
Part IB — Numerical Analysis

Theorems

Based on lectures by G. Moore
Notes taken by Dexter Chua

Lent 2016

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Polynomial approximation
Interpolation by polynomials. Divided differences of functions and relations to deriva-
tives. Orthogonal polynomials and their recurrence relations. Least squares approx-
imation by polynomials. Gaussian quadrature formulae. Peano kernel theorem and
applications. [6]

Computation of ordinary differential equations
Euler’s method and proof of convergence. Multistep methods, including order, the root
condition and the concept of convergence. Runge-Kutta schemes. Stiff equations and
A-stability. [5]

Systems of equations and least squares calculations

LU triangular factorization of matrices. Relation to Gaussian elimination. Column

pivoting. Factorizations of symmetric and band matrices. The Newton-Raphson

method for systems of non-linear algebraic equations. QR factorization of rectangular

matrices by Gram-Schmidt, Givens and Householder techniques. Application to linear

least squares calculations. [5]
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1 Polynomial interpolation

1.1 The interpolation problem

1.2 The Lagrange formula

Theorem. The interpolation problem has exactly one solution.

1.3 The Newton formula

Theorem (Recurrence relation for Newton divided differences). For 0 ≤ j <
k ≤ n, we have

f [xj , · · · , xk] =
f [xj+1, · · · , xk]− f [xj , · · · , xk−1]

xk − xj
.

1.4 A useful property of divided differences

Lemma. Let g ∈ Cm[a, b] have a continuous mth derivative. Suppose g is zero
at m+ ` distinct points. Then g(m) has at least ` distinct zeros in [a, b].

Theorem. Let {xi}ni=0 ∈ [a, b] and f ∈ Cn[a, b]. Then there exists some
ξ ∈ (a, b) such that

f [x0, · · · , xn] =
1

n!
f (n)(ξ).

1.5 Error bounds for polynomial interpolation

Theorem. Assume {xi}ni=0 ⊆ [a, b] and f ∈ C[a, b]. Let x̄ ∈ [a, b] be a non-
interpolation point. Then

en(x̄) = f [x0, x1, · · · , xn, x̄]ω(x̄),

where

ω(x) =

n∏
i=0

(x− xi).

Theorem. If in addition f ∈ Cn+1[a, b], then for each x ∈ [a, b], we can find
ξx ∈ (a, b) such that

en(x) =
1

(n+ 1)!
f (n+1)(ξx)ω(x)

Corollary. For all x ∈ [a, b], we have

|f(x)− pn(x)| ≤ 1

(n+ 1)!
‖f (n+1)‖∞|ω(x)|

Lemma (3-term recurrence relation). The Chebyshev polynomials satisfy the
recurrence relations

Tn+1(x) = 2xTn(x)− Tn−1(x)

with initial conditions
T0(x) = 1, T1(x) = x.
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Theorem (Minimal property for n ≥ 1). On [−1, 1], among all polynomials
p ∈ Pn[x] with leading coefficient 1, 1

2n−1 ‖Tn‖ minimizes ‖p‖∞. Thus, the
minimum value is 1

2n−1 .

Corollary. Consider

w∆ =

n∏
i=0

(x− xi) ∈ Pn+1[x]

for any distinct points ∆ = {xi}ni=0 ⊆ [−1, 1]. Then

min
∆
‖ω∆‖∞ =

1

2n
.

This minimum is achieved by picking the interpolation points to be the zeros of
Tn+1, namely

xk = cos

(
2k + 1

2n+ 2
π

)
, k = 0, · · · , n.

Theorem. For f ∈ Cn+1[−1, 1], the Chebyshev choice of interpolation points
gives

‖f − pn‖∞ ≤
1

2n
1

(n+ 1)!
‖f (n+1)‖∞.
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2 Orthogonal polynomials

2.1 Scalar product

2.2 Orthogonal polynomials

Theorem. Given a vector space V of functions and an inner product 〈 · , · 〉,
there exists a unique monic orthogonal polynomial for each degree n ≥ 0. In
addition, {pk}nk=0 form a basis for Pn[x].

2.3 Three-term recurrence relation

Theorem. Monic orthogonal polynomials are generated by

pk+1(x) = (x− αk)pk(x)− βkpk−1(x)

with initial conditions

p0 = 1, p1(x) = (x− α0)p0,

where

αk =
〈xpk, pk〉
〈pk, pk〉

, βk =
〈pk, pk〉

〈pk−1, pk−1〉
.

2.4 Examples

2.5 Least-squares polynomial approximation

Theorem. If {pn}nk=0 are orthogonal polynomials with respect to 〈 · , · 〉, then
the choice of ck such that

p =

n∑
k=0

ckpk

minimizes ‖f − p‖2 is given by

ck =
〈f, pk〉
‖pk‖2

,

and the formula for the error is

‖f − p‖2 = ‖f‖2 −
n∑
k=0

〈f, pk〉2

‖pk‖2
.
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3 Approximation of linear functionals

3.1 Linear functionals

3.2 Gaussian quadrature

Proposition. There is no choice of ν weights and nodes such that the approxi-

mation of
∫ b
a
w(x)f(x) dx is exact for all f ∈ P2ν [x].

Theorem (Ordinary quadrature). For any distinct {ck}νk=1 ⊆ [a, b], let {`k}νk=1

be the Lagrange cardinal polynomials with respect to {ck}νk=1. Then by choosing

bk =

∫ b

a

w(x)`k(x) dx,

the approximation

L(f) =

∫ b

a

w(x)f(x) dx ≈
ν∑
k=1

bkf(ck)

is exact for f ∈ Pν−1[x].
We call this method ordinary quadrature.

Theorem. For ν ≥ 1, the zeros of the orthogonal polynomial pν are real, distinct
and lie in (a, b).

Theorem. In the ordinary quadrature, if we pick {ck}νk=1 to be the roots of
pν(x), then get we exactness for f ∈ P2ν−1[x]. In addition, {bn}νk=1 are all
positive.
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4 Expressing errors in terms of derivatives

Theorem (Peano kernel theorem). If λ annihilates polynomials of degree k or
less, then

λ(f) =
1

k!

∫ b

a

K(θ)f (k+1)(θ) dθ

for all f ∈ Ck+1[a, b], where
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5 Ordinary differential equations

5.1 Introduction

5.2 One-step methods

Theorem (Convergence of Euler’s method).

(i) For all t ∈ [0, T ], we have

lim
h→0
nh→t

yn − y(t) = 0.

(ii) Let λ be the Lipschitz constant of f . Then there exists a c ≥ 0 such that

‖en‖ ≤ ch
eλT − 1

λ

for all 0 ≤ n ≤ [T/h], where en = yn − y(tn).

5.3 Multi-step methods

Theorem. An s-step method has order p (p ≥ 1) if and only if

s∑
`=0

ρ` = 0

and
s∑
`=0

ρ``
k = k

s∑
`=0

σ``
k−1

for k = 1, · · · , p, where 00 = 1.

Theorem. A multi-step method has order p (with p ≥ 1) if and only if

ρ(ex)− xσ(ex) = O(xp+1)

as x→ 0.

Theorem (Dahlquist equivalence theorem). A multi-step method is convergent
if and only if

(i) The order p is at least 1; and

(ii) The root condition holds.

Lemma. An s-step backward differentiation method of order s is obtained by
choosing

ρ(w) = σs

s∑
`=1

1

`
ws−`(w − 1)`,

with σs chosen such that ρs = 1, namely

σs =

(
s∑
`=1

1

`

)−1

.

5.4 Runge-Kutta methods
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6 Stiff equations

6.1 Introduction

6.2 Linear stability

Theorem (Maximum principle). Let g be analytic and non-constant in an open
set Ω ⊆ C. Then |g| has no maximum in Ω.
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7 Implementation of ODE methods

7.1 Local error estimation

7.2 Solving for implicit methods
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8 Numerical linear algebra

8.1 Triangular matrices

8.2 LU factorization

8.3 A = LU for special A

Theorem. A sufficient condition for the existence for both the existence and
uniqueness of A = LU is that det(Ak) 6= 0 for k = 1, · · · , n− 1.

Theorem. If det(Ak) 6= 0 for all k = 1, · · · , n, then A ∈ Rn×n has a unique
factorization of the form

A = LDÛ,

where D is non-singular diagonal matrix, and both L and Û are unit triangular.

Theorem. Let A ∈ Rn×n be non-singular and det(Ak) 6= 0 for all k = 1, · · · , n.
Then there is a unique “symmetric” factorization

A = LDLT ,

with L unit lower triangular and D diagonal and non-singular.

Theorem. Let A ∈ Rn×n be a positive-definite matrix. Then det(Ak) 6= 0 for
all k = 1, · · · , n.

Theorem. A symmetric matrix A ∈ Rn×n is positive-definite iff we can factor
it as

A = LDLT ,

where L is unit lower triangular, D is diagonal and Dkk > 0.

Proposition. If a band matrix A has band width r and an LU factorization
A = LU , then L and U are both band matrices of width r.
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9 Linear least squares

Theorem. A vector x∗ ∈ Rn minimizes ‖Ax− b‖2 if and only if

AT (Ax∗ − b) = 0.

Corollary. If A ∈ Rm×n is a full-rank matrix, then there is a unique solution
to the least squares problem.

Proposition. A matrix A ∈ Rm×n can be transformed into upper-triangular
form by applying n Householder reflections, namely

Hn · · ·H1A = R,

where each Hn introduces zero into column k and leaves the other zeroes alone.

Lemma. Let a,b ∈ Rm, with a 6= b, but ‖a‖ = ‖b‖. Then if we pick u = a−b,
then

Hua = b.

Lemma. If the first k − 1 components of u are zero, then

(i) For every x ∈ Rm, Hux does not alter the first k − 1 components of x.

(ii) If the last (m− k + 1) components of y ∈ Rm are zero, then Huy = y.

Lemma. Let a,b ∈ Rm, withak...
am

 6=
 bk...
bm

 ,

but
m∑
j=k

a2
j =

m∑
j=k

b2j .

Suppose we pick

u = (0, 0, · · · , 0, ak − bk, · · · , am − bm)T .

Then we have
Hua = (a1, · · · , ak−1bk, · · · , bm).
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