Part III — Algebras

Theorems

Based on lectures by C. J. B. Brookes
Notes taken by Dexter Chua

Lent 2017

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

The aim of the course is to give an introduction to algebras. The emphasis will be on non-commutative examples that arise in representation theory (of groups and Lie algebras) and the theory of algebraic D-modules, though you will learn something about commutative algebras in passing.

Topics we discuss include:

– Deformation of algebras.
– Coalgebras, bialgebras and Hopf algebras.

Pre-requisites

It will be assumed that you have attended a first course on ring theory, eg IB Groups, Rings and Modules. Experience of other algebraic courses such as II Representation Theory, Galois Theory or Number Fields, or III Lie algebras will be helpful but not necessary.
Contents

0 **Introduction** 3

1 **Artinian algebras** 4
 1.1 Artinian algebras 4
 1.2 Artin–Wedderburn theorem 5
 1.3 Crossed products 6
 1.4 Projectives and blocks 6
 1.5 K_0 6

2 **Noetherian algebras** 7
 2.1 Noetherian algebras 7
 2.2 More on $A_n(k)$ and $U(g)$ 7
 2.3 Injective modules and Goldie’s theorem 8

3 **Hochschild homology and cohomology** 9
 3.1 Introduction 9
 3.2 Cohomology 9
 3.3 Star products 10
 3.4 Gerstenhaber algebra 10
 3.5 Hochschild homology 11

4 **Coalgebras, bialgebras and Hopf algebras** 12
0 Introduction

Theorem (Artin–Wedderburn theorem). Let A be a left-Artinian algebra such that the intersection of the maximal left ideals is zero. Then A is the direct sum of finitely many matrix algebras over division algebras.

Theorem (Goldie’s theorem). Let A be a right Noetherian algebra with no non-zero ideals all of whose elements are nilpotent. Then A embeds in a finite direct sum of matrix algebras over division algebras.
1 Artinian algebras

1.1 Artinian algebras

Proposition. Let A be an algebra and I a left ideal. Then I is a maximal left ideal iff A/I is simple.

Proposition. Let A be an algebra and M a simple module. Then $M \cong A/I$ for some (maximal) left ideal I of A.

Lemma. Let M be a finitely-generated A module. Then M has a maximal proper submodule M'.

Lemma (Nakayama lemma). The following are equivalent for a left ideal I of A.

(i) $I \leq J(A)$.

(ii) For any finitely-generated left A-module M, if $IM = M$, then $M = 0$, where IM is the module generated by elements of the form am, with $a \in I$ and $m \in M$.

(iii) $G = \{1 + a : a \in I\} = 1 + I$ is a subgroup of the unit group of A.

Proposition. Let M be an A-module. Then the following are equivalent:

(i) M is completely reducible.

(ii) M is the direct sum of simple modules.

(iii) Every submodule of M has a complement, i.e. for any submodule N of M, there is a complement N' such that $M = N \oplus N'$.

Proposition. Sums, submodules and quotients of completely reducible modules are completely reducible.

Proposition. Let M be an A-module satisfying the descending chain condition on submodules. Then M is completely reducible iff $\text{Rad}(M) = 0$.

Corollary. If A is a semi-simple left Artinian algebra, then A_A is completely reducible.

Corollary. If A is a semi-simple left Artinian algebra, then every left A-module is completely reducible.

Lemma. Let A be left Artinian, and M a finitely generated left A-module, then $J(A)M = \text{Rad}(M)$.

Proposition. Let A be left Artinian. Then

(i) $J(A)$ is nilpotent, i.e. there exists some r such that $J(A)^r = 0$.

(ii) If M is a finitely-generated left A-module, then it is both left Artinian and left Noetherian.

(iii) A is left Noetherian.
1.2 Artin–Wedderburn theorem

Theorem (Artin–Wedderburn theorem). Let A be a semisimple right Artinian algebra. Then

$$A = \bigoplus_{i=1}^{r} M_{n_i}(D_i),$$

for some division algebra D_i, and these factors are uniquely determined.

A has exactly r isomorphism classes of simple (right) modules S_i, and

$$\text{End}_A(S_i) = \{ A\text{-module homomorphisms } S_i \to S_i \} \cong D_i,$$

and

$$\dim_{D_i}(S_i) = n_i.$$

If A is simple, then $r = 1$.

Lemma (Schur’s lemma). Let M_1, M_2 be simple right A-modules. Then either $M_1 \cong M_2$, or $\text{Hom}_A(M_1, M_2) = 0$. If M is a simple A-module, then $\text{End}_A(M)$ is a division algebra.

Lemma.

(i) If M is a right A-module and e is an idempotent in A, i.e. $e^2 = e$, then $Me \cong \text{Hom}_A(eA, M)$.

(ii) We have

$$eAe \cong \text{End}_A(eA).$$

In particular, we can take $e = 1$, and recover $\text{End}_A(A_A) \cong A$.

Lemma. Let M be a completely reducible right A-module. We write

$$M = \bigoplus S_i^{n_i},$$

where $\{S_i\}$ are distinct simple A-modules. Write $D_i = \text{End}_A(S_i)$, which we already know is a division algebra. Then

$$\text{End}_A(S_i^{n_i}) \cong M_{n_i}(D_i),$$

and

$$\text{End}_A(M) = \bigoplus M_{n_i}(D_i).$$

Corollary. If k is algebraically closed and A is a finite-dimensional semi-simple k-algebra, then

$$A \cong \bigoplus M_{n_i}(k).$$

Theorem (Maschke’s theorem). Let G be a finite group and $p \nmid |G|$, where $p = \text{char } k$, so that $|G|$ is invertible in k, then kG is semi-simple.

Theorem. Let G be finite and kG semi-simple. Then $\text{char } k \nmid |G|$.

Theorem. Let k be algebraically closed of characteristic p, and G be finite. Then the number of simple kG modules (up to isomorphism) is equal to the number of conjugacy classes of elements of order not divisible by p. These are known as the p-regular elements.

Corollary. If $|G| = p^r$ for some r and p is prime, then the trivial module is the only simple kG module, when $\text{char } k = p$.

1.3 Crossed products

1.4 Projectives and blocks

Lemma. The following are equivalent:

(i) \(P \) is projective.

(ii) Every surjective map \(\phi : M \rightarrow P \) splits, i.e.
 \[
 M \cong \ker \phi \oplus N
 \]
 where \(N \cong P \).

(iii) \(P \) is a direct summand of a free module.

Theorem (Krull–Schmidt theorem). Suppose \(M \) is a finite sum of indecomposable \(A \)-modules \(M_i \), with each \(\text{End}(M_i) \) local. Then \(M \) has the unique decomposition property.

Lemma (Fitting). Suppose \(M \) is a module with both the ACC and DCC on submodules, and let \(f \in \text{End}_A(M) \). Then for large enough \(n \), we have
 \[
 M = \text{im} f^n \oplus \ker f^n.
 \]

Lemma. Suppose \(M \) is an indecomposable module satisfying ACC and DCC on submodules. Then \(B = \text{End}_A(M) \) is local.

Corollary. Let \(A \) be a left Artinian algebra. Then \(A \) has the unique decomposition property.

Proposition. Let \(N \) be a nilpotent ideal in \(A \), and let \(f \) be an idempotent of \(A/N \equiv A \). Then there is an idempotent \(e \in A \) with \(f = \bar{e} \).

Corollary. Let \(N \) be a nilpotent ideal of \(A \). Let
 \[
 1 = f_1 + \cdots + f_r
 \]
 with \(\{f_i\} \) orthogonal primitive idempotents in \(A/N \). Then we can write
 \[
 1 = e_1 + \cdots + e_r,
 \]
 with \(\{e_i\} \) orthogonal primitive idempotents in \(A \), and \(\bar{e}_i = f_i \).

Lemma. Let \(P \) be an indecomposable projective, and \(M \) an \(A \)-module. Then \(\text{Hom}(P,M) \neq 0 \) iff \(P/PJ(A) \) is a composition factor of \(M \).

Theorem. Indecomposable projectives \(P_1 \) and \(P_2 \) are in the same block if and only if they lie in the same connected component of the graph.

1.5 \(K_0 \)
2 Noetherian algebras

2.1 Noetherian algebras

Theorem (Hilbert basis theorem). If A is Noetherian, then $A[X]$ is Noetherian.

Theorem. Let A be left Noetherian. Then $A[[X]]$ is Noetherian.

Lemma. Let A be a positively filtered algebra. If $\text{gr } A$ is Noetherian, then A is left Noetherian.

Corollary. $A_n(k)$ and $U(g)$ are left/right Noetherian.

2.2 More on $A_n(k)$ and $U(g)$

Lemma. Suppose $\text{char } k = 0$. Then $A_n(k)$ has no non-zero modules that are finite-dimensional k-vector spaces.

Theorem (Hilbert-Serre theorem). The Poincaré series $P(V, t)$ of a finitely-generated graded module $V = \bigoplus_{i=0}^{\infty} V_i$ over a finitely-generated generated commutative algebra $S = \bigoplus_{i=0}^{\infty} S_i$ with homogeneous generating set x_1, \ldots, x_m is a rational function of the form

$$f(t) \prod (1 - t^{k_i}),$$

where $f(t) \in \mathbb{Z}[t]$ and k_i is the degree of the generator x_i.

Corollary. If each $k_1, \ldots, k_m = 1$, i.e. S is generated by $S_0 = k$ and homogeneous elements x_1, \ldots, x_m of degree 1, then for large enough i, then $\dim V_i = \phi(i)$ for some polynomial $\phi(t) \in \mathbb{Q}[t]$ of $d - 1$, where d is the order of the pole of $P(V, t)$ at $t = 1$. Moreover,

$$\sum_{j=0}^{i} \dim V_j = \chi(i),$$

where $\chi(t) \in \mathbb{Q}[t]$ of degree d.

Lemma. Let M be a finitely-generated A_n-module. Then $d(M) \leq 2n$.

Theorem (Bernstein’s inequality). Let M be a non-zero finitely-generated $A_n(k)$-module, and $\text{char } k = 0$. Then

$$d(M) \geq n.$$
2.3 Injective modules and Goldie’s theorem

Theorem (Goldie’s theorem). Let A be a right Noetherian algebra with no non-zero ideals all of whose elements are nilpotent. Then A embeds in a finite direct sum of matrix algebras over division algebras.

Lemma. Every direct summand of an injective module is injective, and direct products of injectives is injective.

Lemma. Every A-module may be embedded in an injective module.

Lemma. An A-module is injective iff it is a direct summand of every extension of itself.

Lemma. An essential extension of an essential extension is essential.

Proposition. Let M be an A-module, with an inclusion $M \hookrightarrow I$ into an injective module. Then this extends to an inclusion $E(M) \hookrightarrow I$.

Proposition. Suppose E is an injective essential extension of M. Then $E \cong E(M)$. In particular, any two injective hulls are isomorphic.

Proposition.

\[E(M_1 \oplus M_2) = E(M_1) \oplus E(M_2). \]

Lemma. V is uniform iff $E(V)$ is indecomposable.

Lemma. Let A be a filtered algebra, which is exhaustive and separated. Then if $\text{gr } A$ is a domain, then so is A.

Corollary. $A_n(k)$ and $\mathfrak{u}(g)$ are domains.

Lemma. Let A be a right Noetherian domain. Then A_A is uniform, i.e. $E(A_A)$ is indecomposable.

Lemma. Let E be an indecomposable injective right module. Then $\text{End}_A(E)$ is a local algebra, with the unique maximal ideal given by

\[I = \{ f \in \text{End}(E) : \ker f \text{ is essential} \}. \]

Lemma. Let M be a non-zero Noetherian module. Then M is an essential extension of a direct sum of uniform submodules N_1, \ldots, N_r. Thus

\[E(M) \cong E(N_1) \oplus \cdots \oplus E(N_r) \]

is a direct sum of finitely many indecomposables.

This decomposition is unique up to re-ordering (and isomorphism).

Lemma. Let E_1, \ldots, E_r be indecomposable injectives. Put $E = E_1 \oplus \cdots \oplus E_r$. Let $I = \{ f \in \text{End}_A(E) : \ker f \text{ is essential} \}$. This is an ideal, and then

\[\text{End}_A(E)/I \cong M_{n_1}(D_1) \oplus \cdots \oplus M_{n_s}(D_s) \]

for some division algebras D_i.

Lemma. If A is a right Noetherian algebra, then any $f : A_A \to A_A$ with $\ker f$ essential in A_A is nilpotent.

Theorem (Goldie’s theorem). Let A be a right Noetherian algebra with no non-zero ideals all of whose elements are nilpotent. Then A embeds in a finite direct sum of matrix algebras over division algebras.
3 Hochschild homology and cohomology

3.1 Introduction

3.2 Cohomology

Lemma. Let M be an injective bimodule. Then $HH^n(A, M) = 0$ for all $n \geq 1$.

Lemma. If A_A is a projective bimodule, then $HH^n(A, M) = 0$ for all M and all $n \geq 1$.

Lemma. If $\text{Dim } A = 0$, then A is separable.

Proposition. We have

$$HH^0(A, M) = \{ m \in M : am - ma = 0 \text{ for all } a \in A \}.$$

In particular, $HH^0(A, A)$ is the center of A.

Proposition.

$$\ker \delta_1 = \{ f \in \text{Hom}_k(A, M) : f(a_1a_2) = a_1f(a_2) + f(a_1)a_2 \}.$$

These are the derivations from A to M. We write this as $\text{Der}(A, M)$.

On the other hand,

$$\text{im } \delta_0 = \{ f \in \text{Hom}_k(A, M) : f(a) = am - ma \text{ for some } m \in M \}.$$

These are called the inner derivations from A to M. So

$$HH^1(A, M) = \frac{\text{Der}(A, M)}{\text{InnDer}(A, M)}.$$

Setting $A = M$, we get the derivations and inner derivations of A.

Lemma. We have

$$\text{Der}_k(A, M) \cong \{ \text{algebra complements to } M \text{ in } A \ltimes M \text{ isomorphic to } A \}.$$

Lemma. We have

$$\text{Der}(A, M) \cong \left\{ \text{automorphisms of } A \ltimes M \text{ of the form } \begin{array}{c} a \mapsto a + f(a)e, \ m \mapsto m e \end{array} \right\},$$

where we view $A \ltimes M \cong A + Me$.

Moreover, the inner derivations correspond to automorphisms achieved by conjugation by $1 + me$, which is a unit with inverse $1 - me$.

Proposition. There is a bijection between $HH^2(A, M)$ with the isomorphism classes of extensions of A by M.

Corollary. If $HH^2(A, M) = 0$, then all extensions are split.

Theorem (Wedderburn, Malcev). Let B be a k-algebra satisfying

- $\text{Dim}(B/J(B)) \leq 1$.
- $J(B)^2 = 0$
Then there is an subalgebra \(A \cong B/J(B) \) of \(B \) such that
\[
B = A \rtimes J(B).
\]
Furthermore, if \(\dim(B/J(B)) = 0 \), then any two such subalgebras \(A, A' \) are conjugate, i.e. there is some \(x \in J(B) \) such that
\[
A' = (1 + x)A(1 + x)^{-1}.
\]
Notice that \(1 + x \) is a unit in \(B \).

Corollary. If \(k \) is algebraically closed and \(\dim_k B < \infty \), then there is a subalgebra \(A \) of \(B \) such that
\[
A \cong \frac{B}{J(B)}
\]
and
\[
B = A \rtimes J(B).
\]
Moreover, \(A \) is unique up to conjugation by units of the form \(1 + x \) with \(x \in J(B) \).

3.3 Star products

Theorem (Gerstenhaber). If \(HH^3(A, A) = 0 \), then all infinitesimal deformations are integrable.

Theorem (Gerstenhaber). Any non-trivial star product \(f \) is equivalent to one of the form
\[
g(a, b) = ab + t^n G_n(a, b) + t^{n+1} G_{n+1}(a, b) + \cdots,
\]
where \(G_n \) is a 2-cocycle and not a coboundary. In particular, if \(HH^2(A, A) = 0 \), then any star product is trivial.

Theorem (Gerstenhaber). Suppose \(HH^2(A, A) = 0 \). Then all derivations are integrable.

3.4 Gerstenhaber algebra

Lemma. The cup product on \(HH^*(A, A) \) is graded commutative, i.e.
\[
f \smile g = (-1)^{mn} (g \smile f).
\]
when \(f \in HH^m(A, A) \) and \(g \in HH^n(A, A) \).

Theorem (Hochschild–Kostant–Rosenberg (HKR) theorem). If \(A \) is a “smooth” commutative \(k \)-algebra, and \(\text{char} k = 0 \), then the canonical map
\[
\bigwedge^\cdot (\text{Der} A) \to HH^*(A, A)
\]
is an isomorphism of Gerstenhaber algebras.

Theorem (Kontsevich). There is a bijection
\[
\left\{ \text{equivalence classes of star products} \right\} \longleftrightarrow \left\{ \text{classes of formal Poisson structures} \right\}
\]
This applies for smooth algebras in char 0, and in particular for polynomial algebras \(A = k[X_1, \cdots, X_n] \).
3.5 Hochschild homology

Lemma.

\[HH_0(A, M) = \frac{M}{\langle xm - mx : m \in M, x \in A \rangle} \]

In particular,

\[HH_0(A, A) = \frac{A}{[A, A]} \]
4 Coalgebras, bialgebras and Hopf algebras

Lemma. If C is a coalgebra, then C^* is an algebra with multiplication Δ^* (that is, $\Delta^*|_{C^* \otimes C^*}$) and unit ε^*. If C is co-commutative, then C^* is commutative.

Theorem (Mastnak, Witherspoon (2008)). The bialgebra cohomology $H^\cdot_{bi}(H, H)$ for a finite-dimensional Hopf algebra is equal to $HH^*(D(H), k)$, where k is the trivial module, and $D(H)$ is the Drinfeld double.

Theorem (Gerstenhaber–Schack). Every deformation is equivalent to one where the unit and counit are unchanged. Also, deformation preserves the existence of an antipode, though it might change.

Theorem (Gerstenhaber–Schack). All deformations of $\mathcal{O}(M_n(k))$ or $\mathcal{O}(SL_n(k))$ are equivalent to one in which the comultiplication is unchanged.