
Part IB — Groups, Rings and Modules

Definitions

Based on lectures by O. Randal-Williams
Notes taken by Dexter Chua

Lent 2016

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Groups
Basic concepts of group theory recalled from Part IA Groups. Normal subgroups,
quotient groups and isomorphism theorems. Permutation groups. Groups acting on
sets, permutation representations. Conjugacy classes, centralizers and normalizers.
The centre of a group. Elementary properties of finite p-groups. Examples of finite
linear groups and groups arising from geometry. Simplicity of An.

Sylow subgroups and Sylow theorems. Applications, groups of small order. [8]

Rings
Definition and examples of rings (commutative, with 1). Ideals, homomorphisms,
quotient rings, isomorphism theorems. Prime and maximal ideals. Fields. The
characteristic of a field. Field of fractions of an integral domain.

Factorization in rings; units, primes and irreducibles. Unique factorization in principal
ideal domains, and in polynomial rings. Gauss’ Lemma and Eisenstein’s irreducibility
criterion.

Rings Z[α] of algebraic integers as subsets of C and quotients of Z[x]. Examples of
Euclidean domains and uniqueness and non-uniqueness of factorization. Factorization
in the ring of Gaussian integers; representation of integers as sums of two squares.

Ideals in polynomial rings. Hilbert basis theorem. [10]

Modules

Definitions, examples of vector spaces, abelian groups and vector spaces with an

endomorphism. Sub-modules, homomorphisms, quotient modules and direct sums.

Equivalence of matrices, canonical form. Structure of finitely generated modules over

Euclidean domains, applications to abelian groups and Jordan normal form. [6]
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1 Groups

1.1 Basic concepts

Definition (Group). A group is a triple (G, · , e), where G is a set, · : G×G→ G
is a function and e ∈ G is an element such that

(i) For all a, b, c ∈ G, we have (a · b) · c = a · (b · c). (associativity)

(ii) For all a ∈ G, we have a · e = e · a = a. (identity)

(iii) For all a ∈ G, there exists a−1 ∈ G such that a · a−1 = a−1 · a = e.(inverse)

Definition (Subgroup). If (G, · , e) is a group and H ⊆ G is a subset, it is a
subgroup if

(i) e ∈ H,

(ii) a, b ∈ H implies a · b ∈ H,

(iii) · : H ×H → H makes (H, · , e) a group.

We write H ≤ G if H is a subgroup of G.

Definition (Abelian group). A group G is abelian if a · b = b · a for all a, b ∈ G.

Definition (Coset). If H ≤ G, g ∈ G, the left coset gH is the set

gH = {x ∈ G : x = g · h for some h ∈ H}.

Definition (Order of group). The order of a group is the number of elements
in G, written |G|.

Definition (Order of element). The order of an element g ∈ G is the smallest
positive n such that gn = e. If there is no such n, we say g has infinite order.

We write ord(g) = n.

1.2 Normal subgroups, quotients, homomorphisms, iso-
morphisms

Definition (Normal subgroup). A subgroup H ≤ G is normal if for any h ∈ H
and g ∈ G, we have g−1hg ∈ H. We write H CG.

Definition (Quotient group). If H CG is a normal subgroup, then the set G/H
of left H-cosets forms a group with multiplication

(g1H) · (g2H) = g1g2H.

with identity eH = H. This is known as the quotient group.

Definition (Homomorphism). If (G, · , eG) and (H, ∗, eH) are groups, a function
φ : G→ H is a homomorphism if φ(eG) = eH , and for g, g′ ∈ G, we have

φ(g · g′) = φ(g) ∗ φ(g′).
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Definition (Kernel). The kernel of a homomorphism φ : G→ H is

ker(φ) = {g ∈ G : φ(g) = e}.

Definition (Image). The image of a homomorphism φ : G→ H is

im(φ) = {h ∈ H : h = φ(g) for some g ∈ G}.

Definition (Isomorphism). An isomorphism is a homomorphism that is also a
bijection.

Definition (Isomorphic group). Two groups G and H are isomorphic if there
is an isomorphism between them. We write G ∼= H.

Definition (Simple group). A (non-trivial) group G is simple if it has no normal
subgroups except {e} and G.

1.3 Actions of permutations

Definition (Symmetric group). The symmetric group Sn is the group of all
permutations of {1, · · · , n}, i.e. the set of all bijections of this set with itself.

Definition (Even and odd permutation). A permutation σ ∈ Sn is even if it
can be written as a product of evenly many transpositions; odd otherwise.

Definition (Alternating group). The alternating group An ≤ Sn is the subgroup
of even permutations, i.e. An is the kernel of sgn.

Definition (Symmetric group of X). Let X be a set. We write Sym(X) for the
group of all permutations of X.

Definition (Permutation group). A group G is called a permutation group if it
is a subgroup of Sym(X) for some X, i.e. it is given by some, but not necessarily
all, permutations of some set.

We say G is a permutation group of order n if in addition |X| = n.

Definition (Group action). An action of a group (G, · ) on a set X is a function

∗ : G×X → X

such that

(i) g1 ∗ (g2 ∗ x) = (g1 · g2) ∗ x for all g1, g2 ∈ G and x ∈ X.

(ii) e ∗ x = x for all x ∈ X.

Definition (Permutation representation). A permutation representation of a
group G is a homomorphism G→ Sym(X).

Notation. For an action of G on X given by φ : G → Sym(X), we write
GX = im(φ) and GX = ker(φ).

Definition (Orbit). If G acts on a set X, the orbit of x ∈ X is

G · x = {g ∗ x ∈ X : g ∈ G}.

Definition (Stabilizer). If G acts on a set X, the stabilizer of x ∈ X is

Gx = {g ∈ G : g ∗ x = x}.
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1.4 Conjugacy, centralizers and normalizers

Definition (Automorphism group). The automorphism group of G is

Aut(G) = {f : G→ G : f is a group isomorphism}.

This is a group under composition, with the identity map as the identity.

Definition (Conjugacy class). The conjugacy class of g ∈ G is

cclG(g) = {hgh−1 : h ∈ G},

i.e. the orbit of g ∈ G under the conjugation action.

Definition (Centralizer). The centralizer of g ∈ G is

CG(g) = {h ∈ G : hgh−1 = g},

i.e. the stabilizer of g under the conjugation action. This is alternatively the set
of all h ∈ G that commute with g.

Definition (Center). The center of a group G is

Z(G) = {h ∈ G : hgh−1 = g for all g ∈ G} =
⋂
g∈G

CG(g) = ker(φ).

Definition (Normalizer). Let H ≤ G. The normalizer of H in G is

NG(H) = {g ∈ G : g−1Hg = H}.

1.5 Finite p-groups

Definition (p-group). A finite group G is a p-group if |G| = pn for some prime
number p and n ≥ 1.

1.6 Finite abelian groups

1.7 Sylow theorems
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2 Rings

2.1 Definitions and examples

Definition (Ring). A ring is a quintuple (R,+, · , 0R, 1R) where 0R, 1R ∈ R,
and +, · : R×R→ R are binary operations such that

(i) (R,+, 0R) is an abelian group.

(ii) The operation · : R×R→ R satisfies associativity, i.e.

a · (b · c) = (a · b) · c,

and identity:
1R · r = r · 1R = r.

(iii) Multiplication distributes over addition, i.e.

r1 · (r2 + r3) = (r1 · r2) + (r1 · r3)

(r1 + r2) · r3 = (r1 · r3) + (r2 · r3).

Notation. If R is a ring and r ∈ R, we write −r for the inverse to r in (R,+, 0R).
This satisfies r + (−r) = 0R. We write r − s to mean r + (−s) etc.

Definition (Commutative ring). We say a ring R is commutative if a · b = b · a
for all a, b ∈ R.

Definition (Subring). Let (R,+, · , 0R, 1R) be a ring, and S ⊆ R be a subset.
We say S is a subring of R if 0R, 1R ∈ S, and the operations +, · make S into a
ring in its own right. In this case we write S ≤ R.

Definition (Unit). An element u ∈ R is a unit if there is another element v ∈ R
such that u · v = 1R.

Definition (Field). A field is a non-zero ring where every u 6= 0R ∈ R is a unit.

Definition (Product of rings). Let R,S be rings. Then the product R× S is a
ring via

(r, s) + (r′, s′) = (r + r′, s+ s′), (r, s) · (r′, s′) = (r · r′, s · s′).

The zero is (0R, 0S) and the one is (1R, 1S).
We can (but won’t) check that these indeed are rings.

Definition (Polynomial). Let R be a ring. Then a polynomial with coefficients
in R is an expression

f = a0 + a1X + a2X
2 + · · ·+ anX

n,

with ai ∈ R. The symbols Xi are formal symbols.

Definition (Degree of polynomial). The degree of a polynomial f is the largest
m such that am 6= 0.

Definition (Monic polynomial). Let f have degree m. If am = 1, then f is
called monic.
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Definition (Polynomial ring). We write R[X] for the set of all polynomials
with coefficients in R. The operations are performed in the obvious way, i.e. if
f = a0 + a1X + · · · + AnX

n and g = b0 + b1X + · · · + bkX
k are polynomials,

then

f + g =

max{n,k}∑
r=0

(ai + bi)X
i,

and

f · g =

n+k∑
i=0

 i∑
j=0

ajbi−j

Xi,

We identify R with the constant polynomials, i.e. polynomials
∑
aiX

i with
ai = 0 for i > 0. In particular, 0R ∈ R and 1R ∈ R are the zero and one of R[X].

Definition (Power series). We write R[[X]] for the ring of power series on R,
i.e.

f = a0 + a1X + a2X
2 + · · · ,

where each ai ∈ R. This has addition and multiplication the same as for
polynomials, but without upper limits.

Definition (Laurent polynomials). The Laurent polynomials on R is the set
R[X,X−1], i.e. each element is of the form

f =
∑
i∈Z

aiX
i

where ai ∈ R and only finitely many ai are non-zero. The operations are the
obvious ones.

2.2 Homomorphisms, ideals, quotients and isomorphisms

Definition (Homomorphism of rings). Let R,S be rings. A function φ : R→ S
is a ring homomorphism if it preserves everything we can think of, i.e.

(i) φ(r1 + r2) = φ(r1) + φ(r2),

(ii) φ(0R) = 0S ,

(iii) φ(r1 · r2) = φ(r1) · φ(r2),

(iv) φ(1R) = 1S .

Definition (Isomorphism of rings). If a homomorphism φ : R→ S is a bijection,
we call it an isomorphism.

Definition (Kernel). The kernel of a homomorphism φ : R→ S is

ker(φ) = {r ∈ R : φ(r) = 0S}.

Definition (Image). The image of φ : R→ S is

im(φ) = {s ∈ S : s = φ(r) for some r ∈ R}.
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Definition (Ideal). A subset I ⊆ R is an ideal, written I CR, if

(i) It is an additive subgroup of (R,+, 0R), i.e. it is closed under addition and
additive inverses. (additive closure)

(ii) If a ∈ I and b ∈ R, then a · b ∈ I. (strong closure)

We say I is a proper ideal if I 6= R.

Definition (Generator of ideal). For an element a ∈ R, we write

(a) = aR = {a · r : r ∈ R}CR.

This is the ideal generated by a.
In general, let a1, a2, · · · , ak ∈ R, we write

(a1, a2, · · · , ak) = {a1r1 + · · ·+ akrk : r1, · · · , rk ∈ R}.

This is the ideal generated by a1, · · · , ak.

Definition (Generator of ideal). For A ⊆ R a subset, the ideal generated by A
is

(A) =

{∑
a∈A

ra · a : ra ∈ R, only finitely-many non-zero

}
.

Definition (Principal ideal). An ideal I is a principal ideal if I = (a) for some
a ∈ R.

Definition (Quotient ring). Let I CR. The quotient ring R/I consists of the
(additive) cosets r+I with the zero and one as 0R+I and 1R+I, and operations

(r1 + I) + (r2 + I) = (r1 + r2) + I

(r1 + I) · (r2 + I) = r1r2 + I.

Definition (Characteristic of ring). Let R be a ring, and ι : Z → R be the
unique such map. The characteristic of R is the unique non-negative n such
that ker(ι) = nZ.

2.3 Integral domains, field of factions, maximal and prime
ideals

Definition (Integral domain). A non-zero ring R is an integral domain if for all
a, b ∈ R, if a · b = 0R, then a = 0R or b = 0R.

Definition (Zero divisor). An element x ∈ R is a zero divisor if x 6= 0 and there
is a y 6= 0 such that x · y = 0 ∈ R.

Notation. Write R[X,Y ] for (R[X])[Y ], the polynomial ring of R in two vari-
ables. In general, write R[X1, · · · , Xn] = (· · · ((R[X1])[X2]) · · · )[Xn].

Definition (Field of fractions). Let R be an integral domain. A field of fractions
F of R is a field with the following properties

(i) R ≤ F
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(ii) Every element of F may be written as a · b−1 for a, b ∈ R, where b−1 means
the multiplicative inverse to b 6= 0 in F .

Definition (Maximal ideal). An ideal I of a ring R is maximal if I 6= R and for
any ideal J with I ≤ J ≤ R, either J = I or J = R.

Definition (Prime ideal). An ideal I of a ring R is prime if I 6= R and whenever
a, b ∈ R are such that a · b ∈ I, then a ∈ I or b ∈ I.

2.4 Factorization in integral domains

Definition (Unit). An element a ∈ R is a unit if there is a b ∈ R such that
ab = 1R. Equivalently, if the ideal (a) = R.

Definition (Division). For elements a, b ∈ R, we say a divides b, written a | b,
if there is a c ∈ R such that b = ac. Equivalently, if (b) ⊆ (a).

Definition (Associates). We say a, b ∈ R are associates if a = bc for some unit
c. Equivalently, if (a) = (b). Equivalently, if a | b and b | a.

Definition (Irreducible). We say a ∈ R is irreducible if a 6= 0, a is not a unit,
and if a = xy, then x or y is a unit.

Definition (Prime). We say a ∈ R is prime if a is non-zero, not a unit, and
whenever a | xy, either a | x or a | y.

Definition (Euclidean domain). An integral domain R is a Euclidean domain
(ED) if there is a Euclidean function φ : R \ {0} → Z≥0 such that

(i) φ(a · b) ≥ φ(b) for all a, b 6= 0

(ii) If a, b ∈ R, with b 6= 0, then there are q, r ∈ R such that

a = b · q + r,

and either r = 0 or φ(r) < φ(b).

Definition (Principal ideal domain). A ring R is a principal ideal domain (PID)
if it is an integral domain, and every ideal is a principal ideal, i.e. for all I CR,
there is some a such that I = (a).

Definition (Unique factorization domain). An integral domain R is a unique
factorization domain (UFD) if

(i) Every non-unit may be written as a product of irreducibles;

(ii) If p1p2 · · · pn = q1 · · · qm with pi, qj irreducibles, then n = m, and they can
be reordered such that pi is an associate of qi.

Definition (Ascending chain condition). A ring satisfies the ascending chain
condition (ACC) if there is no infinite strictly increasing chain of ideals.

Definition (Noetherian ring). A ring that satisfies the ascending chain condition
is known as a Noetherian ring.

Definition (Greatest common divisor). d is a greatest common divisor (gcd) of
a1, a2, · · · , an if d | ai for all i, and if any other d′ satisfies d′ | ai for all i, then
d′ | d.
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2.5 Factorization in polynomial rings

Definition (Content). Let R be a UFD and f = a0 +a1X+ · · ·+anX
n ∈ R[X].

The content c(f) of f is

c(f) = gcd(a0, a1, · · · , an) ∈ R.

Definition (Primitive polynomial). A polynomial is primitive if c(f) is a unit,
i.e. the ai are coprime.

2.6 Gaussian integers

Definition (Gaussian integers). The Gaussian integers is the subring

Z[i] = {a+ bi : a, b ∈ Z} ≤ C.

2.7 Algebraic integers

Definition (Algebraic integer). An α ∈ C is called an algebraic integer if it is
a root of a monic polynomial in Z[X], i.e. there is a monic f ∈ Z[X] such that
f(α) = 0.

Notation. For α an algebraic integer, we write Z[α] ≤ C for the smallest subring
containing α.

Definition (Minimal polynomial). Let α ∈ C be an algebraic integer. Then
the minimal polynomial is a polynomial fα is the irreducible monic such that
I = ker(φ) = (fα).

2.8 Noetherian rings

Definition (Noetherian ring). A ring is Noetherian if for any chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · · ,

there is some N such that IN = IN+1 = IN+2 = · · · .
This condition is known as the ascending chain condition.

Definition (Finitely generated ideal). An ideal I is finitely generated if it can
be written as I = (r1, · · · , rn) for some r1, · · · , rn ∈ R.
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3 Modules

3.1 Definitions and examples

Definition (Module). Let R be a commutative ring. We say a quadruple
(M,+, 0M , · ) is an R-module if

(i) (M,+, 0M ) is an abelian group

(ii) The operation · : R×M →M satisfies

(a) (r1 + r2) ·m = (r1 ·m) + (r2 ·m);

(b) r · (m1 +m2) = (r ·m1) + (r ·m2);

(c) r1 · (r2 ·m) = (r1 · r2) ·m; and

(d) 1R ·m = m.

Definition (Submodule). Let M be an R-module. A subset N ⊆ M is an
R-submodule if it is a subgroup of (M,+, 0M ), and if n ∈ N and r ∈ R, then
rn ∈ N . We write N ≤M .

Definition (Quotient module). Let N ≤M be an R-submodule. The quotient
module M/N is the set of N -cosets in (M,+, 0M ), with the R-action given by

r · (m+N) = (r ·m) +N.

Definition (R-module homomorphism and isomorphism). A function f : M →
N between R-modules is an R-module homomorphism if it is a homomorphism
of abelian groups, and satisfies

f(r ·m) = r · f(m)

for all r ∈ R and m ∈M .
An isomorphism is a bijective homomorphism, and two R-modules are

isomorphic if there is an isomorphism between them.

Definition (Annihilator). Let M be an R-module, and m ∈M . The annihilator
of m is

Ann(m) = {r ∈ R : r ·m = 0}.
For any set S ⊆M , we define

Ann(S) = {r ∈ R : r ·m = 0 for all m ∈ S} =
⋂
m∈S

Ann(m).

In particular, for the module M itself, we have

Ann(M) = {r ∈ R : r ·m = 0 for all m ∈M} =
⋂
m∈M

Ann(m).

Definition (Submodule generated by element). Let M be an R-module, and
m ∈M . The submodule generated by m is

Rm = {r ·m ∈M : r ∈ R}.

Definition (Finitely generated module). An R-module M is finitely generated
if there is a finite list of elements m1, · · · ,mk such that

M = Rm1 +Rm2 + · · ·+Rmk = {r1m1 + r2m2 + · · ·+ rkmk : ri ∈ R}.
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3.2 Direct sums and free modules

Definition (Direct sum of modules). Let M1,M2, · · · ,Mk be R-modules. The
direct sum is the R-module

M1 ⊕M2 ⊕ · · · ⊕Mk,

which is the set M1 ×M2 × · · · ×Mk, with addition given by

(m1, · · · ,mk) + (m′1, · · · ,m′k) = (m1 +m′1, · · · ,mk +m′k),

and the R-action given by

r · (m1, · · · ,mk) = (rm1, · · · , rmk).

Definition (Linear independence). Let m1, · · · ,mk ∈M . Then {m1, · · · ,mk}
is linearly independent if

k∑
i=1

rimi = 0

implies r1 = r2 = · · · = rk = 0.

Definition (Freely generate). A subset S ⊆M generates M freely if

(i) S generates M

(ii) Any set function ψ : S → N to an R-module N extends to an R-module
map θ : M → N .

Definition (Free module and basis). An R-module is free if it is freely generated
by some subset S ⊆M , and S is called a basis.

Definition (Relations). If M is a finitely-generated R-module, we have shown
that there is a surjective R-module homomorphism φ : Rk →M . We call ker(φ)
the relation module for those generators.

Definition (Finitely presented module). A finitely-generated module is finitely
presented if we have a surjective homomorphism φ : Rk →M and kerφ is finitely
generated.

3.3 Matrices over Euclidean domains

Definition (Elementary row operations). Elementary row operations on an
m× n matrix A with entries in R are operations of the form

(i) Add c ∈ R times the ith row to the jth row. This may be done by
multiplying by the following matrix on the left:

1
. . .

1 c
. . .

1
. . .

1


,

where c appears in the ith column of the jth row.
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(ii) Swap the ith and jth rows. This can be done by left-multiplication of the
matrix 

1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1



.

Again, the rows and columns we have messed with are the ith and jth
rows and columns.

(iii) We multiply the ith row by a unit c ∈ R. We do this via the following
matrix: 

1
. . .

1
c

1
. . .

1


Notice that if R is a field, then we can multiply any row by any non-zero
number, since they are all units.

We also have elementary column operations defined in a similar fashion, corre-
sponding to right multiplication of the matrices. Notice all these matrices are
invertible.

Definition (Equivalent matrices). Two matrices are equivalent if we can get from
one to the other via a sequence of such elementary row and column operations.

Definition (Invariant factors). The dk obtained in the Smith normal form are
called the invariant factors of A.

Definition (Minor). A k× k minor of a matrix A is the determinant of a k× k
sub-matrix of A (i.e. a matrix formed by removing all but k rows and all but k
columns).

Definition (Fitting ideal). For a matrix A, the kth Fitting ideal Fitk(A) CR is
the ideal generated by the set of all k × k minors of A.

3.4 Modules over F[X] and normal forms for matrices

3.5 Conjugacy of matrices*

14


	Introduction
	Groups
	Basic concepts
	Normal subgroups, quotients, homomorphisms, isomorphisms
	Actions of permutations
	Conjugacy, centralizers and normalizers
	Finite p-groups
	Finite abelian groups
	Sylow theorems

	Rings
	Definitions and examples
	Homomorphisms, ideals, quotients and isomorphisms
	Integral domains, field of factions, maximal and prime ideals
	Factorization in integral domains
	Factorization in polynomial rings
	Gaussian integers
	Algebraic integers
	Noetherian rings

	Modules
	Definitions and examples
	Direct sums and free modules
	Matrices over Euclidean domains
	Modules over F[X] and normal forms for matrices
	Conjugacy of matrices*


