Part IA — Vectors and Matrices
Theorems with proof

Based on lectures by N. Peake
Notes taken by Dexter Chua
Michaelmas 2014

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Complex numbers
Review of complex numbers, including complex conjugate, inverse, modulus, argument and Argand diagram. Informal treatment of complex logarithm, \(n \)-th roots and complex powers. de Moivre’s theorem. [2]

Vectors
Review of elementary algebra of vectors in \(\mathbb{R}^3 \), including scalar product. Brief discussion of vectors in \(\mathbb{R}^n \) and \(\mathbb{C}^n \); scalar product and the Cauchy-Schwarz inequality. Concepts of linear span, linear independence, subspaces, basis and dimension.
Suffix notation: including summation convention, \(\delta_{ij} \) and \(\varepsilon_{ijk} \). Vector product and triple product: definition and geometrical interpretation. Solution of linear vector equations. Applications of vectors to geometry, including equations of lines, planes and spheres. [5]

Matrices
Elementary algebra of \(3 \times 3 \) matrices, including determinants. Extension to \(n \times n \) complex matrices. Trace, determinant, non-singular matrices and inverses. Matrices as linear transformations; examples of geometrical actions including rotations, reflections, dilations, shears; kernel and image. [4]
Simultaneous linear equations: matrix formulation; existence and uniqueness of solutions, geometric interpretation; Gaussian elimination. [3]
Symmetric, anti-symmetric, orthogonal, hermitian and unitary matrices. Decomposition of a general matrix into isotropic, symmetric trace-free and antisymmetric parts. [1]

Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors; geometric significance. [2]
Proof that eigenvalues of hermitian matrix are real, and that distinct eigenvalues give an orthogonal basis of eigenvectors. The effect of a general change of basis (similarity transformations). Diagonalization of general matrices: sufficient conditions; examples of matrices that cannot be diagonalized. Canonical forms for \(2 \times 2 \) matrices. [5]
Discussion of quadratic forms, including change of basis. Classification of conics, cartesian and polar forms. [1]
Rotation matrices and Lorentz transformations as transformation groups. [1]
Contents

0 Introduction 4

1 Complex numbers 5
 1.1 Basic properties .. 5
 1.2 Complex exponential function 5
 1.3 Roots of unity ... 6
 1.4 Complex logarithm and power 6
 1.5 De Moivre’s theorem 6
 1.6 Lines and circles in \(\mathbb{C} \) 7

2 Vectors 8
 2.1 Definition and basic properties 8
 2.2 Scalar product ... 8
 2.2.1 Geometric picture (\(\mathbb{R}^2 \) and \(\mathbb{R}^3 \) only) 8
 2.2.2 General algebraic definition 8
 2.3 Cauchy-Schwarz inequality 8
 2.4 Vector product .. 9
 2.5 Scalar triple product 9
 2.6 Spanning sets and bases 9
 2.6.1 2D space .. 9
 2.6.2 3D space .. 9
 2.6.3 \(\mathbb{R}^n \) space 9
 2.6.4 \(\mathbb{C}^n \) space 9
 2.7 Vector subspaces .. 9
 2.8 Suffix notation .. 10
 2.9 Geometry .. 10
 2.9.1 Lines ... 10
 2.9.2 Plane .. 11
 2.10 Vector equations .. 11

3 Linear maps 12
 3.1 Examples .. 12
 3.1.1 Rotation in \(\mathbb{R}^3 \) 12
 3.1.2 Reflection in \(\mathbb{R}^3 \) 12
 3.2 Linear Maps ... 12
 3.3 Rank and nullity ... 12
 3.4 Matrices .. 13
 3.4.1 Examples .. 13
 3.4.2 Matrix Algebra 13
 3.4.3 Decomposition of an \(n \times n \) matrix 13
 3.4.4 Matrix inverse 13
 3.5 Determinants ... 13
 3.5.1 Permutations ... 13
 3.5.2 Properties of determinants 14
 3.5.3 Minors and Cofactors 16
4 Matrices and linear equations 17
 4.1 Simple example, 2×2 17
 4.2 Inverse of an $n \times n$ matrix 17
 4.3 Homogeneous and inhomogeneous equations 17
 4.3.1 Gaussian elimination 17
 4.4 Matrix rank 17
 4.5 Homogeneous problem $Ax = 0$ 18
 4.5.1 Geometrical interpretation 18
 4.5.2 Linear mapping view of $Ax = 0$ 18
 4.6 General solution of $Ax = d$ 18

5 Eigenvalues and eigenvectors 19
 5.1 Preliminaries and definitions 19
 5.2 Linearly independent eigenvectors 19
 5.3 Transformation matrices 19
 5.3.1 Transformation law for vectors 19
 5.3.2 Transformation law for matrix 20
 5.4 Similar matrices 20
 5.5 Diagonalizable matrices 20
 5.6 Canonical (Jordan normal) form 21
 5.7 Cayley-Hamilton Theorem 22
 5.8 Eigenvalues and eigenvectors of a Hermitian matrix 22
 5.8.1 Eigenvalues and eigenvectors 22
 5.8.2 Gram-Schmidt orthogonalization (non-examinable) 23
 5.8.3 Unitary transformation 23
 5.8.4 Diagonalization of $n \times n$ Hermitian matrices 23
 5.8.5 Normal matrices 24

6 Quadratic forms and conics 25
 6.1 Quadrics and conics 25
 6.1.1 Quadrics 25
 6.1.2 Conic sections ($n = 2$) 25
 6.2 Focus-directrix property 25

7 Transformation groups 26
 7.1 Groups of orthogonal matrices 26
 7.2 Length preserving matrices 26
 7.3 Lorentz transformations 26
0 Introduction
1 Complex numbers

1.1 Basic properties

Proposition. $\bar{z}z = a^2 + b^2 = |z|^2$.

Proposition. $z^{-1} = \bar{z}/|z|^2$.

Theorem (Triangle inequality). For all $z_1, z_2 \in \mathbb{C}$, we have

$$|z_1 + z_2| \leq |z_1| + |z_2|.$$

Alternatively, we have $|z_1 - z_2| \geq ||z_1| - |z_2||$.

1.2 Complex exponential function

Lemma. \[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{mn} = \sum_{r=0}^{\infty} \sum_{m=0}^{r} a_{r-m,m} \]

Proof.

\[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{mn} = a_{00} + a_{01} + a_{02} + \cdots \]
\[+ a_{10} + a_{11} + a_{12} + \cdots \]
\[+ a_{20} + a_{21} + a_{22} + \cdots \]
\[= (a_{00}) + (a_{10} + a_{01}) + (a_{20} + a_{11} + a_{02}) + \cdots \]
\[= \sum_{r=0}^{\infty} \sum_{m=0}^{r} a_{r-m,m} \]

\[\square \]

Theorem. $\exp(z_1) \exp(z_2) = \exp(z_1 + z_2)$

Proof.

\[\exp(z_1) \exp(z_2) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{z_1^n z_2^m}{m! n!} \]
\[= \sum_{r=0}^{\infty} \sum_{m=0}^{r} \frac{z_1^{r-m} z_2^m}{(r-m)! m!} \]
\[= \sum_{r=0}^{\infty} \frac{1}{r!} \sum_{m=0}^{r} \frac{r!}{(r-m)!m!} z_1^{r-m} z_2^m \]
\[= \sum_{r=0}^{\infty} \frac{(z_1 + z_2)^r}{r!} \]

\[\square \]

Theorem. $e^{iz} = \cos z + i \sin z$.

5
Proof.

\[e^{iz} = \sum_{n=0}^{\infty} \frac{i^n}{n!} z^n = \sum_{n=0}^{\infty} \frac{i^{2n}}{(2n)!} z^{2n} + i \sum_{n=0}^{\infty} \frac{i^{2n+1}}{(2n+1)!} z^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} + \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} = \cos z + i \sin z \]

1.3 Roots of unity

Proposition. If \(\omega = \exp \left(\frac{2\pi i}{n} \right) \), then \(1 + \omega + \omega^2 + \cdots + \omega^{n-1} = 0 \)

Proof. Two proofs are provided:

(i) Consider the equation \(z^n = 1 \). The coefficient of \(z^{n-1} \) is the sum of all roots. Since the coefficient of \(z^{n-1} \) is 0, then the sum of all roots \(= 1 + \omega + \omega^2 + \cdots + \omega^{n-1} = 0 \).

(ii) Since \(\omega^n - 1 = (\omega - 1)(1 + \omega + \cdots + \omega^{n-1}) \) and \(\omega \neq 1 \), dividing by \((\omega - 1) \), we have \(1 + \omega + \cdots + \omega^{n-1} = (\omega^n - 1)/(\omega - 1) = 0 \).

1.4 Complex logarithm and power

1.5 De Moivre’s theorem

Theorem (De Moivre’s theorem).

\[\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^n. \]

Proof. First prove for the \(n \geq 0 \) case by induction. The \(n = 0 \) case is true since it merely reads \(1 = 1 \). We then have

\[
(cos \theta + i \sin \theta)^{n+1} = (cos \theta + i \sin \theta)^n (cos \theta + i \sin \theta) \\
= (cos n\theta + i \sin n\theta)(cos \theta + i \sin \theta) \\
= cos((n+1)\theta) + i \sin((n+1)\theta)
\]

If \(n < 0 \), let \(m = -n \). Then \(m > 0 \) and

\[
(cos \theta + i \sin \theta)^{-m} = (cos m\theta + i \sin m\theta)^{-1} \\
= \frac{cos m\theta - i \sin m\theta}{(cos m\theta + i \sin m\theta)(cos m\theta - i \sin m\theta)} \\
= \frac{cos(-m\theta) + i \sin(-m\theta)}{cos^2 m\theta + \sin^2 m\theta} \\
= cos(-m\theta) + i \sin(-m\theta) \\
= cos m\theta + i \sin m\theta
\]
1.6 Lines and circles in \mathbb{C}

Theorem (Equation of straight line). The equation of a straight line through z_0 and parallel to w is given by

$$z\bar{w} - \bar{z}w = z_0\bar{w} - \bar{z}_0w.$$

Theorem. The general equation of a circle with center $c \in \mathbb{C}$ and radius $\rho \in \mathbb{R}^+$ can be given by

$$z\bar{z} - cz - \bar{c}z = \rho^2 - c\bar{c}.$$
2 Vectors

2.1 Definition and basic properties

2.2 Scalar product

2.2.1 Geometric picture (\mathbb{R}^2 and \mathbb{R}^3 only)

2.2.2 General algebraic definition

2.3 Cauchy-Schwarz inequality

Theorem (Cauchy-Schwarz inequality). For all $x, y \in \mathbb{R}^n$,

$$|x \cdot y| \leq |x||y|.$$

Proof. Consider the expression $|x - \lambda y|^2$. We must have

$$|x - \lambda y|^2 \geq 0$$

$$(x - \lambda y) \cdot (x - \lambda y) \geq 0$$

$$\lambda^2 |y|^2 - \lambda(2x \cdot y) + |x|^2 \geq 0.$$

Viewing this as a quadratic in λ, we see that the quadratic is non-negative and thus cannot have 2 real roots. Thus the discriminant $\Delta \leq 0$. So

$$4(x \cdot y)^2 \leq 4|y|^2|x|^2$$

$$(x \cdot y)^2 \leq |x|^2|y|^2$$

$$|x \cdot y| \leq |x||y|.$$

Corollary (Triangle inequality).

$$|x + y| \leq |x| + |y|.$$

Proof.

$$|x + y|^2 = (x + y) \cdot (x + y)$$

$$= |x|^2 + 2x \cdot y + |y|^2$$

$$\leq |x|^2 + 2|x||y| + |y|^2$$

$$= (|x| + |y|)^2.$$

So

$$|x + y| \leq |x| + |y|.$$

2.4 Vector product

Proposition.

$$a \times b = (a_1\hat{i} + a_2\hat{j} + a_3\hat{k}) \times (b_1\hat{i} + b_2\hat{j} + b_3\hat{k})$$

$$= (a_2b_3 - a_3b_2)\hat{i} + \cdots$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$
2.5 Scalar triple product

Proposition. If a parallelepiped has sides represented by vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c} \) that form a right-handed system, then the volume of the parallelepiped is given by \(| \mathbf{a} \times \mathbf{b} \times \mathbf{c} | \).

Proof. The area of the base of the parallelepiped is given by \(| \mathbf{b} \times \mathbf{c} | \sin \theta = | \mathbf{b} \times \mathbf{c} | \), where \(\theta \) is the angle between \(\mathbf{a} \) and the normal to \(\mathbf{b} \) and \(\mathbf{c} \). However, since \(\mathbf{a}, \mathbf{b}, \mathbf{c} \) form a right-handed system, we have \(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \geq 0 \). Therefore the volume is \(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \).

Theorem. \(\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} \).

Proof. Let \(\mathbf{d} = \mathbf{a} \times (\mathbf{b} + \mathbf{c}) - \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c} \). We have

\[
\begin{align*}
\mathbf{d} \cdot \mathbf{d} &= \mathbf{d} \cdot [\mathbf{a} \times (\mathbf{b} + \mathbf{c})] - \mathbf{d} \cdot (\mathbf{a} \times \mathbf{b}) - \mathbf{d} \cdot (\mathbf{a} \times \mathbf{c}) \\
&= (\mathbf{b} + \mathbf{c}) \cdot (\mathbf{d} \times \mathbf{a}) - \mathbf{b} \cdot (\mathbf{d} \times \mathbf{a}) - \mathbf{c} \cdot (\mathbf{d} \times \mathbf{a}) \\
&= 0
\end{align*}
\]

Thus \(\mathbf{d} = 0 \).

2.6 Spanning sets and bases

2.6.1 2D space

Theorem. The coefficients \(\lambda, \mu \) are unique.

Proof. Suppose that \(\mathbf{r} = \lambda \mathbf{a} + \mu \mathbf{b} = \lambda' \mathbf{a} + \mu' \mathbf{b} \). Take the vector product with \(\mathbf{a} \) on both sides to get \((\mu - \mu') \mathbf{a} \times \mathbf{b} = 0 \). Since \(\mathbf{a} \times \mathbf{b} \neq 0 \), then \(\mu = \mu' \). Similarly, \(\lambda = \lambda' \).

2.6.2 3D space

Theorem. If \(\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3 \) are non-coplanar, i.e. \(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \neq 0 \), then they form a basis of \(\mathbb{R}^3 \).

Proof. For any \(\mathbf{r} \), write \(\mathbf{r} = \lambda \mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c} \). Performing the scalar product with \(\mathbf{b} \times \mathbf{c} \) on both sides, one obtains \(\mathbf{r} \cdot (\mathbf{b} \times \mathbf{c}) = \lambda \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \mu \mathbf{b} \cdot (\mathbf{b} \times \mathbf{c}) + \nu \mathbf{c} \cdot (\mathbf{b} \times \mathbf{c}) = \lambda |\mathbf{a}, \mathbf{b}, \mathbf{c}| \). Thus \(\lambda = [\mathbf{r}, \mathbf{b}, \mathbf{c}]/|\mathbf{a}, \mathbf{b}, \mathbf{c}| \). The values of \(\mu \) and \(\nu \) can be found similarly. Thus each \(\mathbf{r} \) can be written as a linear combination of \(\mathbf{a}, \mathbf{b} \) and \(\mathbf{c} \).

By the formula derived above, it follows that if \(\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \), then \(\alpha = \beta = \gamma = 0 \). Thus they are linearly independent.

2.6.3 \(\mathbb{R}^n \) space

2.6.4 \(\mathbb{C}^n \) space

2.7 Vector subspaces

2.8 Suffix notation

Proposition. \((\mathbf{a} \times \mathbf{b})_i = \varepsilon_{ijk} a_j b_k \)

Proof. By expansion of formula
Theorem. $\varepsilon_{ijk}\varepsilon_{ipq} = \delta_{jp}\delta_{kq} - \delta_{jq}\delta_{kp}$

Proof. Proof by exhaustion:

$$\text{RHS} = \begin{cases} +1 & \text{if } j = p \text{ and } k = q \\ -1 & \text{if } j = q \text{ and } k = p \\ 0 & \text{otherwise} \end{cases}$$

LHS: Summing over i, the only non-zero terms are when $j, k \neq i$ and $p, q \neq i$.

If $j = p$ and $k = q$, LHS is $(-1)^2$ or $(+1)^2 = 1$. If $j = q$ and $k = p$, LHS is $(+1)(-1)$ or $(-1)(+1) = -1$. All other possibilities result in 0.

Proposition. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})$

Proof. In suffix notation, we have

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = a_i (b \times c)_i = \varepsilon_{ijk} b_j c_k a_i = \varepsilon_{jki} b_j c_k a_i = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}).$$

Theorem (Vector triple product).

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}.$$

Proof.

$$[\mathbf{a} \times (\mathbf{b} \times \mathbf{c})]_i = \varepsilon_{ijk} a_j (b \times c)_k = \varepsilon_{ijk} \varepsilon_{kpq} a_j b_p c_q = \delta_{jp}\delta_{kq} - \delta_{jq}\delta_{kp} a_j b_p c_q = a_j b_k c_j - a_j c_k b_j = (\mathbf{a} \cdot \mathbf{c})b_i - (\mathbf{a} \cdot \mathbf{b})c_i.$$

Proposition. $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{c}) - (\mathbf{a} \cdot \mathbf{b})(\mathbf{a} \cdot \mathbf{c})$.

Proof.

$$\text{LHS} = (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{c})_i = \varepsilon_{ijk} a_j (b \times c)_k = \delta_{jp}\delta_{kq} - \delta_{jq}\delta_{kp} a_j b_k c_q = a_j b_k a_j c_k - a_j b_k a_j c_j = (\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{c}) - (\mathbf{a} \cdot \mathbf{b})(\mathbf{a} \cdot \mathbf{c})$$

2.9 Geometry

2.9.1 Lines

Theorem. The equation of a straight line through \mathbf{a} and parallel to \mathbf{t} is

$$(\mathbf{x} - \mathbf{a}) \times \mathbf{t} = \mathbf{0} \text{ or } \mathbf{x} \times \mathbf{t} = \mathbf{a} \times \mathbf{t}.$$
2.9.2 Plane

Theorem. The equation of a plane through \(\mathbf{b} \) with normal \(\mathbf{n} \) is given by

\[
\mathbf{x} \cdot \mathbf{n} = \mathbf{b} \cdot \mathbf{n}.
\]

2.10 Vector equations
3 Linear maps

3.1 Examples

3.1.1 Rotation in \mathbb{R}^3

3.1.2 Reflection in \mathbb{R}^3

3.2 Linear Maps

Theorem. Consider a linear map $f : U \rightarrow V$, where U, V are vector spaces. Then $\text{im}(f)$ is a subspace of V, and $\ker(f)$ is a subspace of U.

Proof. Both are non-empty since $f(0) = 0$.

If $x, y \in \text{im}(f)$, then $\exists a, b \in U$ such that $x = f(a), y = f(b)$. Then $\lambda x + \mu y = \lambda f(a) + \mu f(b) = f(\lambda a + \mu b)$. Now $\lambda a + \mu b \in U$ since U is a vector space, so there is an element in U that maps to $\lambda x + \mu y$. So $\lambda x + \mu y \in \text{im}(f)$ and $\text{im}(f)$ is a subspace of V.

Suppose $x, y \in \ker(f)$, i.e. $f(x) = f(y) = 0$. Then $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y) = \lambda 0 + \mu 0 = 0$. Therefore $\lambda x + \mu y \in \ker(f)$.

3.3 Rank and nullity

Theorem (Rank-nullity theorem). For a linear map $f : U \rightarrow V$,

$$r(f) + n(f) = \dim(U).$$

Proof. (Non-examinable) Write $\dim(U) = n$ and $n(f) = m$. If $m = n$, then f is the zero map, and the proof is trivial, since $r(f) = 0$. Otherwise, assume $m < n$.

Suppose $\{e_1, e_2, \ldots, e_n\}$ is a basis of $\ker(f)$, Extend this to a basis of the whole of U to get $\{e_1, e_2, \ldots, e_m, e_{m+1}, \ldots, e_n\}$. To prove the theorem, we need to prove that $\{f(e_{m+1}), f(e_{m+2}), \ldots f(e_n)\}$ is a basis of $\text{im}(f)$.

(i) First show that it spans $\text{im}(f)$. Take $y \in \text{im}(f)$. Thus $\exists x \in U$ such that $y = f(x)$. Then

$$y = f(\alpha_1 e_1 + \alpha_2 e_2 + \cdots + \alpha_n e_n),$$

since e_1, \ldots, e_n is a basis of U. Thus

$$y = \alpha_1 f(e_1) + \alpha_2 f(e_2) + \cdots + \alpha_m f(e_m) + \alpha_{m+1} f(e_{m+1}) + \cdots + \alpha_n f(e_n).$$

The first m terms map to 0, since e_1, \ldots, e_m is the basis of the kernel of f. Thus

$$y = \alpha_{m+1} f(e_{m+1}) + \cdots + \alpha_n f(e_n).$$

(ii) To show that they are linearly independent, suppose

$$\alpha_{m+1} f(e_{m+1}) + \cdots + \alpha_n f(e_n) = 0.$$

Then

$$f(\alpha_{m+1} e_{m+1} + \cdots + \alpha_n e_n) = 0.$$
Thus $\alpha_{m+1}e_{m+1} + \cdots + \alpha_ne_n \in \ker(f)$. Since $\{e_1, \cdots, e_m\}$ span $\ker(f)$, there exist some $\alpha_1, \alpha_2, \cdots, \alpha_m$ such that

$$\alpha_{m+1}e_{m+1} + \cdots + \alpha_ne_n = \alpha_1e_1 + \cdots + \alpha_me_m.$$

But $e_1 \cdots e_n$ is a basis of U and are linearly independent. So $\alpha_i = 0$ for all i. Then the only solution to the equation $\alpha_{m+1}f(e_{m+1}) + \cdots + \alpha_nf(e_n) = 0$ is $\alpha_i = 0$, and they are linearly independent by definition.

3.4 Matrices

3.4.1 Examples

3.4.2 Matrix Algebra

Proposition.
(i) $(A^T)^T = A$.

(ii) If x is a column vector $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, x^T is a row vector $(x_1 \ x_2 \ \cdots \ x_n)$.

(iii) $(AB)^T = B^T A^T$ since $(AB)^T_{ij} = (AB)_{ji} = A_{jk}B_{ki} = B_{ki}A_{jk} = (B^T)_{ik}(A^T)_{kj} = (B^T A^T)_{ij}$.

Proposition. $\text{tr}(BC) = \text{tr}(CB)$

Proof. $\text{tr}(BC) = B_{ik}C_{ki} = C_{ki}B_{ik} = (CB)_{kk} = \text{tr}(CB)$.

3.4.3 Decomposition of an $n \times n$ matrix

3.4.4 Matrix inverse

Proposition. $(AB)^{-1} = B^{-1}A^{-1}$

Proof. $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I$.

3.5 Determinants

3.5.1 Permutations

Proposition. Any q-cycle can be written as a product of 2-cycles.

Proof. $(1 \ 2 \ 3 \ \cdots \ n) = (1 \ 2)(2 \ 3)(3 \ 4) \cdots (n-1 \ n)$.

Proposition.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
3.5.2 Properties of determinants

Proposition. $\det(A) = \det(A^T)$.

Proof. Take a single term $A_{\sigma(1)}A_{\sigma(2)}\cdots A_{\sigma(n)}$ and let ρ be another permutation in S_n. We have

$$A_{\sigma(1)}A_{\sigma(2)}\cdots A_{\sigma(n)} = A_{\sigma(\rho(1))\rho(1)}A_{\sigma(\rho(2))\rho(2)}\cdots A_{\sigma(\rho(n))\rho(n)}$$

since the right hand side is just re-ordering the order of multiplication. Choose $\rho = \sigma^{-1}$ and note that $\varepsilon(\sigma) = \varepsilon(\rho)$. Then

$$\det(A) = \sum_{\rho \in S_n} \varepsilon(\rho) A_{1\rho(1)}A_{2\rho(2)}\cdots A_{n\rho(n)} = \det(A^T).$$

Proposition. If matrix B is formed by multiplying every element in a single row of A by a scalar λ, then $\det(B) = \lambda \det(A)$. Consequently, $\det(\lambda A) = \lambda^n \det(A)$.

Proof. Each term in the sum is multiplied by λ, so the whole sum is multiplied by λ^n.

Proposition. If 2 rows (or 2 columns) of A are identical, the determinant is 0.

Proof. wlog, suppose columns 1 and 2 are the same. Then

$$\det(A) = \sum_{\sigma \in S_n} \varepsilon(\sigma) A_{\sigma(1)}A_{\sigma(2)}\cdots A_{\sigma(n)}.$$

Now write an arbitrary σ in the form $\sigma = \rho(1\ 2)$. Then $\varepsilon(\sigma) = \varepsilon(\rho)\varepsilon((1\ 2)) = -\varepsilon(\rho)$. So

$$\det(A) = \sum_{\rho \in S_n} -\varepsilon(\rho) A_{\rho(2)}\rho(1)A_{\rho(1)}A_{\rho(3)}\cdots A_{\rho(n)}.$$

But columns 1 and 2 are identical, so $A_{\rho(2)}1 = A_{\rho(2)}2$ and $A_{\rho(1)}2 = A_{\rho(1)}1$. So $\det(A) = -\det(A)$ and $\det(A) = 0$.

Proposition. If 2 rows or 2 columns of a matrix are linearly dependent, then the determinant is zero.

Proof. Suppose in A, (column r) $+ \lambda$(column s) = 0. Define

$$B_{ij} = \begin{cases} A_{ij} & j \neq r \\ A_{ij} + \lambda A_{is} & j = r \end{cases}$$

Then $\det(B) = \det(A) + \lambda \det(\text{matrix with column } r = \text{column } s) = \det(A)$. Then we can see that the rth column of B is all zeroes. So each term in the sum contains one zero and $\det(A) = \det(B) = 0$.

Proposition. Given a matrix A, if B is a matrix obtained by adding a multiple of a column (or row) of A to another column (or row) of A, then $\det A = \det B$.

Corollary. Swapping two rows or columns of a matrix negates the determinant.
Proof. We do the column case only. Let $A = (a_1 \cdots a_i \cdots a_j \cdots a_n)$. Then
\[
\det(a_1 \cdots a_i \cdots a_j \cdots a_n) = \det(a_1 \cdots a_i + a_j \cdots a_n)
= \det(a_1 \cdots a_i + a_j \cdots a_i - a_j \cdots a_n)
= -\det(a_1 \cdots a_j \cdots a_i \cdots a_n)
\]
Alternatively, we can prove this from the definition directly, using the fact that the sign of a transposition is -1 (and that the sign is multiplicative).

Proposition. $\det(AB) = \det(A) \det(B)$.

Proof. First note that $\sum_\sigma \varepsilon(\sigma) A_{\sigma(1)}^{(1)} A_{\sigma(2)}^{(2)} \cdots (AB)_{\sigma(n)n}$
\[
= \sum_\sigma \varepsilon(\sigma) \sum_{k_1, k_2, \ldots, k_n} A_{\sigma(1)k_1} B_{k_11} \cdots A_{\sigma(n)k_n} B_{k_n n}
= \sum_{k_1, k_2, \ldots, k_n} B_{k_11} \cdots B_{k_n n} \sum_\sigma \varepsilon(\sigma) A_{\sigma(1)k_1} A_{\sigma(2)k_2} \cdots A_{\sigma(n)k_n}
\]
Now consider the many different S's. If in S, two of k_1 and k_n are equal, then S is a determinant of a matrix with two columns the same, i.e. $S = 0$. So we only have to consider the sum over distinct k_is. Thus the k_is are are a permutation of $1, \cdots, n$, say $k_i = \rho(i)$. Then we can write
\[
\det AB = \sum_\rho B_{\rho(1)1} \cdots B_{\rho(n)n} \sum_\sigma \varepsilon(\sigma) A_{\sigma(1)\rho(1)} \cdots A_{\sigma(n)\rho(n)}
= \sum_\rho B_{\rho(1)1} \cdots B_{\rho(n)n} (\varepsilon(\rho) \det A)
= \det A \sum_\rho \varepsilon(\rho) B_{\rho(1)1} \cdots B_{\rho(n)n}
= \det A \det B
\]

Corollary. If A is orthogonal, $\det A = \pm 1$.

Proof.
\[
AA^T = I \quad \text{det } AA^T = \det I
\]
\[
\det A \det A^T = 1 \quad (\det A)^2 = 1 \quad \det A = \pm 1
\]
Corollary. If U is unitary, $|\det U| = 1$.

Proof. We have $\det U^\dagger = (\det U^T)^* = \det(U)^*$. Since $UU^\dagger = I$, we have $\det(U)\det(U)^* = 1$. \qed

Proposition. In \mathbb{R}^3, orthogonal matrices represent either a rotation ($\det = 1$) or a reflection ($\det = -1$).

3.5.3 Minors and Cofactors

Theorem (Laplace expansion formula). For any particular fixed i,

$$\det A = \sum_{j=1}^{n} A_{ji} \Delta_{ji}.\]$$

Proof.

$$\det A = \sum_{j=1}^{n} A_{ji} \sum_{j_1=1}^{n} \varepsilon_{j_1 j_2 \ldots j_n} A_{j_1 j_2} \ldots \overline{A_{ji}} \cdots A_{jn}.\]$$

Let $\sigma \in S_n$ be the permutation which moves j_i to the ith position, and leave everything else in its natural order, i.e.

$$\sigma = \left(\begin{array}{cccccc} 1 & \cdots & i & i+1 & \cdots & n \\ 1 & \cdots & j_i & i+1 & \cdots & n \end{array} \right)$$

if $j_i > i$, and similarly for other cases. To perform this permutation, $|i - j_i|$ transpositions are made. So $\varepsilon(\sigma) = (-1)^{|i - j_i|}$.

Now consider the permutation $\rho \in S_n$

$$\rho = \left(\begin{array}{cccccc} 1 & \cdots & \tilde{j}_i & \cdots & n \\ j_1 & \cdots & \tilde{j}_i & \cdots & j_n \end{array} \right)$$

The composition $\rho \sigma$ reorders $(1, \ldots, n)$ to $(j_1, \tilde{j}_i, \ldots, j_n)$. So $\varepsilon(\rho \sigma) = \varepsilon(j_1 \ldots j_n) = \varepsilon(\rho)\varepsilon(\sigma) = (-1)^{|j_i - \tilde{j}_i|} \varepsilon(j_1 \ldots j_n)$. Hence the original equation becomes

$$\det A = \sum_{j=1}^{n} A_{ji} \sum_{j_1=1}^{n} (-1)^{|j_i - j_1|} \varepsilon_{j_1 j_2 \ldots j_n} A_{j_1 j_2} \ldots \overline{A_{ji}} \cdots A_{jn}$$

$$\begin{align*}
&= \sum_{j_i=1}^{n} A_{ji} \varepsilon_{j_1 j_2 \ldots j_n} M_{ji} \\
&= \sum_{j_i=1}^{n} A_{ji} \Delta_{ji} \\
&= \sum_{j=1}^{n} A_{ji} \Delta_{ji} \quad \square
\end{align*}$$
4 Matrices and linear equations

4.1 Simple example, 2×2

4.2 Inverse of an $n \times n$ matrix

Lemma. $\sum A_{ik} \Delta_{jk} = \delta_{ij} \det A$.

Proof. If $i \neq j$, then consider an $n \times n$ matrix B, which is identical to A except the jth row is replaced by the ith row of A. So Δ_{jk} of $B = \Delta_{jk}$ of A, since Δ_{jk} does not depend on the elements in row j. Since B has a duplicate row, we know that

$$0 = \det B = \sum_{k=1}^{n} B_{jk} \Delta_{jk} = \sum_{k=1}^{n} A_{ik} \Delta_{jk}.$$

If $i = j$, then the expression is $\det A$ by the Laplace expansion formula.

Theorem. If $\det A \neq 0$, then A^{-1} exists and is given by

$$(A^{-1})_{ij} = \frac{\Delta_{ji}}{\det A}.$$

Proof.

$$(A^{-1})_{ik} A_{kj} = \frac{\Delta_{ki}}{\det A} A_{kj} = \delta_{ij} \frac{\det A}{\det A} = \delta_{ij}.$$

So $A^{-1} A = I$.

4.3 Homogeneous and inhomogeneous equations

4.3.1 Gaussian elimination

4.4 Matrix rank

Theorem. The column rank and row rank are equal for any $m \times n$ matrix.

Proof. Let r be the row rank of A. Write the biggest set of linearly independent rows as $v^T_1, v^T_2, \cdots v^T_r$ or in component form $v^T_k = (v_{k1}, v_{k2}, \cdots, v_{kn})$ for $k = 1, 2, \cdots, r$.

Now denote the ith row of A as $r^T_i = (A_{i1}, A_{i2}, \cdots, A_{in})$.

Note that every row of A can be written as a linear combination of the v’s. (If r_1 cannot be written as a linear combination of the v’s, then it is independent of the v’s and v is not the maximum collection of linearly independent rows)

Write

$$r^T_i = \sum_{k=1}^{r} C_{ik} v^T_k.$$

For some coefficients C_{ik} with $1 \leq i \leq m$ and $1 \leq k \leq r$.

Now the elements of A are

$$A_{ij} = (r^T_i)_j = \sum_{k=1}^{r} C_{ik} (v^T_k)_j.$$
or

\[
\begin{pmatrix}
A_{1j} \\
A_{2j} \\
\vdots \\
A_{mj}
\end{pmatrix}
= \sum_{k=1}^{r} v_{kj}
\begin{pmatrix}
C_{1k} \\
C_{2k} \\
\vdots \\
C_{mk}
\end{pmatrix}
\]

So every column of \(A \) can be written as a linear combination of the \(r \) column vectors \(c_k \). Then the column rank of \(A \leq r \), the row rank of \(A \).

Apply the same argument to \(A^T \) to see that the row rank is \(\leq \) the column rank.

4.5 Homogeneous problem \(Ax = 0 \)

4.5.1 Geometrical interpretation

4.5.2 Linear mapping view of \(Ax = 0 \)

4.6 General solution of \(Ax = d \)
5 Eigenvalues and eigenvectors

5.1 Preliminaries and definitions

Theorem (Fundamental theorem of algebra). Let \(p(z) \) be a polynomial of degree \(m \geq 1 \), i.e.
\[
p(z) = \sum_{j=0}^{m} c_j z^j,
\]
where \(c_j \in \mathbb{C} \) and \(c_m \neq 0 \).

Then \(p(z) = 0 \) has precisely \(m \) (not necessarily distinct) roots in the complex plane, accounting for multiplicity.

Theorem. \(\lambda \) is an eigenvalue of \(A \) iff \(\det(A - \lambda I) = 0 \).

Proof. (\(\Rightarrow \)) Suppose that \(\lambda \) is an eigenvalue and \(x \) is the associated eigenvector. We can rearrange the equation in the definition above to
\[
(A - \lambda I)x = 0
\]
and thus
\[
x \in \ker(A - \lambda I)
\]
But \(x \neq 0 \). So \(\ker(A - \lambda I) \) is non-trivial and \(\det(A - \lambda I) = 0 \). The (\(\Leftarrow \)) direction is similar.

5.2 Linearly independent eigenvectors

Theorem. Suppose \(n \times n \) matrix \(A \) has distinct eigenvalues \(\lambda_1, \lambda_2, \cdots, \lambda_n \). Then the corresponding eigenvectors \(x_1, x_2, \cdots, x_n \) are linearly independent.

Proof. Proof by contradiction: Suppose \(x_1, x_2, \cdots, x_n \) are linearly dependent. Then we can find non-zero constants \(d_i \) for \(i = 1, 2, \cdots, r \), such that
\[
d_1x_1 + d_2x_2 + \cdots + d_rx_r = 0.
\]
Suppose that this is the shortest non-trivial linear combination that gives \(0 \) (we may need to re-order \(x_i \)).

Now apply \((A - \lambda_1 I) \) to the whole equation to obtain
\[
d_1(\lambda_1 - \lambda_1)x_1 + d_2(\lambda_2 - \lambda_1)x_2 + \cdots + d_r(\lambda_r - \lambda_1)x_r = 0.
\]
We know that the first term is \(0 \), while the others are not (since we assumed \(\lambda_i \neq \lambda_j \) for \(i \neq j \)). So
\[
d_2(\lambda_2 - \lambda_1)x_2 + \cdots + d_r(\lambda_r - \lambda_1)x_r = 0,
\]
and we have found a shorter linear combination that gives \(0 \). Contradiction.

5.3 Transformation matrices

5.3.1 Transformation law for vectors

Theorem. Denote vector as \(u \) with respect to \(\{e_i\} \) and \(\tilde{u} \) with respect to \(\{\tilde{e}_i\} \).

Then
\[
u = P\tilde{u} \quad \text{and} \quad \tilde{u} = P^{-1}u
\]
5.3.2 Transformation law for matrix
Theorem.
\[\tilde{A} = P^{-1}AP. \]

5.4 Similar matrices

Proposition. Similar matrices have the following properties:

(i) Similar matrices have the same determinant.

(ii) Similar matrices have the same trace.

(iii) Similar matrices have the same characteristic polynomial.

Proof. They are proven as follows:

(i) \[\det B = \det(P^{-1}AP) = (\det A)(\det P)^{-1}(\det P) = \det A \]

(ii) \[\text{tr } B = \text{tr } P^{-1}AP = P^{-1}A_{ji}P_{ji} = A_{jk}P_{kj}P_{i}^{-1} = A_{jk}(PP^{-1})_{kj} = A_{jk}\delta_{kj} = A_{jj} = \text{tr } A \]

(iii) \[p_B(\lambda) = \det(B - \lambda I) = \det(P^{-1}AP - \lambda I) = \det(P^{-1}AP - \lambda P^{-1}IP) = \det(P^{-1}(A - \lambda I)P) = \det(A - \lambda I) = p_A(\lambda) \]

5.5 Diagonalizable matrices

Theorem. Let \(\lambda_1, \lambda_2, \cdots, \lambda_r \), with \(r \leq n \) be the distinct eigenvalues of \(A \). Let \(B_1, B_2, \cdots, B_r \) be the bases of the eigenspaces \(E_{\lambda_1}, E_{\lambda_2}, \cdots, E_{\lambda_r} \) correspondingly.

Then the set \(B = \bigcup_{i=1}^{r} B_i \) is linearly independent.

Proof. Write \(B_1 = \{ x^{(1)}_1, x^{(1)}_2, \cdots, x^{(1)}_{m(\lambda_1)} \} \). Then \(m(\lambda_1) = \dim(E_{\lambda_1}) \), and similarly for all \(B_i \).
Consider the following general linear combination of all elements in B. Consider the equation

$$\sum_{i=1}^{r} \sum_{j=1}^{m(\lambda_i)} \alpha_{ij} x_j^{(i)} = 0.$$

The first sum is summing over all eigenspaces, and the second sum sums over the basis vectors in B_i. Now apply the matrix $\prod_{k=1,2,\ldots,K,\ldots,r}(A - \lambda_k I)$ to the above sum, for some arbitrary K. We obtain

$$\sum_{j=1}^{m(\lambda_K)} \alpha_{Kj} \left[\prod_{k=1,2,\ldots,K,\ldots,r}(\lambda - \lambda_k) \right] x_j^{(K)} = 0.$$

Since the $x_j^{(K)}$ are linearly independent (B_K is a basis), $\alpha_{Kj} = 0$ for all j. Since K was arbitrary, all α_{ij} must be zero. So B is linearly independent.

Proposition. A is diagonalizable iff all its eigenvalues have zero defect.

5.6 Canonical (Jordan normal) form

Theorem. Any 2×2 complex matrix A is similar to exactly one of

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}, \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

Proof. For each case:

(i) If A has two distinct eigenvalues, then eigenvectors are linearly independent. Then we can use P formed from eigenvectors as its columns

(ii) If $\lambda_1 = \lambda_2 = \lambda$ and $\dim E_\lambda = 2$, then write $E_\lambda = \text{span}\{u, v\}$, with u, v linearly independent. Now use $\{u, v\}$ as a new basis of \mathbb{C}^2 and

$$\tilde{A} = P^{-1}AP = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \lambda I$$

Note that since $P^{-1}AP = \lambda I$, we have $A = P(\lambda I)P^{-1} = \lambda I$. So A is isotropic, i.e. the same with respect to any basis.

(iii) If $\lambda_1 = \lambda_2 = \lambda$ and $\dim(E_\lambda) = 1$, then $E_\lambda = \text{span}\{v\}$. Now choose basis of \mathbb{C}^2 as $\{v, w\}$, where $w \in \mathbb{C}^2 \setminus E_\lambda$.

We know that $Aw \in \mathbb{C}^2$. So $Aw = \alpha v + \beta w$. Hence, if we change basis to $\{v, w\}$, then $\tilde{A} = P^{-1}AP = \begin{pmatrix} \lambda & \alpha \\ 0 & \beta \end{pmatrix}$.

However, A and \tilde{A} both have eigenvalue λ with algebraic multiplicity 2. So we must have $\beta = \lambda$. To make $\alpha = 1$, let $u = (\tilde{A} - \lambda I)w$. We know $u \neq 0$ since w is not in the eigenspace. Then

$$(\tilde{A} - \lambda I)u = (\tilde{A} - \lambda I)^2 w = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} w = 0.$$
So \(u \) is an eigenvector of \(\hat{A} \) with eigenvalue \(\lambda \).

We have \(u = \hat{A}w - \lambda w \). So \(\hat{A}w = u + \lambda w \).

Change basis to \(\{ u, w \} \). Then \(A \) with respect to this basis is
\[
\begin{pmatrix}
\lambda & 1 \\
0 & \lambda
\end{pmatrix}
\]

This is a two-stage process: \(P \) sends basis to \(\{ v, w \} \) and then matrix \(Q \) sends to basis \(\{ u, w \} \). So the similarity transformation is \(Q^{-1}(P^{-1}AP)Q = (PQ)^{-1}A(PQ) \).

Proposition. (Without proof) The canonical form, or Jordan normal form, exists for any \(n \times n \) matrix \(A \). Specifically, there exists a similarity transform such that \(A \) is similar to a matrix to \(\hat{A} \) that satisfies the following properties:

(i) \(\hat{A}_{\alpha\alpha} = \lambda_\alpha \), i.e. the diagonal composes of the eigenvalues.

(ii) \(\hat{A}_{\alpha,\alpha+1} = 0 \) or 1.

(iii) \(\hat{A}_{ij} = 0 \) otherwise.

5.7 Cayley-Hamilton Theorem

Theorem (Cayley-Hamilton theorem). Every \(n \times n \) complex matrix satisfies its own characteristic equation.

Proof. We will only prove for diagonalizable matrices here. So suppose for our matrix \(A \), there is some \(P \) such that \(D = \text{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n) = P^{-1}AP \). Note that
\[
D^i = (P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP) = P^{-1}A^i P.
\]

Hence
\[
p_D(D) = p_D(P^{-1}AP) = P^{-1}[p_D(A)]P.
\]

Since similar matrices have the same characteristic polynomial. So
\[
p_A(D) = P^{-1}[p_A(A)]P.
\]

However, we also know that \(D^i = \text{diag}(\lambda_1^i, \lambda_2^i, \cdots, \lambda_n^i) \). So
\[
p_A(D) = \text{diag}(p_A(\lambda_1), p_A(\lambda_2), \cdots, p_A(\lambda_n)) = \text{diag}(0, 0, \cdots, 0)
\]

since the eigenvalues are roots of \(p_A(\lambda) = 0 \). So \(0 = p_A(D) = P^{-1}p_A(A)P \) and thus \(p_A(A) = 0 \).

5.8 Eigenvalues and eigenvectors of a Hermitian matrix

5.8.1 Eigenvalues and eigenvectors

Theorem. The eigenvalues of a Hermitian matrix \(H \) are real.

Proof. Suppose that \(H \) has eigenvalue \(\lambda \) with eigenvector \(v \neq 0 \). Then
\[
Hv = \lambda v.
\]

We pre-multiply by \(v^\dagger \), a \(1 \times n \) row vector, to obtain
\[
v^\dagger Hv = \lambda v^\dagger v \quad (\ast)
\]
We take the Hermitian conjugate of both sides. The left hand side is
\[(v^\dagger H v)^\dagger = v^\dagger H^\dagger v = v^\dagger H v\]
since \(H\) is Hermitian. The right hand side is
\[(\lambda v^\dagger v)^\dagger = \lambda^* v^\dagger v\]
So we have
\[v^\dagger H v = \lambda^* v^\dagger v.\]
From (*), we know that \(\lambda v^\dagger v = \lambda^* v^\dagger v.\) Since \(v \neq 0\), we know that \(v^\dagger v = v \cdot v \neq 0.\) So \(\lambda = \lambda^*\) and \(\lambda\) is real.

Theorem. The eigenvectors of a Hermitian matrix \(H\) corresponding to distinct eigenvalues are orthogonal.

Proof. Let
\[
Hv_i = \lambda_i v_i, \quad \text{(i)}
\]
\[
Hv_j = \lambda_j v_j. \quad \text{(ii)}
\]
Pre-multiply (i) by \(v_j^\dagger\) to obtain
\[
v_j^\dagger H v_i = \lambda_i v_j^\dagger v_i. \quad \text{(iii)}
\]
Pre-multiply (ii) by \(v_i^\dagger\) and take the Hermitian conjugate to obtain
\[
v_i^\dagger H v_i = \lambda_j v_i^\dagger v_i. \quad \text{(iv)}
\]
Equating (iii) and (iv) yields
\[
\lambda_i v_j^\dagger v_i = \lambda_j v_j^\dagger v_i.
\]
Since \(\lambda_i \neq \lambda_j\), we must have \(v_j^\dagger v_i = 0.\) So their inner product is zero and are orthogonal.

5.8.2 Gram-Schmidt orthogonalization (non-examinable)

5.8.3 Unitary transformation

5.8.4 Diagonalization of \(n \times n\) Hermitian matrices

Theorem. An \(n \times n\) Hermitian matrix has precisely \(n\) orthogonal eigenvectors.

Proof. (Non-examinable) Let \(\lambda_1, \lambda_2, \ldots, \lambda_r\) be the distinct eigenvalues of \(H\) (\(r \leq n\)), with a set of corresponding orthonormal eigenvectors \(B = \{v_1, v_2, \ldots, v_r\}\). Extend to a basis of the whole of \(\mathbb{C}^n\)
\[
B' = \{v_1, v_2, \ldots, v_r, w_1, w_2, \ldots, w_{n-r}\}
\]
Now use Gram-Schmidt to create an orthonormal basis
\[
\tilde{B} = \{v_1, v_2, \ldots, v_r, u_1, u_2, \ldots, u_{n-r}\}.
\]
Now write
\[P = \begin{pmatrix}
\uparrow & \uparrow & \cdots & \uparrow & \uparrow \\
v_1 & v_2 & \cdots & v_r & u_1 \\
\downarrow & \downarrow & \cdots & \downarrow & \downarrow
\end{pmatrix} \]

We have shown above that this is a unitary matrix, i.e. \(P^{-1} = P^\dagger \). So if we change basis, we have
\[P^{-1}HP = P^\dagger HP \]
\[
= \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_r & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & c_{11} & c_{12} & \cdots & c_{1,n-r} \\
0 & 0 & \cdots & 0 & c_{21} & c_{22} & \cdots & c_{2,n-r} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & c_{n-r,1} & c_{n-r,2} & \cdots & c_{n-r,n-r}
\end{pmatrix}
\]
Here \(C \) is an \((n-r) \times (n-r)\) Hermitian matrix. The eigenvalues of \(C \) are also eigenvalues of \(H \) because \(\det(H - \lambda I) = \det(P^\dagger HP - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_r - \lambda) \det(C - \lambda I) \). So the eigenvalues of \(C \) are the eigenvalues of \(H \).

We can keep repeating the process on \(C \) until we finish all rows. For example, if the eigenvalues of \(C \) are all distinct, there are \(n-r \) orthonormal eigenvectors \(w_j \) (for \(j = r+1, \ldots, n \)) of \(C \). Let
\[
Q = \begin{pmatrix}
1 \\
1 \\
\vdots \\
1 \\
w_{r+1} \\
w_{r+2} \\
\cdots \\
w_n
\end{pmatrix}
\]
with other entries 0. (where we have a \(r \times r \) identity matrix block on the top left corner and a \((n-r) \times (n-r)\) with columns formed by \(w_j \).)

Since the columns of \(Q \) are orthonormal, \(Q \) is unitary. So \(Q^\dagger P^\dagger HPQ = \text{diag} (\lambda_1, \lambda_2, \cdots, \lambda_r, \lambda_{r+1}, \cdots, \lambda_n) \), where the first \(r \) \(\lambda \)s are distinct and the remaining ones are copies of previous ones.

The \(n \) linearly-independent eigenvectors are the columns of \(PQ \).

\[\square \]

5.8.5 Normal matrices

Proposition.

(i) If \(\lambda \) is an eigenvalue of \(N \), then \(\lambda^* \) is an eigenvalue of \(N^\dagger \).

(ii) The eigenvectors of distinct eigenvalues are orthogonal.

(iii) A normal matrix can always be diagonalized with an orthonormal basis of eigenvectors.
6 Quadratic forms and conics

Theorem. Hermitian forms are real.

Proof. \((x^\dagger Hx)^* = (x^\dagger Hx)^\dagger = x^\dagger H^\dagger x = x^\dagger Hx\). So \((x^\dagger Hx)^* = x^\dagger Hx\) and it is real.

6.1 Quadrics and conics

6.1.1 Quadrics

6.1.2 Conic sections \((n = 2)\)

6.2 Focus-directrix property
7 Transformation groups

7.1 Groups of orthogonal matrices

Proposition. The set of all $n \times n$ orthogonal matrices P forms a group under matrix multiplication.

Proof.

0. If P, Q are orthogonal, then consider $R = PQ$. $RR^T = (PQ)(PQ)^T = P(QQ^T)P^T = PP^T = I$. So R is orthogonal.

1. I satisfies $II^T = I$. So I is orthogonal and is an identity of the group.

2. Inverse: if P is orthogonal, then $P^{-1} = P^T$ by definition, which is also orthogonal.

3. Matrix multiplication is associative since function composition is associative.

7.2 Length preserving matrices

Theorem. Let $P \in O(n)$. Then the following are equivalent:

(i) P is orthogonal

(ii) $|Px| = |x|$

(iii) $(Px)^T(Py) = x^Ty$, i.e. $(Px) \cdot (Py) = x \cdot y$.

(iv) If (v_1, v_2, \cdots, v_n) are orthonormal, so are $(Pv_1, Pv_2, \cdots, Pv_n)$

(v) The columns of P are orthonormal.

Proof. We do them one by one:

(i) \Rightarrow (ii): $|Px|^2 = (Px)^T(Px) = x^TP^TPx = x^T x = |x|^2$

(ii) \Rightarrow (iii): $|P(x + y)|^2 = |x + y|^2$. The right hand side is

$$(x^T + y^T)(x + y) = x^T x + y^T y + x^T y + y^T x = |x|^2 + |y|^2 + 2x^T y.$$

Similarly, the left hand side is

$$|Px + Py|^2 = |Px|^2 + |Py|^2 + 2(Px)^T Py = |x|^2 + |y|^2 + 2(Px)^T Py.$$

So $(Px)^T Py = x^T y$.

(iii) \Rightarrow (iv): $(Pv_i)^T Pv_j = v_i^T v_j = \delta_{ij}$. So Pv_i’s are also orthonormal.

(iv) \Rightarrow (v): Take the v_i’s to be the standard basis. So the columns of P, being Pe_i, are orthonormal.

(v) \Rightarrow (i): The columns of P are orthonormal. Then $(PP^T)_{ij} = P_{ik}P_{jk} = (P_i) \cdot (P_j) = \delta_{ij}$, viewing P_i as the ith column of P. So $PP^T = I$.

7.3 Lorentz transformations

26