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Mathematical Tripos Part IB Michaelmas Term 2015 Dr. D. Skinner

Course C10—No. B6

METHODS — EXAMPLES I

Fourier series

1. Fourier coefficients (full-range series). For the periodic function f(θ) = (θ2 − π2)2 on the interval −π ≤ θ < π,
show that it has the Fourier series

f(θ) =
8π4

15
+ 24

∑

n6=0

(−1)n+1

n4
einθ .

[Remark: if you’re happy that you can do the integrals you might like to save time by using www.integrals.com
to evaluate them.] Sketch the function f(θ) and comment on its differentiability and the order of the terms in its
Fourier series as n → ∞.

2. Fourier coefficients (half-range series). Suppose that f(θ) = θ2 for 0 ≤ θ ≤ π. Express f(θ) as (a) a Fourier sine
series, and (b) a cosine series, each having period 2π. Sketch the functions represented by (a) and (b) in the range
−6π to 6π. If the series (a) and (b) are differentiated term-by-term, how are the answers related (if at all) to the
Fourier series for g(θ) = 2θ and h(θ) = 2|θ| each in the range (−π, π)?

3. Series summation. Find the (complex) Fourier series of f(θ) = eθ for θ ∈ [−π, π). Deduce that

∞
∑

n=1

1

1 + n2
=

1

2
(π cothπ − 1) .

4. Parseval’s identity and a low pass filter. (i) Given that a function f(t) defined over the interval (−T, T ) has the
Fourier series

f(t) =
1

2
a0+

∞
∑

n=1

[

an cos

(

nπt

T

)

+ bn sin

(

nπt

T

)]

, show directly that
1

T

∫ T

−T

[f(t)]2dt =
1

2
a20+

∞
∑

n=1

(a2n+b2n) ,

where you may assume f(t) is such that this series is convergent.

(ii) A unit amplitude square wave of period 2T is given by f(t) = 1 for 0 < t < T and f(t) = −1, for −T < t < 0.
Suppose this is the input for a system which permits angular frequencies less than 9

2
πT−1 to be perfectly transmitted

and frequencies greater than 9

2
πT−1 to be perfectly absorbed. Calculate the form of the output. The power is

proportional to the mean value of f2(t); what fraction of the incident power is transmitted?

5. Discontinuities and the Wilbraham-Gibbs phenomenon*. (i) Suppose that f is a square wave given by

f(θ) =

{

1 0 < θ < π
0 π < θ < 2π .

Sketch f and show that f(θ) =
1

2
+

2

π

∞
∑

k=1

sin(2k − 1)θ

2k − 1
.

(ii) Now define the partial sum of this series as Sn(θ) =
1

2
+

2

π

n
∑

k=1

sin(2k − 1)θ

2k − 1
,

and find the following expression Sn(θ) =
1

2
+

1

π

∫ θ

0

sin 2nt

sin t
dt . [Hint: consider S′

n(θ) for the two forms.]

(iii) Deduce that Sn(θ) has extrema at θ = mπ/2n, n = 1, 2, ...2n − 1, 2n + 1, ..., (i.e., all integer m except even
multiples of n) and that the height of the first maximum for large n is approximately

Sn(
π

2n
) =

1

2
+

1

π

∫ π

0

sinu

u
du (≃ 1·089) .)

Comment on the accuracy of Fourier series at discontinuities. (This question takes you through some important
steps which are used in the proof of Fourier’s theorem – refer, for example, to chapter 14 of Jeffreys & Jeffreys.)
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Sturm-Liouville theory

6. Eigenfunctions and eigenvalues. In the boundary value problem

y′′ + λy = 0; y(0) = 0, y(1) + y′(1) = 0,

show that the eigenvalue λ can take infinitely many values λ1 < λ2 < λ3... Indicate roughly the behaviour of λn as
n → ∞.

7. Recasting in Sturm-Liouville form. Express the following equations in Sturm-Liouville form:

(i) (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0 , (ii) xy′′ + (b− x)y′ − ay = 0 ,

where n, a, and b are constants.

(iii) Find the eigenvalues and eigenfunctions for

y′′ + 4y′ + (4 + λ)y = 0, y(0) = y(1) = 0.

What is the orthogonality relation for these eigenfunctions?

8. Bessel’s equation. (i) Show that the eigenvalues of the Sturm-Liouville problem

d

dx
(x

du

dx
) + λxu = 0 , 0 < x < 1 ,

with u(x) bounded as x → 0 and u(1) = 0, are λ = j2n (n = 1, 2, ...), where the jn are the zeros of the Bessel function
J0(z), arranged in ascending order. [Recall: Bessel’s equation of order zero is d

dz
(z dy

dz
) + zy = 0 , (z > 0), which you

may assume has one solution J0(z) which is regular at z = 0 and a second linearly independent solution Y0(z) which
is singular at z = 0.]

(ii) Using integration by parts on the differential equations for J0(αx) and J0(βx), show that

∫ 1

0

J0(αx)J0(βx)xdx =
βJ0(α)J

′

0(β)− αJ0(β)J
′

0(α)

α2 − β2
(β 6= α)

∫ 1

0

J0(jnx)J0(jmx)xdx = 0 , (n 6= m) ,

∫ 1

0

[J0(jnx)]
2xdx =

1

2
[J

′

0(jn)]
2. [Hint: Consider β = jn + ǫ as ǫ → 0.]

(iii) Assume that the inhomogeneous equation

d

dx
(x

du

dx
) + λ̃xu = xf(x),

where λ̃ is not an eigenvalue, has a unique solution such that u(x) is bounded as x → 0 and u(1) = 0. Assuming also
that f(x) satisfies the same boundary conditions as u and the completeness of the eigenfunctions J0(jnx), obtain the
eigenfunction expansion of u.

9. Higher order self-adjoint form*. Consider the fourth-order differential operator

L =

4
∑

r=0

pr(x)
dr

dxr
,

where the pr(x) are real functions, with BCs y(0) = y(1) = y′(0) = y′(1) = 0. Show that L is self-adjoint if and only
if p3 = 2p′4, p1 = p′2 − p′′′4.

Considering a specific example, show that the boundary value problem

−y′′′′ + λy = 0; y(0) = y(1) = y′(0) = y′(1) = 0

has infinitely many eigenvalues λ1 < λ2 < λ3... . Indicate roughly the behaviour of λn as n → ∞.
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Mathematical Tripos Part IB Michaelmas term 2015 Dr. D. Skinner

Course C10—No. B8

METHODS — EXAMPLES II

The one-dimensional wave equation

1. Modes on a string. A uniform string of line density µ and tension T undergoes small transverse vibrations of
amplitude y(x, t). The string is fixed at x = 0 and x = ℓ, and satisfies the initial conditions

y(x, 0) = 0 , yt(x, 0) =
4V

ℓ2
x(ℓ− x) , for 0 < x < ℓ ,

where yt ≡ ∂y/∂t. Using the fact that y(x, t) is a solution of the wave equation, find the amplitudes of the normal
modes and deduce the kinetic and potential energies of the string at time t. By comparison with the initial energy
of the string show that

∑

n odd

1

n6
=

π6

960
.

2. Damped string motion. (i) A uniform stretched string of length ℓ, density per unit length µ and tension T = µc2

is fixed at both ends. The motion of the string is resisted by the surrounding medium, the resistive force on unit
length being −2kµyt, where y is the transverse displacement and the constant k = πc/ℓ. Show that the equation of
motion of the string is

c2
∂2y

∂x2
=
∂2y

∂t2
+ 2k

∂y

∂t
,

and find y(x, t) given that y(x, 0) = A sin(πx/ℓ) and yt(x, 0) = 0.

(ii) If an extra transverse force F0 sin(πx/ℓ) cos(πct/ℓ) per unit length acts on the string, find the resulting forced
oscillation. [Hint: You may find it useful to guess a particular solution to combine with the general homogeneous
solution that you probably derived in (i).]

3. Wave reflection and transmission. A string of uniform density is stretched along the x-axis under tension T and
undergoes small transverse oscillations in the (x, y) plane so that its displacement y(x, t) satisfies

∂2y

∂t2
= c2

∂2y

∂x2
, (∗)

where c is a constant.

(i) Show that if a mass M is fixed to the string at x = 0 then its equation of motion can be written

M
∂2y

∂t2

∣

∣

∣

∣

x=0

= T

[

∂y

∂x

]x=0+

x=0−

.

(ii) Suppose that a wave exp[iω(t−x/c)] is incident from x = −∞. Obtain the amplitudes and phases of the reflected
and transmitted waves, and comment on their values when λ =Mωc/T is large or small.

4. Impulsive force on a string. The displacement y(x, t) of a uniform string stretched between the points x = 0, ℓ
satisfies the wave equation (∗) given above with the boundary conditions, y(0, t) = y(ℓ, t) = 0. For t < 0 the string
oscillates in its fundamental mode and y(x, 0) = 0. A musician strikes the midpoint of the string impulsively at time
t = 0 so that the change in ∂y/∂t at t = 0 is λδ(x− 1

2
ℓ). Find y(x, t) for t > 0.

Laplace’s equation

5. Cartesian coordinates. Show that the solution of ∇2φ = 0 in the region 0 < x < a, 0 < y < b, 0 < z < c, with
φ = 1 on the surface z = 0 and φ = 0 on all the other surfaces is

φ =
16

π2

∞
∑

p=0

∞
∑

q=0

sinh[ℓ(c− z)] sin[(2p+ 1)πx/a] sin[(2q + 1)πy/b]

(2p+ 1)(2q + 1) sinh cℓ
,

where ℓ2 = (2p+1)2π2/a2 + (2q+1)2π2/b2. [Hint: You may find it useful to use the above form of the z-dependent
part of the solution from the outset.] Discuss the behaviour of the solutions as c→ ∞.
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6. Plane polar coordinates. The potential φ satisfies Laplace’s equation in the unit circle r < 1 with boundary
condition

φ(r = 1, θ) =

{

π/2 , 0 ≤ θ < π .

−π/2 , π ≤ θ < 2π .

Using the method of separation of variables show that

φ(r, θ) = 2
∑

n odd

rn sinnθ

n
.

Sum the series using the substitution z = reiθ. [Your solution can then be interpreted geometrically in terms of the
angle between the lines to the two points on the boundary where the data jumps.]

Legendre polynomials

7. Eigenfunction derivatives. If ym and yn are real eigenfunctions of the Sturm-Liouville equation

d

dx
(p(x)

dy

dx
) + (λ− q(x))y = 0 , (a < x < b) , satisfying the normalisation condition

∫ b

a

y2mdx =

∫ b

a

y2ndx = 1 ,

show that (under suitable boundary conditions)

∫ b

a

(py
′

m y
′

n + qymyn)dx = λmδmn (no summation).

With Pn a Legendre polynomial, use this result to evaluate

∫ 1

−1

(1− x2)P
′

m(x)P
′

n(x)dx .

8. Legendre polynomials and multipole moments. Show that 1/|r−k| obeys Laplace’s equation in three dimensions
whenever r 6= k. Taking k to be a unit vector in the z-direction, show that

Pℓ(x) =
1

ℓ!

dℓ

drℓ
1√

1− 2r cos θ + r2

∣

∣

∣

∣

r=0

by expanding this solution of Laplace’s equation in the region r < 1. Use the integral

∫ 1

−1

1

1− 2rx+ r2
dx

to show that the Legendre polynomials obey the normalization condition
∫ 1

−1
Pℓ(x)

2dx = 2/(2ℓ+1). Show also that
P ′

ℓ+1(x)− P ′

ℓ−1(x) = (2ℓ+ 1)Pℓ(x).

9. Spherical polar coordinates. You’ve just shown that the electrostatic potential in a charge-free region satisfies
Laplace’s equation. Find the potential inside a spherical region bounded by two (conducting) hemispheres upon

which the potential takes the values ±V respectively. [Hint: Note that
∫ 1

−1
Pm(x)Pn(x)dx = 2

2n+1
δmn.]

The heat equation

10. Diffusion in a disc & Bessel functions. Consider the unit disc, with initial temperature distribution ψ0(r, θ).
Require the boundary of the disc to be held at (wlog) zero temperature ψ(1, θ, t) = 0 for all t > 0. By assuming that
the temperature satisfies the diffusion equation in the disc (with unit diffusion coefficient) show that the solution is

ψ =

∞
∑

n=−∞

∞
∑

k=1

cnkJn(jnkr) exp[inθ − j2nkt],

where jnk is the kth smallest (positive) zero of the nth order Bessel function of the first kind, (i.e. Jn(jnk) = 0) and
present an appropriate expression for cnk, showing explicitly that

∫ 1

0

Jn(jnkr)Jn(jnlr)rdr =
δkl[J

′

n(jnk)]
2

2
=
δklJ

2
n+1(jnk)

2
.

Suppose now that the initial temperature ψ0(r, θ) = Ψ0 is constant. Show that the only non-zero coefficients have
n = 0, and are equal to

c0k =
2Ψ0

j0kJ1(j0k)
.

What is the spatial structure of the temperature distribution as t→ ∞?
[The recursion relations [z−νJν(z)]

′ = −z−νJν+1(z) and [zν+1Jν+1(z)]
′ = zν+1Jν(z) may be useful, as is the fact

that Q8 of the first example sheet can be generalized straightforwardly to Jn for arbitrary positive integers n.]
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Mathematical Tripos Part IB Michaelmas term 2015 Dr. D. Skinner

Course C10—No. B8

METHODS — EXAMPLES III

Green’s functions

1. Initial value problem. The reading θ(t) of an ammeter satisfies

θ̈ + 2pθ̇ + (p2 + q2)θ = f(t) ,

where p, q are constants with p > 0. The ammeter is set so that θ and θ̇ are zero when t = 0. Assuming q 6= 0, show
by constructing the Green’s function that

θ(t) =
1

q

∫ t

0

e−p(t−τ) sin[q(t− τ)]f(τ)dτ .

Derive the same result using Fourier transforms, showing that the transfer function for this system is

R̃(ω) =
1

2qi

[

1

(iω + p− qi)
− 1

(iω + p+ qi)

]

.

2. Boundary value problem. Obtain the Green’s function G(x, ξ) satisfying

d2G

dx2
− λ2G = δ(x− ξ) , 0 ≤ x ≤ 1 , 0 ≤ ξ ≤ 1 .

where λ is real, subject to the boundary conditions G(0, ξ) = G(1, ξ) = 0. Show that the solution to the equation

d2y

dx2
− λ2y = f(x), subject to the same boundary conditions is

y = − 1

λ sinhλ

{

sinhλx

∫ 1

x

f(ξ) sinhλ(1− ξ)dξ + sinhλ(1− x)

∫ x

0

f(ξ) sinhλξdξ

}

.

3. Finite asymptotics. A linear differential operator is defined by

Lxy = − 1

x2
d

dx

(

x2
dy

dx

)

+ y .

By writing y = z/x or otherwise, find those solutions of Lxy = 0 which are either (a) bounded as x→ 0, or
(b) bounded as x→ ∞. Find the Green’s function G(x, a) satisfying

LxG(x, a) = δ(x− a) ,

and both conditions (a) and (b). Use G(x, a) to solve (subject to conditions (a) and (b))

Lxy(x) =

{

1, for 0 ≤ x ≤ R ,
0, for x > R .

Show that the solution has the form, for suitable constants A,B

y(x) =

{

1 +Ax−1sinhx , for 0 ≤ x ≤ R ,
Bx−1e−x , for x > R .

4. Higher order initial value problem*. Show that the Green’s function for the initial value problem (′ ≡ d
dt )

y
′′′′

+ k2y
′′

= f(t) , y(0) = y′(0) = y′′(0) = y′′′(0) = 0 ,

is given by G(t, τ) =

{

0 , 0 < t < τ ,
k−2(t− τ)− k−3 sin k(t− τ) , t > τ .

Hence find the solution for f(t) = e−t.
[Hint: To make the calculations easier, for t > τ write the general homogeneous solution as a function of t− τ .]
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The Dirac delta function

5. Delta function properties. The function φ(x) is monotone increasing in [a, b] and has a (simple) zero at x = c
(i.e. φ′(c) 6= 0) where a < c < b. Show that

∫ b

a

f(x)δ[φ(x)]dx =
f(c)

|φ′(c)| .

Show that the same formula applies if φ(x) is monotone decreasing and hence derive a formula for general φ(x)
provided the zeros are simple. Deduce that δ(at) = δ(t)/|a| for a 6= 0. Also establish that

∫ +∞

−∞

|x|δ(x2 − a2)dx = 1 .

6. Delta function derivative*. Show using polar coordinates that

∫ +∞

−∞

∫ +∞

−∞

f(x2 + y2)δ′(x2 + y2 − 1)δ(x2 − y2)dx dy = f(1)− f ′(1)

(where you may assume that f(r2)/r has a finite limit at r = 0).

Fourier transforms

7. Duality property of FTs. (a) Use the duality property of FT s (i.e. that FT (FT (f))(x) = 2πf(−x)) to derive
the frequency shift property from the translation property. (b) Let h(x) = f(x)g(x). Starting with the convolution
theorem (that FT of a convolution is the product of individual FT s) show that h̃(k) = f̃ ∗ g̃(k)/2π.
8. Functions with discontinuities. Let f(x) = e−x for 0 < x <∞, and f(x) = 0 for x < 0. Show that f̃(k) = 1−ik

1+k2 .

Show that the inverse Fourier transform of this Fourier transform f̃(k) takes the value of 1/2 at x = 0. (This is a
general property of Fourier transforms, analogously to Fourier series. Inversion for general x is really straightforward
with Complex Methods.)

9. Fourier transform of Gaussians. By using differentiation and the shift property, calculate the Fourier transform
of a Gaussian distribution with a peak at µ 6= 0, i.e. f(x) = exp[−n2(x− µ)2].
Now let µ = 0, and consider δn(x) = (n/

√
π)f(x). Sketch δn(x) and δ̃n(k) for small and large n. What is

∫

∞

−∞
δn(x)dx? What is happening as n→ ∞?

10. Fast Fourier transform for DFT. Consider DFTN the discrete Fourier transform mod N with N = 2m being
a power of 2.
(a) For a = (a0, . . . , aN−1) show that direct computation of DFTN (a) by matrix multiplication requires 2N2 − N
basic multiplication and addition operations between the matrix elements of DFTN and the components of a.
(b) Show that DFTN (a) can be expressed in terms of two applications of DFTN/2. (Hint: consider separately the
even and odd numbered components of a). Using this decomposition show that DFTN may be computed with T (N)
basic additions and multiplications where T (N) has leading term N log2N i.e. exponentially faster as a function of
m than the direct method of (a). Find the exact formula for T (N).

11. Parseval’s relation. By considering the the Fourier transform of the function f(x) = cos(x) for |x| < π/2 and
f(x) = 0 for |x| ≥ π/2, and the Fourier transform of its derivative, show that

∫

∞

0

π2

4 cos2 t
(

π2

4 − t2
)2 dt =

∫

∞

0

t2 cos2 t
(

π2

4 − t2
)2 dt =

π

4
.

12. Laplace’s equation. Show that the inverse Fourier transform of the function (for any real α)

f̃α(k) =

{

ekα − e−kα, |k| ≤ 1,
0 |k| > 1,

is

fα(x) =
2i

π(α2 + x2)
(α coshα sinx− x cosx sinhα).

Determine, by using Fourier transforms, the solution of Laplace’s equation in the infinite strip 0 ≤ y ≤ 1, i.e.

∇2ψ = 0; −∞ < x <∞, 0 < y < 1,

where ψ(x, 0) = f1(x) the function given above with α = 1, and ψ(x, 1) = 0 for −∞ < x <∞.
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Mathematical Tripos Part IB Michaelmas term 2015 Dr. D. Skinner

Course C10—No. B8

METHODS — EXAMPLES IV

General properties of PDEs

1. Characteristics.
i) Find the characteristic curves of ux + yuy = 0. Hence find the solution of the problem with the boundary data
u(0, y) = y3.

ii) Solve for u which satisfies yux+xuy = 0 with u(0, y) = e−y2

. In which region of the plane is the solution uniquely
determined?
iii) Find u such that ux + uy + u = ex+2y, and u(x, 0) = 0.

2. Well-posedness.
The backward diffusion equation may be defined as

uxx + ut = 0.

Consider a domain 0 < x < π, with u(0, t) = 0 = u(π, t), and u(x, 0) = U(x). By using the method of separation
of variables, show that the problem is not well-posed. [It may be helpful to scale the eigenfunctions you calculate

similarly to the example in the lectures.]

3. Classification.
i) Determine the regions where Tricomi’s equation

uxx + xuyy = 0,

is of elliptic, parabolic and hyperbolic types. Derive its characteristics and canonical form in the hyperbolic region.
ii) Reduce the equation

uxx + yuyy +
1

2
uy = 0,

to the simple canonical form uξη = 0 in its hyperbolic region, and hence show that

u = f(x+ 2[−y]1/2) + g(x− 2[−y]1/2),

where f and g are arbitrary functions.

Properties of Green’s functions

4. Symmetry.
Consider a Dirichlet Green’s function G(r; r0) for the Laplacian defined in an arbitrary three-dimensional domain
D. By using Green’s second identity, show that G(r; r0) = G(r0; r) for all r 6= r0 in the domain D.

5. Representation formula in 2D.
If u is a harmonic function in a 2D domain D, with boundary δD, show that

u(x0) =
1

2π

∮

δD

[

u(x)
∂

∂n
(log |x− x0|)− log |x− x0|

∂u

∂n

]

dl,

where dl is an arc element of δD, x ∈ δD, x0 ∈ D.

Applications of Green’s functions

6. Cauchy problem in the half-plane for the Laplacian.
Consider Laplace’s equation in the half-plane with prescribed boundary conditions at y = 0, i.e.

∇2ψ = 0; −∞ < x <∞, y ≥ 0,

where ψ(x, 0) = f(x) a known function, such that ψ tends to zero as y → ∞.
i) Find the Green’s function for this problem.
ii) Hence show that the solution is given by Poisson’s integral formula:

ψ(x, y) =
y

π

∫

∞

−∞

f(ξ)

(x− ξ)2 + y2
dξ.
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iii) Derive the same result by taking Fourier transforms with respect to x (assuming all transforms exist).
iv) Find (in closed form) and sketch the solution for various y > 0 when f(x) = ψ0, |x| < a, and f(x) = 0 otherwise.
Sketch the solution along x = ±a.

7. Wave equation.
An infinite string, at rest for t < 0, receives an instantaneous transverse blow at t = 0 which imparts an initial

velocity of V δ(x− x0), where V is a constant. Derive the position of the string for t > 0.

8. Wave equation: Method of images.
A semi-infinite string, fixed for all time at zero at x = 0 and at rest for t < 0, receives an instantaneous transverse

blow at t = 0 which imparts an initial velocity of V δ(x−x0), where V is a constant. Derive the position of the string
for t > 0, and compare the solution to the infinite case in the previous question.

9. Diffusion equation with a boundary source.
Consider the problem on the half-line:

θt −Dθxx = f(x, t), 0 < x <∞, 0 < t <∞,

with boundary and initial data θ(0, t) = h(t), θ(x, 0) = Θ(x). By considering the variable V (x, t) = θ(x, t) − h(t),
and using the method of images, derive the general solution.

10. Dirichlet Green’s function for the sphere*.
i) Show that the Dirichlet Green’s function for the Laplacian for the interior of a spherical domain of radius a is

G(x;x0) =
−1

4π|x− x0|
+

a

|x0|

1

4π|x− x∗

0|
, where x

∗

0 =
a2x0

|x0|2
.

ii) Derive the Dirichlet Green’s function for the Laplacian for the exterior of a spherical domain of radius a.

11. Forced wave equation.
Consider the forced wave equation with zero initial conditions

∂2u

∂t2
− c2

∂2u

∂x2
= f(x, t) u(x, 0) = 0,

∂u

∂t
(x, 0) = 0.

Verify directly that

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

f(y, s) dy ds ,

and hence determine the appropriate Green’s function for the wave equation satisfying

∂2

∂t2
G(x, t; ξ, τ)− c2

∂2

∂x2
G(x, t; ξ, τ) = δ(x− ξ) δ(t− τ),

G(x, 0; ξ, τ) = 0,
∂

∂t
G(x, 0; ξ, τ) = 0.

Calculate u(x, t) explicitly in the case where f(x, t) = cosx and hence determine the times when u = 0 for all values
of x.


