1. Let \mathbb{R}^2 be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$, with addition and scalar multiplication defined pointwise. Which of the following sets of functions form a vector subspace of \mathbb{R}^2?

(a) The set C of continuous functions.
(b) The set $\{ f \in C : |f(t)| \leq 1 \text{ for all } t \in [0, 1] \}$.
(c) The set $\{ f \in C : f(t) \to 0 \text{ as } t \to \infty \}$.
(d) The set $\{ f \in C : f(t) \to 1 \text{ as } t \to \infty \}$.
(e) The set of solutions of the differential equation $\ddot{x}(t) + (t^2 - 3)\dot{x}(t) + t^4x(t) = 0$.
(f) The set of solutions of $\ddot{x}(t) + (t^2 - 3)\dot{x}(t) + t^4x(t) = \sin t$.
(g) The set of solutions of $(\dot{x}(t))^2 - x(t) = 0$.
(h) The set of solutions of $(\dot{x}(t))^2 + (x(t))^2 = 0$.

2. Suppose that the vectors e_1, \ldots, e_n form a basis for V. Which of the following are also bases?

(a) $e_1 + e_2, e_2 + e_3, \ldots, e_{n-1} + e_n, e_n$;
(b) $e_1 + e_2, e_2 + e_3, \ldots, e_{n-1} + e_n, e_n + e_1$;
(c) $e_1 - e_n, e_2 + e_{n-1}, \ldots, e_n + (-1)^n e_1$.

3. Let T, U and W be subspaces of V.

(i) Show that $T \cup U$ is a subspace of V only if either $T \subseteq U$ or $U \subseteq T$.
(ii) Give explicit counter-examples to the following statements:

(a) $T + (U \cap W) = (T + U) \cap (T + W)$;
(b) $(T + U) \cap W = (T \cap W) + (U \cap W)$.
(iii) Show that each of the equalities in (ii) cannot be replaced by a valid inclusion of one side in the other.

4. For each of the following pairs of vector spaces (V, W) over \mathbb{R}, either give an isomorphism $V \to W$ or show that no such isomorphism can exist. (Here P denotes the space of polynomial functions $\mathbb{R} \to \mathbb{R}$, and $C[a,b]$ denotes the space of continuous functions defined on the closed interval $[a, b]$.)

(a) $V = \mathbb{R}^4$, $W = \{ x \in \mathbb{R}^5 : x_1 + x_2 + x_3 + x_4 + x_5 = 0 \}$.
(b) $V = \mathbb{R}^5$, $W = \{ p \in P : \deg p \leq 5 \}$.
(c) $V = C[0,1]$, $W = C[-1,1]$.
(d) $V = C[0,1]$, $W = \{ f \in C[0,1] : f(0) = 0, f \text{ continuously differentiable} \}$.
(e) $V = \mathbb{R}^2$, $W = \{ \text{ solutions of } \ddot{x}(t) + x(t) = 0 \}$.
(f) $V = \mathbb{R}^4$, $W = C[0,1]$.
(g) (Harder:) $V = P$, $W = \mathbb{R}^3$.

5. (i) If α and β are linear maps from U to V show that $\alpha + \beta$ is linear. Give explicit counter-examples to the following statements:

(a) $\text{Im}(\alpha + \beta) = \text{Im}(\alpha) + \text{Im}(\beta)$;
(b) $\text{Ker}(\alpha + \beta) = \text{Ker}(\alpha) \cap \text{Ker}(\beta)$.

Show that in general each of these equalities cannot be replaced by a valid inclusion of one side in the other.
(ii) Let α be a linear map from V to V. Show that if $\alpha^2 = \alpha$ then $V = \text{Ker}(\alpha) \oplus \text{Im}(\alpha)$. Does your proof still hold if V is infinite dimensional? Is the result still true?

6. Let $U = \{ x \in \mathbb{R}^5 : x_1 + x_3 + x_4 = 0, \ 2x_1 + 2x_2 + x_5 = 0 \}$, $W = \{ x \in \mathbb{R}^5 : x_1 + x_5 = 0, \ x_2 = x_3 = x_4 \}$.

Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for $U + W$ and show that $U + W = \{ x \in \mathbb{R}^5 : x_1 + 2x_2 + x_5 = x_3 + x_4 \}$.
7. Let $\alpha: U \to V$ be a linear map between two finite dimensional vector spaces and let W be a vector subspace of U. Show that the restriction of α to W is a linear map $\alpha|_W: W \to V$ which satisfies

$$r(\alpha) \geq r(\alpha|_W) \geq r(\alpha) - \dim(U) + \dim(W).$$

Give examples (with $W \neq U$) to show that either of the two inequalities can be an equality.

8. (i) Let $\alpha: V \to V$ be an endomorphism of a finite dimensional vector space V. Show that

$$V \geq \text{Im}(\alpha) \geq \text{Im}(\alpha^2) \geq \ldots \quad \text{and} \quad \{0\} \leq \text{Ker}(\alpha) \leq \text{Ker}(\alpha^2) \leq \ldots.$$

If $r_k = r(\alpha^k)$, deduce that $r_k \geq r_{k+1}$ and that $r_k - r_{k+1} \geq r_{k+1} - r_{k+2}$. Conclude that if, for some $k \geq 0$, we have $r_k = r_{k+1}$, then $r_k = r_{k+1} = \ldots$ for all $\ell \geq 0$.

(ii) Suppose that $\dim(V) = 5$, $\alpha^3 = 0$, but $\alpha^2 \neq 0$. What possibilities are there for $r(\alpha)$ and $r(\alpha^2)$?

9. Let $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by $\alpha: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Find the matrix representing α relative to the basis $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ for both the domain and the range. Write down bases for the domain and range with respect to which the matrix of α is the identity.

10. Let U_1, \ldots, U_k be subspaces of a vector space V and let B_i be a basis for U_i. Show that the following statements are equivalent:

 (i) $U = \sum_i U_i$ is a direct sum, i.e. every element of U can be written uniquely as $\sum_i u_i$ with $u_i \in U_i$.

 (ii) $U_j \cap \sum_{i \neq j} U_i = \{0\}$ for all j.

 (iii) The B_i are pairwise disjoint and their union is a basis for $\sum_i U_i$.

 Give an example where $U_i \cap U_j = \{0\}$ for all $i \neq j$, yet $U_1 + \ldots + U_k$ is not a direct sum.

11. Let Y and Z be subspaces of the finite dimensional vector spaces V and W, respectively. Show that $R = \{\alpha \in \mathcal{L}(V,W) : \alpha(Y) \subseteq Z\}$ is a subspace of the space $\mathcal{L}(V,W)$ of all linear maps from V to W. What is the dimension of R?

12. Recall that \mathbb{F}^n has standard basis e_1, \ldots, e_n. Let U be a subspace of \mathbb{F}^n. Show that there is a subset I of $\{1, 2, \ldots, n\}$ for which the subspace $W = \langle \{e_i : i \in I\} \rangle$ is a complementary subspace to U in \mathbb{F}^n.

13. Suppose X and Y are linearly independent subsets of a vector space V; no member of X is expressible as a linear combination of members of Y, and no member of Y is expressible as a linear combination of members of X. Is the set $X \cup Y$ necessarily linearly independent? Give a proof or counterexample.

14. Show that any two subspaces of the same dimension in a finite dimensional real vector space have a common complementary subspace.

15. Let T, U, V, W be vector spaces over \mathbb{F} and let $\alpha: T \to U$, $\beta: V \to W$ be fixed linear maps. Show that the mapping $\Phi: \mathcal{L}(U, V) \to \mathcal{L}(T, W)$ which sends θ to $\beta \circ \theta \circ \alpha$ is linear. If the spaces are finite-dimensional and α and β have rank r and s respectively, find the rank of Φ.

S.J.Wadsley@dpmms.cam.ac.uk
- October 2015
1. Write down the three types of elementary matrices and find their inverses. Show that an $n \times n$ matrix A is invertible if and only if it can be written as a product of elementary matrices. Use this method to find the inverse of
\[
\begin{pmatrix}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 3 & -1
\end{pmatrix}.
\]

2. (Another proof of the row rank column rank equality.) Let A be an $m \times n$ matrix of (column) rank r. Show that r is the least integer for which A factorises as $A = BC$ with $B \in \text{Mat}_{m,r}(F)$ and $C \in \text{Mat}_{r,n}(F)$. Using the fact that $(BC)^T = C^TB^T$, deduce that the (column) rank of A^T equals r.

3. Let V be a 4-dimensional vector space over \mathbb{R}, and let $\{\xi_1, \xi_2, \xi_3, \xi_4\}$ be the basis of V^* dual to the basis $\{x_1, x_2, x_3, x_4\}$ for V. Determine, in terms of the ξ_i, the bases dual to each of the following:
 (a) $\{x_2, x_1, x_4, x_3\}$;
 (b) $\{x_1, 2x_2, x_3, x_4\}$;
 (c) $\{x_1 + x_2, x_2 + x_3, x_3 + x_4, x_4\}$;
 (d) $\{x_1, x_2 - x_1, x_3 - x_2 + x_1, x_4 - x_3 + x_2 - x_1\}$.

4. Let P_n be the space of real polynomials of degree at most n. For $x \in \mathbb{R}$ define $\epsilon_x \in P_n^*$ by $\epsilon_x(p) = p(x)$. Show that $\epsilon_0, \ldots, \epsilon_n$ form a basis for P_n^*, and identify the basis of P_n to which it is dual.

5. (a) Show that if $x \neq y$ are vectors in the finite dimensional vector space V, then there is a linear functional $\theta \in V^*$ such that $\theta(x) \neq \theta(y)$.
 (b) Suppose that V is finite dimensional. Let $A, B \leq V$. Prove that $A \leq B$ if and only if $A^o \geq B^o$. Show that $A = V$ if and only if $A^o = \{0\}$.

6. For $A \in \text{Mat}_{m,m}(F)$ and $B \in \text{Mat}_{n,n}(F)$, let $\tau_A(B)$ denote $\text{tr}AB$. Show that, for each fixed A, $\tau_A: \text{Mat}_{m,n}(F) \to F$ is linear. Show moreover that the mapping $A \mapsto \tau_A$ defines a linear isomorphism $\text{Mat}_{m,m}(F) \to \text{Mat}_{m,n}(F)^*$.

7. (a) Let V be a non-zero finite dimensional real vector space. Show that there are no endomorphisms α, β of V with $\alpha \beta - \beta \alpha = \text{id}_V$.
 (b) Let V be the space of infinitely differentiable functions $\mathbb{R} \to \mathbb{R}$. Find endomorphisms α and β of V such that $\alpha \beta - \beta \alpha = \text{id}_V$.

8. Suppose that $\psi: U \times V \to F$ is a bilinear form of rank r on finite dimensional vector spaces U and V over F. Show that there exist bases e_1, \ldots, e_m for U and f_1, \ldots, f_n for V such that
\[
\psi \left(\sum_{i=1}^m x_i e_i, \sum_{j=1}^n y_j f_j \right) = \sum_{k=1}^r x_k y_k
\]
for all $x_1, \ldots, x_m, y_1, \ldots, y_n \in F$. What are the dimensions of the left and right kernels of ψ?

9. Let A and B be $n \times n$ matrices over a field F. Show that the $2n \times 2n$ matrix
\[
C = \begin{pmatrix} I & B \\ -A & 0 \end{pmatrix}
\]

by elementary row operations (which you should specify). By considering the determinants of C and D, obtain another proof that $\det AB = \det A \det B$.

S.J.Wadsley@dpmms.cam.ac.uk - 1 - October 2015
10. Let A, B be $n \times n$ matrices, where $n \geq 2$. Show that, if A and B are non-singular, then

(i) $\text{adj}(AB) = \text{adj}(B)\text{adj}(A)$,
(ii) $\det(\text{adj} A) = (\det A)^{n-1}$,
(iii) $\text{adj}(\text{adj} A) = (\det A)^{n-2}A$.

What happens if A is singular? [Hint: Consider $A + \lambda I$ for $\lambda \in \mathbb{F}$.]

Show that the rank of the adjugate matrix is

$$r(\text{adj} A) = \begin{cases} n & \text{if } r(A) = n \\ 1 & \text{if } r(A) = n - 1 \\ 0 & \text{if } r(A) \leq n - 2. \end{cases}$$

11. Show that the dual of the space \mathbb{P}^n of all sequences of real numbers, via the mapping which sends a linear form ψ to the bases v_1, v_2, \ldots, v_n, is given by \mathbb{P}^n. Consider a basis v_1, v_2, \ldots, v_n of \mathbb{P}^n. Show that the rank of the adjugate matrix is $r(\text{adj} A) = (\det A)^{n-2}A$.

In terms of this identification, describe the effect on a sequence (a_0, a_1, a_2, \ldots) of the linear maps dual to each of the following linear maps $P \to P$:

(a) The map D defined by $D(p)(t) = p'(t)$.
(b) The map S defined by $S(p)(t) = p(t^2)$.
(c) The map E defined by $E(p)(t) = p(t - 1)$.
(d) The composite DS.
(e) The composite SD.

Verify that $(DS)^* = S^*D^*$ and $(SD)^* = D^*S^*$.

12. Suppose that $\psi: V \times V \to \mathbb{F}$ is a bilinear form on a finite dimensional vector space V. Take U a subspace of V with $U = W^\perp$ some subspace W of V. Suppose that $\psi|_{U \times U}$ is non-singular. Show that ψ is also non-singular.

13. Let V be a vector space. Suppose that $f_1, \ldots, f_n, g \in V^*$. Show that g is in the span of f_1, \ldots, f_n if and only if $\bigcap_{i=1}^n \ker f_i \subset \ker g$.

14. Let $\alpha: V \to V$ be an endomorphism of a real finite dimensional vector space V with $\text{tr}(\alpha) = 0$.

(i) Show that, if $\alpha \neq 0$, there is a vector v with $\alpha(v)$ linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0.

(ii) Show that there are endomorphisms β, γ of V with $\alpha = \beta \gamma - \gamma \beta$.

The final question is based on non-examinable material.

15. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Suppose that $\alpha: V \to W$ is a linear map such that $\alpha(Y) \subset Z$. Show that α induces linear maps $\alpha|_Y: Y \to Z$ via $\alpha|_Y(y) = \alpha(y)$ and $\overline{\alpha}: V/Y \to W/Z$ via $\overline{\alpha}(v + Y) = \alpha(v) + Z$.

Consider a basis (v_1, \ldots, v_n) for V containing a basis (v_1, \ldots, v_k) for Y and a basis (w_1, \ldots, w_m) for W containing a basis (w_1, \ldots, w_l) for Z. Show that the matrix representing α with respect to (v_1, \ldots, v_n) and (w_1, \ldots, w_m) is a block matrix of the form $
abla A C
\nabla 0 B$. Explain how to determine the matrices representing $\alpha|_Y$ with respect to the bases (v_1, \ldots, v_k) and (w_1, \ldots, w_l) and representing $\overline{\alpha}$ with respect to the bases $(v_{k+1} + Y, \ldots, v_n + Y)$ and $(w_{l+1} + Z, \ldots, w_m + Z)$ from this block matrix.
1. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 1 & -1 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 1 & -1 \\
-1 & 3 & -1 \\
-1 & 1 & 1
\end{pmatrix}.
\]

The second and third matrices commute; find a basis with respect to which they are both diagonal.

2. By considering the rank of a suitable matrix, find the eigenvalues of the \(n \times n \) matrix \(A \) with each diagonal entry equal to \(\lambda \) and all other entries 1. Hence write down the determinant of \(A \).

3. Let \(\alpha \) be an endomorphism of the finite dimensional vector space \(V \) over \(\mathbb{F} \), with characteristic polynomial \(\chi_\alpha(t) = t^n + c_{n-1}t^{n-1} + \cdots + c_0 \). Show that \(\det(\alpha) = (-1)^nc_0 \) and \(\text{tr}(\alpha) = -c_{n-1} \).

4. Let \(V \) be a vector space, let \(\pi_1, \pi_2, \ldots, \pi_k \) be endomorphisms of \(V \) such that \(\text{id}_V = \pi_1 + \cdots + \pi_k \) and \(\pi_i \pi_j = 0 \) for any \(i \neq j \). Show that \(V = U_1 \oplus \cdots \oplus U_k \), where \(U_j = \text{im}(\pi_j) \).

Let \(\alpha \) be an endomorphism on the vector space \(V \), satisfying the equation \(\alpha^3 = \alpha \). Prove directly that \(V = V_0 \oplus V_1 \oplus V_{-1} \), where \(V_0 \) is the \(\lambda \)-eigenspace of \(\alpha \).

5. Let \(\alpha \) be an endomorphism of a finite dimensional complex vector space. Show that if \(\lambda \) is an eigenvalue for \(\alpha \) then \(\lambda^2 \) is an eigenvalue for \(\alpha^2 \). Show further that every eigenvalue of \(\alpha^2 \) arises in this way. Are the eigenspaces \(\ker(\alpha - \lambda \text{id}) \) and \(\ker(\alpha^2 - \lambda^2 \text{id}) \) necessarily the same?

6. (Another proof of the Diagonalisability Theorem.) Let \(V \) be a vector space of finite dimension. Show that if \(\alpha_1 \) and \(\alpha_2 \) are endomorphisms of \(V \), then the nullity \(n(\alpha_1\alpha_2) \) satisfies \(n(\alpha_1\alpha_2) \leq n(\alpha_1) + n(\alpha_2) \). Deduce that if \(\alpha \) is an endomorphism of \(V \) such that \(p(\alpha) = 0 \) for some polynomial \(p(t) \) which is a product of distinct linear factors, then \(\alpha \) is diagonalisable.

7. Let \(A \) be a square complex matrix of finite order — that is, \(A^m = I \) for some \(m > 0 \). Show that \(A \) can be diagonalised.

8. Show that none of the following matrices are similar:

\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Is the matrix

\[
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]

similar to any of them? If so, which?

9. Find a basis with respect to which \(\begin{pmatrix}
0 & -1 \\
1 & 2
\end{pmatrix} \) is in Jordan normal form. Hence compute \(\begin{pmatrix}
0 & -1 \\
1 & 2
\end{pmatrix}^n \).

10. (a) Recall that the Jordan normal form of a \(3 \times 3 \) complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for \(4 \times 4 \) complex matrices.

(b) Let \(A \) be a \(5 \times 5 \) complex matrix with \(A^4 = A^2 \neq A \). What are the possible minimal and characteristic polynomials? If \(A \) is not diagonalisable, how many possible JNFs are there for \(A \)?

11. Let \(V \) be a vector space of dimension \(n \) and \(\alpha \) an endomorphism of \(V \) with \(\alpha^n = 0 \) but \(\alpha^{n-1} \neq 0 \). Show that there is a vector \(y \) such that \(\alpha(y), \alpha^2(y), \ldots, \alpha^{n-1}(y) \) is a basis for \(V \).

Show that if \(\beta \) is an endomorphism of \(V \) which commutes with \(\alpha \), then \(\beta = p(\alpha) \) for some polynomial \(p \). [Hint: consider \(\beta(y) \).] What is the form of the matrix for \(\beta \) with respect to the above basis?
12. Let α be an endomorphism of the finite-dimensional vector space V, and assume that α is invertible. Describe the eigenvalues and the characteristic and minimal polynomial of α^{-1} in terms of those of α.

13. Prove that that the inverse of a Jordan block $J_m(\lambda)$ with $\lambda \neq 0$ has Jordan normal form a Jordan block $J_m(\lambda^{-1})$. For an arbitrary invertible square matrix A, describe the Jordan normal form of A^{-1} in terms of that of A.

Prove that any square complex matrix is similar to its transpose.

14. Let C be an $n \times n$ matrix over \mathbb{C}, and write $C = A + iB$, where A and B are real $n \times n$ matrices. By considering $\det(A + \lambda B)$ as a function of λ, show that if C is invertible then there exists a real number λ such that $A + \lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are similar when regarded as matrices over \mathbb{C}, then they are similar as matrices over \mathbb{R}.

15. Let $f(x) = a_0 + a_1 x + \ldots + a_n x^n$, with $a_i \in \mathbb{C}$, and let C be the circulant matrix

$$
\begin{pmatrix}
a_0 & a_1 & a_2 & \ldots & a_n \\
a_n & a_0 & a_1 & \ldots & a_{n-1} \\
a_{n-1} & a_n & a_0 & \ldots & a_{n-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
a_1 & a_2 & a_3 & \ldots & a_0
\end{pmatrix}
$$

Show that the determinant of C is $\det C = \prod_{j=0}^n f(\zeta^j)$, where $\zeta = \exp(2\pi i/(n + 1))$.

16. Let V denote the space of all infinitely differentiable functions $\mathbb{R} \to \mathbb{R}$ and let α be the differentiation endomorphism $f \mapsto f'$.

(i) Show that every real number λ is an eigenvalue of α. Show also that $\ker(\alpha - \lambda \iota)$ has dimension 1.

(ii) Show that $\alpha - \lambda \iota$ is surjective for every real number λ.

S.J.Wadsley@dpmms.cam.ac.uk - 2 - November 2015
1. The square matrices A and B over the field F are congruent if $B = P^TAP$ for some invertible matrix P over F. Which of the following symmetric matrices are congruent to the identity matrix over \mathbb{R}, and which over \mathbb{C}? (Which, if any, over \mathbb{Q}?) Try to get away with the minimum calculation.

$$
\begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix}, \quad \begin{pmatrix}
0 & 2 \\
2 & 0
\end{pmatrix}, \quad \begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix}, \quad \begin{pmatrix}
4 & 4 \\
4 & 5
\end{pmatrix}.
$$

2. Find the rank and signature of the following quadratic forms over \mathbb{R}.

$$
x^2 + y^2 + z^2 - 2xz - 2yz, \quad x^2 + 2y^2 - 2z^2 - 4xy - 4yz, \quad 16xy - z^2, \quad 2xy + 2yz + 2xz.
$$

If A is the matrix of the first of these (say), find a non-singular matrix P such that P^TAP is diagonal with entries ± 1.

3. (i) Show that the function $\psi(A, B) = \text{tr}(AB^T)$ is a symmetric positive definite bilinear form on the space $\text{Mat}_n(\mathbb{R})$ of all $n \times n$ real matrices. Deduce that $|\text{tr}(AB^T)| \leq \text{tr}(AA^T)^{1/2}\text{tr}(BB^T)^{1/2}$.

(ii) Show that the map $A \mapsto \text{tr}(A^2)$ is a quadratic form on $\text{Mat}_n(\mathbb{R})$. Find its rank and signature.

4. Let $\psi : V \times V \to \mathbb{C}$ be a Hermitian form on a complex vector space V.

(i) Find the rank and signature of ψ in the case $V = \mathbb{C}^3$ and

$$
\psi(x, x) = |x_1 + ix_2|^2 + |x_2 + ix_3|^2 + |x_3 + ix_1|^2 - |x_1 + x_2 + x_3|^2.
$$

(ii) Show in general that if $n > 2$ then $\psi(u, v) = \frac{1}{n} \sum_{k=1}^{n} \zeta^{-k} \psi(u + \zeta^k v, u + \zeta^k v)$ where $\zeta = e^{2\pi i/n}$.

5. Show that the quadratic form $2(x^2 + y^2 + z^2 + xy + yz + zx)$ is positive definite. Write down an orthonormal basis for the corresponding inner product on \mathbb{R}^3. Compute the basis of \mathbb{R}^3 obtained by applying the Gram-Schmidt process to the standard basis with respect to this inner product.

6. Let $W \leq V$ with V an inner product space. An endomorphism π of V is called an idempotent if $\pi^2 = \pi$. Show that the orthogonal projection onto W is a self-adjoint idempotent. Conversely show that any self-adjoint idempotent is orthogonal projection onto its image.

7. Let S be an $n \times n$ real symmetric matrix with $S^k = I$ for some $k \geq 1$. Show that $S^2 = I$.

8. An endomorphism α of a finite dimensional inner product space V is positive definite if it is self-adjoint and satisfies $\langle \alpha(x), x \rangle > 0$ for all non-zero $x \in V$.

(i) Prove that a positive definite endomorphism has a unique positive definite square root.

(ii) Let α be an invertible endomorphism of V and α^* its adjoint. By considering $\alpha^*\alpha$, show that α can be factored as $\beta\gamma$ with β unitary and γ positive definite.

9. Let V be a finite dimensional complex inner product space, and let α be an endomorphism on V. Assume that α is normal, that is, α commutes with its adjoint: $\alpha\alpha^* = \alpha^*\alpha$. Show that α and α^* have a common eigenvector v, and the corresponding eigenvalues are complex conjugates. Show that the subspace $\langle v \rangle^\perp$ is invariant under both α and α^*. Deduce that there is an orthonormal basis of eigenvectors of α.

10. Find a linear transformation which simultaneously reduces the pair of real quadratic forms

$$2x^2 + 3y^2 + 3z^2 - 4yz, \quad x^2 + 3y^2 + 3z^2 + 6xy + 2yz - 6xz$$

to the forms

$$X^2 + Y^2 + Z^2, \quad \lambda X^2 + \mu Y^2 + \nu Z^2$$

for some $\lambda, \mu, \nu \in \mathbb{R}$ (which should turn out in this example to be integers).

Does there exist a linear transformation which reduces the pair of real quadratic forms $x^2 - y^2, \quad 2xy$ simultaneously to diagonal forms?
11. Show that if A is an $m \times n$ real matrix of rank n then $A^T A$ is invertible. Find a corresponding result for complex matrices.

12. Let P_n be the $(n+1)$-dimensional space of real polynomials of degree $\leq n$. Define
\[
(f, g) = \int_{-1}^{+1} f(t)g(t)dt.
\]
Show that $(\ , \)$ is an inner product on P_n and that the endomorphism $\alpha : P_n \rightarrow P_n$ defined by
\[
\alpha(f)(t) = (1-t^2)f''(t) - 2tf'(t)
\]
is self-adjoint. What are the eigenvalues of α?

Let $s_k \in P_n$ be defined by $s_k(t) = \frac{d^k}{dt^k}(1-t^2)^k$. Prove the following.
(i) For $i \neq j$, $(s_i, s_j) = 0$.
(ii) s_0, \ldots, s_n forms a basis for P_n.
(iii) For all $1 \leq k \leq n$, s_k spans the orthogonal complement of P_{k-1} in P_k.
(iv) s_k is an eigenvector of α. (Give its eigenvalue.)

What is the relation between the s_k and the result of applying Gram-Schmidt to the sequence $1, x, x^2, x^3$ and so on? (Calculate the first few terms?)

13. Let $f_1, \ldots, f_t, f_{t+1}, \ldots, f_{t+u}$ be linear functionals on the finite-dimensional real vector space V. Show that $Q(x) = f_1(x)^2 + \cdots + f_t(x)^2 - f_{t+1}(x)^2 - \cdots - f_{t+u}(x)^2$ is a quadratic form on V. Suppose Q has rank $p + q$ and signature $p - q$. Show that $p \leq t$ and $q \leq u$.

14. Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + \cdots + a_n = 0$ and $a_1^2 + \cdots + a_n^2 = 1$. What is the maximum value of $a_1 a_2 + a_2 a_3 + \cdots + a_{n-1} a_n + a_n a_1$?

15. Suppose that α is an orthogonal endomorphism on the finite-dimensional real inner product space V. Prove that V can be decomposed into a direct sum of mutually orthogonal α-invariant subspaces of dimension 1 or 2. Determine the possible matrices of α with respect to orthonormal bases in the cases where V has dimension 1 or dimension 2.