Part IA — Probability

Definitions

Based on lectures by R. Weber

Notes taken by Dexter Chua

Lent 2015

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Basic concepts
Classical probability, equally likely outcomes. Combinatorial analysis, permutations and combinations. Stirling’s formula (asymptotics for log n! proved).

Axiomatic approach

Discrete random variables

Continuous random variables

Inequalities and limits
Contents

0 Introduction 3

1 Classical probability 4
 1.1 Classical probability 4
 1.2 Counting 4
 1.3 Stirling’s formula 4

2 Axioms of probability 5
 2.1 Axioms and definitions 5
 2.2 Inequalities and formulae 6
 2.3 Independence 6
 2.4 Important discrete distributions 6
 2.5 Conditional probability 7

3 Discrete random variables 8
 3.1 Discrete random variables 8
 3.2 Inequalities 9
 3.3 Weak law of large numbers 9
 3.4 Multiple random variables 9
 3.5 Probability generating functions 10

4 Interesting problems 11
 4.1 Branching processes 11
 4.2 Random walk and gambler’s ruin 11

5 Continuous random variables 12
 5.1 Continuous random variables 12
 5.2 Stochastic ordering and inspection paradox 13
 5.3 Jointly distributed random variables 13
 5.4 Geometric probability 14
 5.5 The normal distribution 14
 5.6 Transformation of random variables 14
 5.7 Moment generating functions 15

6 More distributions 16
 6.1 Cauchy distribution 16
 6.2 Gamma distribution 16
 6.3 Beta distribution* 16
 6.4 More on the normal distribution 16
 6.5 Multivariate normal 16

7 Central limit theorem 17

8 Summary of distributions 18
 8.1 Discrete distributions 18
 8.2 Continuous distributions 18
0 Introduction
1 Classical probability

1.1 Classical probability

Definition (Classical probability). Classical probability applies in a situation when there are a finite number of equally likely outcome.

Definition (Sample space). The set of all possible outcomes is the sample space, Ω. We can list the outcomes as $\omega_1, \omega_2, \cdots \in \Omega$. Each $\omega \in \Omega$ is an outcome.

Definition (Event). A subset of Ω is called an event.

Definition (Set notations). Given any two events $A, B \subseteq \Omega$,

- The complement of A is $A^c = A' = \Omega \setminus A$.
- “A or B” is the set $A \cup B$.
- “A and B” is the set $A \cap B$.
- A and B are mutually exclusive or disjoint if $A \cap B = \emptyset$.
- If $A \subseteq B$, then A occurring implies B occurring.

Definition (Probability). Suppose $\Omega = \{\omega_1, \omega_2, \cdots, \omega_N\}$. Let $A \subseteq \Omega$ be an event. Then the probability of A is

$$P(A) = \frac{\text{Number of outcomes in } A}{\text{Number of outcomes in } \Omega} = \frac{|A|}{N}.$$

1.2 Counting

Definition (Sampling with replacement). When we sample with replacement, after choosing an item, it is put back and can be chosen again. Then any sampling function f satisfies sampling with replacement.

Definition (Sampling without replacement). When we sample without replacement, after choosing an item, we kill it with fire and cannot choose it again. Then f must be an injective function, and clearly we must have $x \geq n$.

Definition (Multinomial coefficient). A multinomial coefficient is

$$\binom{n}{n_1, n_2, \cdots, n_k} = \binom{n}{n_1} \binom{n-n_1}{n_2} \cdots \binom{n-n_1-\cdots-n_{k-1}}{n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}.$$

It is the number of ways to distribute n items into k positions, in which the ith position has n_i items.

1.3 Stirling’s formula
2 Axioms of probability

2.1 Axioms and definitions

Definition (Probability space). A *probability space* is a triple \((\Omega, \mathcal{F}, \mathbb{P})\). \(\Omega\) is a set called the *sample space*, \(\mathcal{F}\) is a collection of subsets of \(\Omega\), and \(\mathbb{P}: \mathcal{F} \to [0, 1]\) is the *probability measure*.

\(\mathcal{F}\) has to satisfy the following axioms:

(i) \(\emptyset, \Omega \in \mathcal{F}\).
(ii) \(A \in \mathcal{F} \Rightarrow A^C \in \mathcal{F}\).
(iii) \(A_1, A_2, \cdots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}\).

And \(P\) has to satisfy the following *Kolmogorov axioms*:

(i) \(0 \leq P(A) \leq 1\) for all \(A \in \mathcal{F}\)
(ii) \(P(\Omega) = 1\)
(iii) For any countable collection of events \(A_1, A_2, \cdots\) which are disjoint, i.e. \(A_i \cap A_j = \emptyset\) for all \(i, j\), we have

\[
P\left(\bigcup_i A_i\right) = \sum_i P(A_i).
\]

Items in \(\Omega\) are known as the *outcomes*, items in \(\mathcal{F}\) are known as the *events*, and \(P(A)\) is the *probability* of the event \(A\).

Definition (Probability distribution). Let \(\Omega = \{\omega_1, \omega_2, \cdots\}\). Choose numbers \(p_1, p_2, \cdots\) such that \(\sum_{i=1}^{\infty} p_i = 1\). Let \(p(\omega_i) = p_i\). Then define

\[
P(A) = \sum_{\omega_i \in A} p(\omega_i).
\]

This \(P(A)\) satisfies the above axioms, and \(p_1, p_2, \cdots\) is the *probability distribution*

Definition (Limit of events). A sequence of events \(A_1, A_2, \cdots\) is *increasing* if \(A_1 \subseteq A_2 \cdots\). Then we define the *limit* as

\[
\lim_{n \to \infty} A_n = \bigcup_{i=1}^{\infty} A_n.
\]

Similarly, if they are *decreasing*, i.e. \(A_1 \supseteq A_2 \cdots\), then

\[
\lim_{n \to \infty} A_n = \bigcap_{i=1}^{\infty} A_n.
\]
2 Axioms of probability

2.2 Inequalities and formulae

2.3 Independence

Definition (Independent events). Two events A and B are independent if
\[P(A \cap B) = P(A)P(B). \]
Otherwise, they are said to be dependent.

Definition (Independence of multiple events). Events A_1, A_2, \cdots are said to be mutually independent if
\[P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_r}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_r}) \]
for any i_1, i_2, \cdots, i_r, and $r \geq 2$.

2.4 Important discrete distributions

Definition (Bernoulli distribution). Suppose we toss a coin. $\Omega = \{H, T\}$ and $p \in [0, 1]$. The Bernoulli distribution, denoted $B(1, p)$ has
\[P(H) = p; \quad P(T) = 1 - p. \]

Definition (Binomial distribution). Suppose we toss a coin n times, each with probability p of getting heads. Then
\[P(HHTT \cdots T) = pp(1 - p) \cdots (1 - p). \]
So
\[P(\text{two heads}) = \binom{n}{2}p^2(1 - p)^{n-2}. \]
In general,
\[P(k \text{ heads}) = \binom{n}{k}p^k(1 - p)^{n-k}. \]
We call this the binomial distribution and write it as $B(n, p)$.

Definition (Geometric distribution). Suppose we toss a coin with probability p of getting heads. The probability of having a head after k consecutive tails is
\[p_k = (1 - p)^k p. \]
This is geometric distribution. We say it is memoryless because how many tails we’ve got in the past does not give us any information to how long I’ll have to wait until I get a head.

Definition (Hypergeometric distribution). Suppose we have an urn with n_1 red balls and n_2 black balls. We choose n balls. The probability that there are k red balls is
\[P(k \text{ red}) = \binom{n_1}{k}\binom{n_2}{n-k}\binom{n_1+n_2}{n}. \]

Definition (Poisson distribution). The Poisson distribution denoted $P(\lambda)$ is
\[p_k = \frac{\lambda^k}{k!}e^{-\lambda} \]
for $k \in \mathbb{N}$.
2.5 Conditional probability

Definition (Conditional probability). Suppose \(B \) is an event with \(P(B) > 0 \). For any event \(A \subseteq \Omega \), the *conditional probability of \(A \) given \(B \) is*

\[
P(A \mid B) = \frac{P(A \cap B)}{P(B)}.
\]

We interpret as the probability of \(A \) happening given that \(B \) has happened.

Definition (Partition). A *partition of the sample space* is a collection of disjoint events \(\{B_i\}_{i=0}^{\infty} \) such that \(\bigcup_i B_i = \Omega \).
3 Discrete random variables

3.1 Discrete random variables

Definition (Random variable). A random variable X taking values in a set Ω_X is a function $X : \Omega \rightarrow \Omega_X$. Ω_X is usually a set of numbers, e.g. \mathbb{R} or \mathbb{N}.

Definition (Discrete random variables). A random variable is discrete if Ω_X is finite or countably infinite.

Notation. Let $T \subseteq \Omega_X$, define
$$P(X \in T) = P(\{\omega \in \Omega : X(\omega) \in T\}).$$
i.e. the probability that the outcome is in T.

Definition (Discrete uniform distribution). A discrete uniform distribution is a discrete distribution with finitely many possible outcomes, in which each outcome is equally likely.

Notation. We write $P_X(x) = P(X = x)$.

We can also write $X \sim B(n, p)$ to mean
$$P(X = r) = \binom{n}{r} p^r (1 - p)^{n-r},$$
and similarly for the other distributions we have come up with before.

Definition (Expectation). The expectation (or mean) of a real-valued X is equal to
$$E[X] = \sum_{\omega \in \Omega} p_\omega X(\omega).$$
provided this is absolutely convergent. Otherwise, we say the expectation doesn’t exist. Alternatively,
$$E[X] = \sum_{x \in \Omega_X} \sum_{\omega : X(\omega) = x} p_\omega X(\omega)$$
$$= \sum_{x \in \Omega_X} x \sum_{\omega : X(\omega) = x} p_\omega$$
$$= \sum_{x \in \Omega_X} x P(X = x).$$

We are sometimes lazy and just write EX.

Definition (Variance and standard deviation). The variance of a random variable X is defined as
$$\text{var}(X) = E[(X - E[X])^2].$$
The standard deviation is the square root of the variance, $\sqrt{\text{var}(X)}$.

3 Discrete random variables

Definition (Indicator function). The indicator function or indicator variable $I[A]$ (or I_A) of an event $A \subseteq \Omega$ is

$$I[A](\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \not\in A \end{cases}$$

Definition (Independent random variables). Let X_1, X_2, \ldots, X_n be discrete random variables. They are independent iff for any $x_1, x_2, \ldots, x_n,$

$$P(X_1 = x_1, \ldots, X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n).$$

3.2 Inequalities

Definition (Convex function). A function $f : (a,b) \to \mathbb{R}$ is convex if for all $x_1, x_2 \in (a,b)$ and $\lambda_1, \lambda_2 \geq 0$ such that $\lambda_1 + \lambda_2 = 1$,

$$\lambda_1 f(x_1) + \lambda_2 f(x_2) \geq f(\lambda_1 x_1 + \lambda_2 x_2).$$

It is strictly convex if the inequality above is strict (except when $x_1 = x_2$ or λ_1 or $\lambda_2 = 0$).

A function is concave if $-f$ is convex.

3.3 Weak law of large numbers

3.4 Multiple random variables

Definition (Covariance). Given two random variables X,Y, the covariance is

$$\text{cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

Definition (Correlation coefficient). The correlation coefficient of X and Y is

$$\text{corr}(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X) \text{var}(Y)}}.$$

Definition (Conditional distribution). Let X and Y be random variables (in general not independent) with joint distribution $P(X = x, Y = y)$. Then the marginal distribution (or simply distribution) of X is

$$P(X = x) = \sum_{y \in \Omega_x} P(X = x, Y = y).$$
The conditional distribution of X given Y is

\[P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}. \]

The conditional expectation of X given Y is

\[E[X \mid Y = y] = \sum_{x \in \Omega_X} xP(X = x \mid Y = y). \]

We can view $E[X \mid Y]$ as a random variable in Y: given a value of Y, we return the expectation of X.

3.5 Probability generating functions

Definition (Probability generating function (pgf)). The probability generating function (pgf) of X is

\[p(z) = E[z^X] = \sum_{r=0}^{\infty} P(X = r)z^r = p_0 + p_1z + p_2z^2 + \cdots = \sum_{r=0}^{\infty} p_rz^r. \]

This is a power series (or polynomial), and converges if $|z| \leq 1$, since

\[|p(z)| \leq \sum_r p_r|z|^r \leq \sum_r p_r = 1. \]

We sometimes write as $p_X(z)$ to indicate what the random variable.
4 Interesting problems

4.1 Branching processes

4.2 Random walk and gambler’s ruin

Definition (Random walk). Let X_1, \cdots, X_n be iid random variables such that $X_n = +1$ with probability p, and -1 with probability $1 - p$. Let $S_n = S_0 + X_1 + \cdots + X_n$. Then (S_0, S_1, \cdots, S_n) is a 1-dimensional random walk.

If $p = q = \frac{1}{2}$, we say it is a symmetric random walk.
5 Continuous random variables

5.1 Continuous random variables

Definition (Continuous random variable). A random variable $X : \Omega \to \mathbb{R}$ is continuous if there is a function $f : \mathbb{R} \to \mathbb{R}_{\geq 0}$ such that

$$P(a \leq X \leq b) = \int_a^b f(x) \, dx.$$

We call f the probability density function, which satisfies

- $f \geq 0$
- $\int_{-\infty}^{\infty} f(x) \, dx = 1.$

Definition (Cumulative distribution function). The cumulative distribution function (or simply distribution function) of a random variable X (discrete, continuous, or neither) is

$$F(x) = P(X \leq x).$$

Definition (Uniform distribution). The uniform distribution on $[a, b]$ has pdf

$$f(x) = \frac{1}{b - a}.$$

Then

$$F(x) = \int_a^x f(z) \, dz = \frac{x - a}{b - a}$$

for $a \leq x \leq b$.

If X follows a uniform distribution on $[a, b]$, we write $X \sim U[a, b]$.

Definition (Exponential random variable). The exponential random variable with parameter λ has pdf

$$f(x) = \lambda e^{-\lambda x}$$

and

$$F(x) = 1 - e^{-\lambda x}$$

for $x \geq 0$.

We write $X \sim \mathcal{E}(\lambda)$.

Definition (Expectation). The expectation (or mean) of a continuous random variable is

$$E[X] = \int_{-\infty}^{\infty} x f(x) \, dx,$$

provided not both $\int_0^{\infty} x f(x) \, dx$ and $\int_{-\infty}^{0} x f(x) \, dx$ are infinite.

Definition (Variance). The variance of a continuous random variable is

$$\text{var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2.$$
Definition (Mode and median). Given a pdf \(f(x) \), we call \(\hat{x} \) a mode if
\[
f(\hat{x}) \geq f(x)
\]
for all \(x \). Note that a distribution can have many modes. For example, in the uniform distribution, all \(x \) are modes.

We say it is a median if
\[
\int_{-\infty}^{\hat{x}} f(x) \, dx = \frac{1}{2} = \int_{\hat{x}}^{\infty} f(x) \, dx.
\]

For a discrete random variable, the median is \(\hat{x} \) such that
\[
\Pr(X \leq \hat{x}) \geq \frac{1}{2}, \quad \Pr(X \geq \hat{x}) \geq \frac{1}{2}.
\]

Here we have a non-strict inequality since if the random variable, say, always takes value 0, then both probabilities will be 1.

Definition (Sample mean). If \(X_1, \ldots, X_n \) is a random sample from some distribution, then the sample mean is
\[
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.
\]

5.2 Stochastic ordering and inspection paradox

Definition (Stochastic order). The stochastic order is defined as: \(X \geq_{st} Y \) if \(\Pr(X > t) \geq \Pr(Y > t) \) for all \(t \).

5.3 Jointly distributed random variables

Definition (Joint distribution). Two random variables \(X, Y \) have joint distribution \(F : \mathbb{R}^2 \rightarrow [0, 1] \) defined by
\[
F(x, y) = \Pr(X \leq x, Y \leq y).
\]

The marginal distribution of \(X \) is
\[
F_X(x) = \Pr(X \leq x) = \Pr(X \leq x, Y < \infty) = F(x, \infty) = \lim_{y \to \infty} F(x, y).
\]

Definition (Jointly distributed random variables). We say \(X_1, \ldots, X_n \) are jointly distributed continuous random variables and have joint pdf \(f \) if for any set \(A \subseteq \mathbb{R}^n \)
\[
\Pr((X_1, \ldots, X_n) \in A) = \int_{(x_1, \ldots, x_n) \in A} f(x_1, \ldots, x_n) \, dx_1 \cdots dx_n,
\]
where
\[
f(x_1, \ldots, x_n) \geq 0
\]
and
\[
\int_{\mathbb{R}^n} f(x_1, \ldots, x_n) \, dx_1 \cdots dx_n = 1.
\]
Continuous random variables

Definition (Independent continuous random variables). Continuous random variables X_1, \cdots, X_n are independent if

$$P(X_1 \in A_1, X_2 \in A_2, \cdots, X_n \in A_n) = P(X_1 \in A_1)P(X_2 \in A_2)\cdots P(X_n \in A_n)$$

for all $A_i \subseteq \Omega_{X_i}$.

If we let F_{X_i} and f_{X_i} be the cdf, pdf of X_i, then

$$F(x_1, \cdots, x_n) = F_{X_1}(x_1)\cdots F_{X_n}(x_n)$$

and

$$f(x_1, \cdots, x_n) = f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

are each individually equivalent to the definition above.

5.4 Geometric probability

5.5 The normal distribution

Definition (Normal distribution). The *normal distribution* with parameters μ, σ^2, written $N(\mu, \sigma^2)$ has pdf

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2} \right),$$

for $-\infty < x < \infty$.

It looks approximately like this:

![Normal Distribution Graph]

The *standard normal* is when $\mu = 0, \sigma^2 = 1$, i.e. $X \sim N(0, 1)$.

We usually write $\phi(x)$ for the pdf and $\Phi(x)$ for the cdf of the standard normal.

5.6 Transformation of random variables

Definition (Jacobian determinant). Suppose $\frac{\partial s_i}{\partial y_j}$ exists and is continuous at every point $(y_1, \cdots, y_n) \in S$. Then the Jacobian determinant is

$$J = \frac{\partial (s_1, \cdots, s_n)}{\partial (y_1, \cdots, y_n)} = \det \begin{pmatrix} \frac{\partial s_1}{\partial y_1} & \cdots & \frac{\partial s_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial s_n}{\partial y_1} & \cdots & \frac{\partial s_n}{\partial y_n} \end{pmatrix}$$

Definition (Order statistics). Suppose that X_1, \cdots, X_n are some random variables, and Y_1, \cdots, Y_n is X_1, \cdots, X_n arranged in increasing order, i.e. $Y_1 \leq Y_2 \leq \cdots \leq Y_n$. This is the *order statistics*.

We sometimes write $Y_i = X_{(i)}$.

14
5.7 Moment generating functions

Definition (Moment generating function). The *moment generating function* of a random variable X is

$$m(\theta) = E[e^{\theta X}].$$

For those θ in which $m(\theta)$ is finite, we have

$$m(\theta) = \int_{-\infty}^{\infty} e^{\theta x} f(x) \, dx.$$

Definition (Moment). The rth *moment* of X is $E[X^r]$.
6 More distributions

6.1 Cauchy distribution
Definition (Cauchy distribution). The Cauchy distribution has pdf
\[f(x) = \frac{1}{\pi(1 + x^2)} \]
for \(-\infty < x < \infty\).

6.2 Gamma distribution
Definition (Gamma distribution). The gamma distribution \(\Gamma(n, \lambda)\) has pdf
\[f(x) = \frac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!} \]
We can show that this is a distribution by showing that it integrates to 1.

6.3 Beta distribution*
Definition (Beta distribution). The beta distribution \(\beta(a, b)\) has pdf
\[f(x; a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} x^{a-1}(1 - x)^{b-1} \]
for 0 \leq x \leq 1.
This has mean \(a/(a + b)\).

6.4 More on the normal distribution

6.5 Multivariate normal
7 Central limit theorem
8 Summary of distributions

8.1 Discrete distributions

8.2 Continuous distributions