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These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Self-adjoint ODEs
Periodic functions. Fourier series: definition and simple properties; Parseval’s theorem.
Equations of second order. Self-adjoint differential operators. The Sturm-Liouville
equation; eigenfunctions and eigenvalues; reality of eigenvalues and orthogonality of
eigenfunctions; eigenfunction expansions (Fourier series as prototype), approximation
in mean square, statement of completeness. [5]

PDEs on bounded domains: separation of variables
Physical basis of Laplace’s equation, the wave equation and the diffusion equation.
General method of separation of variables in Cartesian, cylindrical and spherical
coordinates. Legendre’s equation: derivation, solutions including explicit forms of
P0, P1 and P2, orthogonality. Bessel’s equation of integer order as an example of a
self-adjoint eigenvalue problem with non-trivial weight.

Examples including potentials on rectangular and circular domains and on a spherical
domain (axisymmetric case only), waves on a finite string and heat flow down a
semi-infinite rod. [5]

Inhomogeneous ODEs: Green’s functions
Properties of the Dirac delta function. Initial value problems and forced problems with
two fixed end points; solution using Green’s functions. Eigenfunction expansions of the
delta function and Green’s functions. [4]

Fourier transforms
Fourier transforms: definition and simple properties; inversion and convolution theorems.
The discrete Fourier transform. Examples of application to linear systems. Relationship
of transfer function to Green’s function for initial value problems. [4]

PDEs on unbounded domains

Classification of PDEs in two independent variables. Well posedness. Solution by

the method of characteristics. Green’s functions for PDEs in 1, 2 and 3 independent

variables; fundamental solutions of the wave equation, Laplace’s equation and the

diffusion equation. The method of images. Application to the forced wave equation,

Poisson’s equation and forced diffusion equation. Transient solutions of diffusion

problems: the error function. [6]
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1 Vector spaces

Definition (Vector space). A vector space over C (or R) is a set V with an
operation + which obeys

(i) u + v = v + u (commutativity)

(ii) (u + v) + w = u + (v + w) (associativity)

(iii) There is some 0 ∈ V such that 0 + u = u for all u (identity)

We can also multiply vectors by a scalars λ ∈ C, which satisfies

(i) λ(µv) = (λµ)v (associativity)

(ii) λ(u + v) = λu + λv (distributivity in V )

(iii) (λ+ µ)u = λu + λv (distributivity in C)

(iv) 1v = v (identity)

Definition (Inner product). An inner product on V is a map ( · , · ) : V ×V → C
that satisfies

(i) (u, λv) = λ(u,v) (linearity in second argument)

(ii) (u,v + w) = (u,v) + (u,w) (additivity)

(iii) (u,v) = (v,u)∗ (conjugate symmetry)

(iv) (u,u) ≥ 0, with equality iff u = 0 (positivity)

Note that the positivity condition makes sense since conjugate symmetry entails
that (u,u) ∈ R.

The inner product in turn defines a norm ‖u‖ =
√

(u,u) that provides the
notion of length and distance.

Definition (Basis). A set of vectors {v1,v2, · · · ,vn} form a basis of V iff any
u ∈ V can be uniquely written as a linear combination

u =

n∑
i=1

λivi

for some scalars λi. The dimension of a vector space is the number of basis
vectors in its basis.

A basis is orthogonal (with respect to the inner product) if (vi,vj) = 0
whenever i 6= j.

A basis is orthonormal (with respect to the inner product) if it is orthogonal
and (vi,vi) = 1 for all i.

Definition (Homogeneous boundary conditions). A boundary condition is
homogeneous if whenever f and g satisfy the boundary conditions, then so does
λf + µg for any λ, µ ∈ C (or R).
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2 Fourier series

Definition (Periodic function). A function f is periodic if there is some fixed
R such that f(x+R) = f(x) for all x.

However, it is often much more convenient to think of this as a function
f : S1 → C from unit circle to C, and parametrize our function by an angle θ
ranging from 0 to 2π.

2.1 Fourier series

2.2 Convergence of Fourier series

2.3 Differentiability and Fourier series
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3 Sturm-Liouville Theory

3.1 Sturm-Liouville operators

Definition (Adjoint and self-adjoint). The adjoint B of a map A : V → V is a
map such that

(Bu,v) = (u, Av)

for all vectors u,v ∈ V . A map is then self-adjoint if

(Mu,v) = (u,Mv).

Definition (Inner product with weight). An inner product with weight w,
written ( · , · )w, is defined by

(f, g)w =

∫ b

a

f∗(x)g(x)w(x) dx,

where w is real, non-negative, and has only finitely many zeroes.

Definition (Eigenfunction with weight). An eigenfunction with weight w of L
is a function y : [a, b]→ C obeying the differential equation

Ly = λwy,

where λ ∈ C is the eigenvalue.

3.2 Least squares approximation
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4 Partial differential equations

4.1 Laplace’s equation

Definition (Laplace’s equation). Laplace’s equation on Rn says that a (twice-
differentiable) equation φ : Rn → C obeys

∇2φ = 0,

where

∇2 =

n∑
i=1

∂2

∂x2i
.

Definition (Harmonic functions). Functions that obey Laplace’s equation are
often called harmonic functions.

4.2 Laplace’s equation in the unit disk in R2

4.3 Separation of variables

4.4 Laplace’s equation in spherical polar coordinates

4.4.1 Laplace’s equation in spherical polar coordinates

4.4.2 Legendre Polynomials

4.4.3 Solution to radial part

4.5 Multipole expansions for Laplace’s equation

4.6 Laplace’s equation in cylindrical coordinates

4.7 The heat equation

Definition (Heat equation). The heat equation for a function φ : Ω→ C is

∂φ

∂t
= κ∇2φ,

where κ > 0 is the diffusion constant.

4.8 The wave equation
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5 Distributions

5.1 Distributions

Definition (Dirac-delta). The Dirac-delta is a distribution defined by

δ[φ] = φ(0).

5.2 Green’s functions

5.3 Green’s functions for initial value problems
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6 Fourier transforms

6.1 The Fourier transform

Definition (Fourier transform). The Fourier transform of an (absolutely inte-
grable) function f : R→ C is defined as

f̃(k) =

∫ ∞
−∞

e−ikxf(x) dx

for all k ∈ R. We will also write f̃(k) = F [f(x)].

6.2 The Fourier inversion theorem

6.3 Parseval’s theorem for Fourier transforms

6.4 A word of warning

6.5 Fourier transformation of distributions

6.6 Linear systems and response functions

6.7 General form of transfer function

6.8 The discrete Fourier transform

6.9 The fast Fourier transform*
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7 More partial differential equations

7.1 Well-posedness

Definition (Well-posed problem). A partial differential equation problem is
said to be well-posed if its Cauchy data means

(i) A solution exists;

(ii) The solution is unique;

(iii) A “small change” in the Cauchy data leads to a “small change” in the
solution.

7.2 Method of characteristics

Definition (Tangent vector). The tangent vector to a smooth curve C given
by x : R→ R2 with x(s) = (x(s), y(s)) is(

dx

ds
,

dy

ds

)
.

Definition (Integral curve). Let V(x, y) : R2 → R2 be a vector field. The

integral curves associated to V are curves whose tangent
(

dx
ds ,

dy
ds

)
is just V(x, y).

7.3 Characteristics for 2nd order partial differential equa-
tions

Definition (Symbol and principal part). Let L be the general 2nd order differ-
ential operator on Rn. We can write it as

L =

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(X),

where aij(x), bi(x), c(x) ∈ R and aij = aji (wlog).
We define the symbol σ(k, x) of L to be

σ(k, x) =

n∑
i,j=1

aij(x)kikj +

n∑
i=1

bi(x)ki + c(x).

So we just replace the derivatives by the variable k.
The principal part of the symbol is the leading term

σp(k, x) =

n∑
i,j=1

aij(x)kikj .

Definition (Elliptic, hyperbolic, ultra-hyperbolic and parabolic differential
operators). Let L be a differential operator. We say L is

– elliptic at x if all eigenvalues of A(x) have the same sign. Equivalently, if
σp( · , x) is a definite quadratic form;
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– hyperbolic at x if all but one eigenvalues of A(x) have the same sign;

– ultra-hyperbolic at x if A(x) has more than one eigenvalues of each sign;

– parabolic at x if A(x) has a zero eigenvalue, i.e. σp( · , x) is degenerate.

We say L is elliptic if L is elliptic at all x, and similarly for the other terms.

Definition (Characteristic surface). Given a differential operator L, let

f(x1, x2, · · · , xn) = 0

define a surface C ⊆ Rn. We say C is characteristic if

n∑
i,j=1

aij(x)
∂f

∂xi
∂f

∂xj
= (∇f)TA(∇f) = σp(∇f, x) = 0.

In the case where we only have two dimensions, a characteristic surface is just a
curve.

7.4 Green’s functions for PDEs on Rn

7.5 Poisson’s equation
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