s) = (2n)°T(s)L(s), e=c-i* € {£1},

then
Ak — s) = eN*7F/2A(s).

Proof. By definition, we have
Applying the matrix once again gives
fl(0 ‘1)IL(° o) = fl( o ) = DR,
but this is equal to ¢?f(2). So we know
= (-1~

We now apply the Mellin transform. We assume Re(s) > 0, and then we have

A(f,s)=M /fzy gy <//r /1/\F> (iy)y iy

By a change of variables, we have

. Yy i s s dy
f%yysfz/ f()NSys
/0 (i) Yy v~ \Ny Yy

oo
, . d
:/ Cika‘/Q—sf(Z'y)yk—& =
VN Y
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So

A = [ T ) 4 eNRsyy
1/VN Y

where
e =ife = 4+1.

Since f — 0 rapidly for y — oo, this integral is an entire function of s, and
satisfies the functional equation

A(f, k—s) =eN*"3A(f, s). O
Theorem (Mellin inversion theorem). Let f : (0,00) — C be a C'™ function
such that
— for all N,n > 0, the function y™ f(")(y) is bounded as y — oo; and

— there exists k € Z such that for all n > 0, we have y"** f(") (y) bounded
asy — 0.
Let ®(s) = M(f, s), analytic for Re(s) > k. Then for all o > k, we have
1 O'+iOO
f0) =5 [ @)y ds

2% J oo

Proof. The idea is to reduce this to the inversion of the Fourier transform. Fix
a o > k, and define
g(x) _ e27raa:f(627rx) c COO(R)

Then we find that for any N,n > 0, the function e¥*g(")(z) is bounded as
x — +00. On the other hand, as * — —o0, we have

g(n) (i) < Ze2w(a+j)w|f(j)(e2rrm)‘
=0

n

< Ze2w(a+j)we—27r(j+k)z
=0

< e27r(afk)a:.

So we find that g € S(R). This allows us to apply the Fourier inversion formula.
By definition, we have

g(—t) _ / 627r(rwf(627rw)€27ri:rt dz

1 [ , dy 1
- o+it P it).
o ), Y f(y)y 520 +it)
Applying Fourier inversion, we find
., (logy
fy)=vy"g < o >
1 [ o
— y_U% o e—27mt(log,y/27r)q)(o_ -l—’it) dt
1 o+ico (I)( ) o yq -
= — S S.
2mi o —100 Y

37



7 L-functions of eljelodmtar Forms and L-functions (Theorems with proof)

Theorem. Let

be a Dirichlet series such that a,, = O(n'?) for some R. Suppose there is some
even k > 4 such that

~ L(s) can be analytically continued to {Re(s) > £ — ¢} for some & > 0;
~ |L(s)| is bounded in vertical strips {og < Res < o1} for £ < 0¢ < 03.
— The function
A(s) = (2m)°T'(s)L(s)
satisfies
A(s) = (=1)*/2A(k — )
k k
for 3 —e <Res< 3 +e.
Then
f=>ang" € Sp(T(1)).
n>1

Proof. Holomorphicity of f on H follows from the fact that a, = O(nf?), and
since it is given by a ¢ series, we have f(z+ 1) = f(z). So it remains to show

that
/ (—1) ().

By analytic continuation, it is enough to show this for
F(2) = st

Using the inverse Mellin transform (which does apply in this case, even if it
might not meet the conditions of the version we proved), we have

1 o+1i00

iy) = — A 5 d

fliy) = 5 /U L (s)y—* ds
1 g—‘—ioo

— A(s)y™* ds

27TZ % — oo

_q)k/2 patice
= (Gl i 1). / Ak —s)y °ds

27TZ g—ioo

_1\k/2  pE4ico
) / A(s)ysfk ds
k

2m E_joo

=y (1),

Y

Note that for the change of contour, we need

o+iT
/ A(s)y™®ds =0

4T

as T — oo. To do so, we need the fact that I'(c +iT") — 0 rapidly as T" — +oo
uniformly for ¢ in any compact set, which indeed holds in this case. O
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7 L-functions of eljelodmtar Forms and L-functions (Theorems with proof)

Proposition. We have
M(f,s) = (2m) T (s)¢(s)¢(s = 1).
Proof. Doing the usual manipulations, it suffices to show that
S o (mym™ = ¢(s)C(s — 1).
We know if (m,n) = 1, then

o1(mn) = o1(m)oy(n).

So we have
S omm™ =[]0+ @+ Dp+ @ +p+1p > +--).
m>1 P

Also, we have

L=p ) A+ @+p™" + " +p+1)p~> + )

:1+p175+p272s+”.

1— pl—s '
Therefore we find

> or(m)m ™ = ((s)¢(s — 1). O
Proposition.

M(f,5) = SR 2(5)2(s ~ 1) = ~M(f,2~ 5).

Theorem. We have

1 11 1
—2 - - - —1 o —2
fly)+y f(y) 51 1Y T

Proof. We will apply the Mellin inversion formula. To justify this application,
we need to make sure our f behaves sensibly ass y — 0, 00. We use the absurdly

terrible bound
o1(m) < Z d < m?.

1<d<m
Then we get
f(n)(y) < Z m2tne—2mmy

m>1

This is certainly very well-behaved as y — oo, and is < y~» for all N. As
y — 0, this is
1 —n—3
< Gy <V
So f satisfies conditions of our Mellin inversion theorem with k£ = 3.
We pick any ¢ > 3. Then the inversion formula says

o+1i00
f() i/ M(f,s)y—° ds.

2mi o —100
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7 L-functions of eljelodmtar Forms and L-functions (Theorems with proof)

So we have
f 1 1/U+iOOM(f23)Sds
) B 2mi o—100 ’ Y
_1 2—o+100
=5= M(f,s)y*=° ds
2mi 2—0—100
So we have

B 1 1 o+i0o 2+o+ico .
f(y) " Y 2f <y> N % (»/O"LOO - /27077200 > M(f, S)y ds.

This contour is pretty simple. It just looks like this:

Using the fact that M(f,s) vanishes quickly as |Im(s)| — oo, this is just the
sum of residues

fw) +y2f (;) = Z res M(f,s)y~*°.

S=s
s0=0,1,2  °

It remains to compute the residues. At s = 2, we have

feg M(s) = 3201 26) = 1§ 1= g7
By the functional equation, this implies
res M(f,s) = i
s=0 24
Now it remains to see what happens when s = 1. We have
res M(f,s) = = res Z(s) res Z(s) = —i.
s=1 4 s=1 s=0 4dr
So we are done. O
Corollary. . '
z
Es (—Z) = 22Fy(2) i
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7 L-functions of eljelodmtar Forms and L-functions (Theorems with proof)

Proof. We have
Eb(iy) =1 —-24f(y)

1
=124y %f () —1+ Qy*1 +y7?
Yy T

1 6
=y 2 <1 —24f ()) + =y !
y ™
-1 6
= y‘2E <> + *y_l.
iy T
Then the result follows from setting z = iy, and then applying analytic con-

tinuiation. O

Corollary.

A(z)=q [T =a™*

m>1

Proof. Let D(z) be the right-hand-side. It suffices to show this is a modular
form, since S12(I'(1)) is one-dimensional. It is clear that this is holomorphic on
H, and D(z + 1) = D(z). If we can show that

D|(Y5") =D,
12

then we are done. In other words, we need to show that

D <Zl) = 22D(2).

D'(z) . 2mimg
=2m — 24
D(Z) m Z 1— qm
m>1

But we have

=2mi [1-24 »  mg™
m,d>1

= 27TiE2(Z)

d 1 1D 1
—(1ogD (=) ) === (-=
(70 () =55 (=)
:1227T2E2<—1>
z z

D’ d
E(z) + 12& log z.

So we know

So we know that )
log D (—) =log D + 12log z + ¢,
z
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7 L-functions of eljelodmtar Forms and L-functions (Theorems with proof)

for some locally constant function ¢. So we have
1 12
D|(—-)=2°D(z)-C
z

for some other constant C'. By trying z = 4, we find that C' = 1 (since D(i) # 0
by the infinite product). So we are done. O
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8 Modular forms for subgroups of SLy(7Z)

8.1 Definitions

Lemma. Let I' <T'(1) be a subgroup of finite index, and 71, -+ ,v; be right
coset representatives of I' in T'(1), i.e.

d
W: Hf%‘-

Then 4
H 7D
i=1

is a fundamental domain for I'.

Proposition. Let I' have v cusps of widths my,--- ,m,. Then
> mi=(T(1):T).
i=1

Proof. There is a surjective map

7:T\T(1) = cusps
given by sending - -
L y—=T-y(c0).
It is then an easy group theory exercise that |7~ !([a])| = ma. O

Proposition. Let I' C I'(1) be of finite index, and g € G = GL2(Q)". Then
Y=g TgNT(1) also has finite index in I'(1), and if f € My(T') or Si(T'), then
flg € Mi(T") or Si(I") respectively.

k

Proof. We saw that (G,T") has property (H). So this implies the first part. Now
if v € I, then gyg~' € T. So

1

flovg™ = f= flglv = flg.
k k k k

The conditions (ii’) and (iii’) are clear. O

Theorem. We have

C k=0’
and L
dime My(T) < 1+ 1 (D(1) :T)
for all £ > 0.
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Proof. Let
d
r() =[] rv.
i=1
We let
e M(I),
and define
Ny = H fli.
1<i<d

We claim that Ny € Myq(T(1)), and Ny = 0 iff f = 0. The latter is obvious by
the principle of isolated zeroes.
Indeed, f is certainly holomorphic on H, and if v € T'(1), then

Nf}L’Y = Hf}L%W = Ny
As f € M(T), each f|~; is holomorphic at co.
k

— If k <0, then Ny € Myq(I'(1)) =0. So f =0.

— If £ > 0, then suppose dim My(G) > N. Pick z1,---,2y € D\ {i,p}
distinct. Then there exists 0 # f € M (T") with

f(z1)=---=f(2n) =0.

So
Ni(21) = -+ = Niy(z) = 0.

Then by our previous formula for zeros of modular forms, we know N < %.
So dim M (T) <1+ 4.

— If k =0, then My(T") has dimension < 1. So My(T") = C. O

8.2 The Petersson inner product

Proposition.
(i) (-, -) is a Hermitian inner product on S (T").
(i) (-, ) is invariant under translations by GLy(Q)*. In other words, if
Y E GLQ(Q)+, then
(Flvglm) ={f.9)
ko k
(iii) If f,g € Sk(T'(1)), then
<Tnfv g> = <f7 Tng>'

Proof.
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(i) We know (f,g) is C-linear in f, and (f,g) = (g, f). Also, if (f, f) =0,
then

/ y* 2| f1? da dy = 0,
I\H

but since f is continuous, and y is never zero, this is true iff f is identically
zero.

(i) Let f' = f|y and ¢’ = g|y € Si(I"), where I = ' Ny~ 'Ty. Then
k k

g (dety)”

Tz dPF FOr(2))g(3(2)) = (Im~(2))* f(1(2))9(7(2)).

v g =y
Now Im~y(2) is just the y of v(z). So it follows that Then we have

1 _dx dy
(f'g") = / y* 19
v(IV) Dy y? 7(z)

1 / g ,—dz dy
= —x Y fg :
o(I) ~(Drr) y?

Now ~(Dr/) is a fundamental domain for 4/I"y~! = 4Ty~ T, and note that
v(T") = v(yT'y~1) by invariance of measure. So (f',¢') = (f, g).

(iii) Note that T;, is a polynomial with integer coefficients in {7, : p | n}. So it
is enough to do it for n = p. We claim that

(Tpf.9) =p* L(p+ 1)<f]\€<57 9),

where 6 € Mato(Z) is any matrix with det(d) = p.

Assuming this, we let
5% = ps—! € Mato(Z),
which also has determinant p. Now as
9 (5) =9.
we know
(Tf.9) =2~ (0 + 1(f]3.9)
P+ D(fg]07)
e+ DS, 9}L5“>

= <f7 Tpg>

[SIE

p

To prove the claim, we let

r) (5 9)rw = IT v

0<j<p
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for some ~; € I'(1). Then we have

(Tof,9) = <Zf’|€5%g>

=ps! 2 F|075- 9] )

I
S

“p+ )<sz6’9>’

using the fact that g|v; = g. O
k

8.3 Examples of modular forms
Theorem.

(i) If y € (1), then

Gr,k |'7/ = Gr’y,k-
k

(i) If Nt € Z2, then Gy € My (T(N)).
Proof.

(i) If g € GL2(R)™ and u € R?, then

1 g = (det g)*/? (det g)*/?

(urz +ug)ky,

((auy + cug)z + (buy + dug))* — (viz 4+ v)k’

where v=mn-g. So

G k)

/ 1
B ; ((m+1)17)z + (M +1)7)2)F
1
- ; (mf + 1)z +mh +15)F

= Gryi(2),

where m’ = my and r’ = rv.

(ii) By absolute convergence, G, is holomorphic on the upper half plane.
Now if Nr € Z? and v € T'(N), then Nry = Nr (mod N). Sory =r
(mod Z?). So we have

Gr,k |’Y = Gr'y,k = Gr,k'
k
So we get invariance under I'(NV). So it is enough to prove Gy is holo-

morphic at cusps, i.e. Gy k|7 is holomorphic at oo for all v € T'(1). So it is

k
enough to prove that for all r, G j is holomorphic at co.

We can write

1
< Z Z Z ) (my1 +71)z +mg + o)k’

mi1+r1>0 mi1+r1=0 mi1+r1<0
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The first sum is
1

Z Z Z [(m1 +7r1)2 + o] + ma)k’

m1+7r1>0 mi>—r erZ

We know that (m; +71)z+72 € H. So we can write this as a Fourier series

k 1 27rr2d (m1+r1)d

mi1>—"r1 d>1
We now see that all powers of ¢ are positive. So this is holomorphic.
The sum over my + r; = 0 is just a constant. So it is fine.
For the last term, we have
(—1)*

Z Z Z 7T'L177‘1Z*’I"Q*’Fflg)k7

mi1+7r1<0 mi1<—71 m2€Z

which is again a series in positive powers of ¢~ "1, O

Theorem.

(i) 94(2) = V3(z£1) and (2 + 1) = e™/*95(2).
(i)

Proof.
(i) Immediate from definition, e.g. from the fact that e™ = 1.

(ii) The first part we’ve seen already. To do the last part, we use the Poisson
summation formula. Let

1
ht(:c) _ efwt(:r+1/2) =g <x+ > ,
where

We previously saw

We also have

A . 1
hi(y) = /e‘hmygt (x + 2) dz
:/6727ri(171/2)ygt($) dz

Trzy

Gt (y)-
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So by the Poisson summation formula,

alit) = D hi(n) =) hu(n) = Z(_l)"t_l/Qe_“"z/t =1/2y, (Ilf) .

nez nez nez
O
Corollary.
(i) Let
5
F= |9}
U
Then
-1 00 1 0 0 -1
F(z+1)=[0 0 1]F, z2F<—>: 0 -1 0 |F
0 1 0 z 1 0 0

(ii) ¥ € My(T) for a subgroup T' < T'(1) of finite index. In particular, 97| is
holomorphic at co for any v € GL2(Q) ™.
Proof.

(i) Immediate from the theorem.

(ii) We know I'(1) = (S,T), where T = +(§ 1) and S = £({ '). So by (i),
there is a homomorphism p : I'(1) — GL3(Z) and p(—I) = I with

FLW = p(7)F,

where p(7y) is a signed permutation. In particular, the image of p is finite,
so the kernel I' = ker p has finite index, and this is the I we want.

It remains to check holomorphicity. But each 1; is holomorphic at co.
Since F|v = p(y)F, we know 193*| is a sum of things holomorphic at oo,
2 2

and is hence holomorphic at co. O

Theorem. Let f(z) = 9(22)%. Then f(z) € Ma(T(4)), and moreover, f|W, =
2

—f.

Lemma. T'j(4) is generated by

(11 (1 0\ _ 1 =1\,
I T_(O 1), U_(4 1)—W4<0 1>W4.

Proof. 1t suffices to prove that I'g(4) is generated by T and U = £(}9).

Let ,
a _
vy==+ (C d) € F0(4)

We let
s(y) = a® + b2
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As ¢ is even, we know ¢ =1 (mod 2). So s(y) > 1, and moreover s(y) = 1 iff
b=0,a==1,iff y =T" for some n.

We now claim that if s(vy) # 1, then there exists 6 € {71, U*!'} such that
s(79) < s(y). If this is true, then we are immediately done.

To prove the claim, if s(y) # 1, then note that |a| # |2b| as a is odd.

— If |a| < |2b], then min{|b+a|} < |b|. This means s(yT*!) = a®+ (b+a)? <

s(7)-
— If |a| > |2b|, then min{|a + 4b|} < |a|, so s(yU*) = (a £ 4b)* + b <
s(7)- O
Proof of theorem. It is enough to prove that

fIT=fU=/.
2 2

This is now easy to prove, as it is just a computation. Since J(z + 2) = ¥(z), we
know

fLT =fz+1) = f(2).

We also know that

L. (-1 1 1\*
fLW4:4(4z) 2f (42> =127 (—22) = —f(2),

o(2)=()" 0

fIU = fIWL| T Wy = (1) (-1)f = f. O
2 2 2 2

as
So we have

Proposition. We have g € M(I'3(2)), and g|Ws = —g.
2

Proof. We compute
2 1
Wo = — g ——
o1 = et (1)

-3a(2)sipm )

1 12
—E 2By
22+ 9 < 2( Z)+2m'~2z>

= —9g(2).
We also have

gLT =g(z+1) =g(2),
and so
9l(39) = g|WeT ™' Wy =g
Moreover, g is holomorphic at co, and hence so is g|Wy = —g. So g is also

2
holomorphic at 0 = Wa(c0). As oo has width 1 and 0 has width 2, we see
that these are all the cusps, and so g is holomorphic at the cusps. So g €
M>(T'o(2)). 0
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Theorem.
MQ(F0(4)) = (Cg (&) Ch.

Theorem (Lagrange’s 4-square theorem). For all n > 1, we have

ra(n) =8(Ul(ﬂ) — 4oy (g)) =8 Z d.

d|n4td

In particular, r4(n) > 0.
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9 Hecke theory for I'y(V)

Theorem. Let f € S, (I'o(IV))?, where € = +1. Then define
L(f,s) = Zannfs.
n>1
Then L(f, s) is am entire function, and satisfies the functional equation
A(f.5) = (2m) " T(s)L(f,8) = (= N)"2A(f. k — 5).

Proof. We have f|Wy = ef, and then we can apply our earlier result. O
k

Theorem (Strong multiplicity one for SLy(Z)). Let f,g € Sk(I'(1)) be normal-
ized Hecke eigenforms, i.e.

f‘Tp =N f Ap = ap(f)
9Ty = ppg tp = ap(g)-

Suppose there exists a finite set of primes S such that such that for all p & S,
then A\, = p,. Then f =g.

Idea of proof. We use the functional equations
A(fa k — S) = (71)’6/2‘/\(.}03 5)
A(g7 k — S) = (_1)k/2A(g7 5)

So we know
L(f’k_s)_L(gvk_S)
L(f,s) —  L(g,s)

Since these are eigenforms, we have an Euler product

L(f,s) = [0 =App~ +p" 17271,
P

and likewise for g. So we obtain

s—k 4 p2sfk71

H 1— /\pp57k _|_p257k71 _ H 1— D
. 1— )\ppfs +pk7172s . 1— ,U/ppfs +pk7172s

Now we can replace this Hp with Hpe g- Then we have some very explicit
rational functions, and then by looking at the appropriate zeroes and poles, we
can actually get A\, = p, for all p. O

Proposition. T),, U, send S,(T'o(N)) to Si(T'o(V)), and they all commute.

Proof. T, U, do correspond to double coset actions

To(N)(5Y) T, To(N) (6 5) pJfN.
[T, To(N)(55) pIN

Commutativity is checked by carefully checking the effect on the g-expansions. [

Lo(N)(§5)To(N) = {
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Theorem (Atkin-Lehner). The Hecke algebra H(G,To(N)) fixes Si(I'o(N))™™
and Si(To(NV))°, and on Si(To(N))"e¥, it acts as a commutative subalgebra
of the endomorphism ring, is closed under adjoint, and hence is diagonalizable.
Moreover, strong multiplicity one holds, i.e. if S is a finite set of primes, and we
have {A, : p & S} given, then there exists at most one N > 1 and at most one
f € Sk(To(N), 1)™Y (up to scaling, obviously) for which

T,f = A f forall pt N,p & S.
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10 Modular forms and rep theory

Proposition.

— We have L} f = 0 iff f is holomorphic.

—- If f € Wg([(1)), then g = L} f € Wi_o(T'(1)).
Proof. The first part is clear. For the second part, note that we have

F((2) = (ez + d)* f(2).
We now differentiate both sides with respect to z. Then (after a bit of analysis),
we find that
Lf LOf

4 d .
(2 +d)~" 52 oz

(v(2)) = (cz + d)
On the other hand, we have

y2

I P
(m(2)* =
So we find

2
9(v(2)) = 72¢|2zyfd‘4(02 +d)%(cz + d)k% = (cz + d)"2g(2).

The growth condition is easy to check. O

Theorem (Maass). Let Syaass(I'(1), A) be the space of Maass cusp forms with
eigenvalue A. This space is finite-dimensional, and is non-zero if and only if
A€ {A, :n >0}, where {\,} is a sequence satisfying

O<)\0<)\1<)\2<"'—>OO.

Proposition. If f|y = f, then (R;f) | v= R} f.
k k+2

Proposition. For I' C I'(1), there is a bijection between functions f : H — C
such that f|y = f for all ¥ € T', and functions ® : G — C such that ®(yg) = ®(g)
k

for all v € T and ®(gry) = e ?®(g).
Proof. Given an f, we define
®(g) = (ci+d) " f(9(i)) = j(g.9) " f(g(0))-
We can then check that
®(v9) = j(vg, 1) " f(v(9(4)))

= j(v9:9) 7" 5(7, ()" f(g(i))

=(g).
On the other hand, using the fact that ry is in the stabilizer of 4, we obtain
j(g79,7) " fgro(i))
(g7, 1) " f(9(i))
= j(g,70(4))j(re, 1) f(g(7))
= ®(g)j(re,i)".

But j(rg,i) = —siné + cos . So we are done. O
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10 Modular formslbhlloguthedrgrms and L-functions (Theorems with proof)

Proposition. The set of cuspoidal automorphic forms bijects with representa-
tions of sly generated by holomorphic cusp forms f and their conjugates f, and
Maass cusp forms.

The holomorphic cusp forms f generate a representation of sl with lowest
weight; The conjugates of holomorphic cusp forms generate those with highest
weight, while the Maass forms generate the rest.
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