Adams spectral sequence of tmfRP{\mathrm{tmf}}\wedge {\mathbb {RP}}^\infty v1v_1-periodic classes

4 v1v_1-periodic classes

We finally get to the black classes, which are v14v_1^4-periodic. A “unit” of this v1v_1 periodicity looks like this:

\begin{sseqpage} [Adams grading, classes=fill, scale=0.5, class labels = { left = 0cm }]
    \sseqset{
      htwo/.sseq style = {dotted},
    }
    \groupD(-8, -4){1}
    \classoptions["1"](16, 6)
    \classoptions["2"](17, 8)
    \classoptions["2"](19, 8)
    \classoptions["2"](22, 9)
    \classoptions["1"](22, 7)
    \classoptions["1"](23, 6)
    \classoptions["1"](25, 7)
    \classoptions["1"](26, 7)
    \classoptions["1"](28, 7)
    \classoptions["-1"](25, 4)
    \classoptions["0"](26, 5)
  \end{sseqpage}

The numbers on the class denote how many times it is v14v_1^4 divisible, relative to the coordinates in the diagram. For example, x17,8x_{17, 8} can be divided by v14v_1^4 twice to give x1,0x_{1, 0}, while x25,4x_{25, 4} doesn't even exist; only v14x25,4v_1^4 x_{25, 4} does.

The divisibilities of unlabelled classes are determined by h0h_0 and h1h_1 products (if xx divides, then so do h0xh_0 x and h1xh_1 x). If a class is completely unlabelled, then its label should be interpreted to be 00.

Finally, the hollow classes are not actually in the diagram, but come from the C's. Their role is merely to indicate multiplications.

The differentials in DD follow from the differentials for tmf{\mathrm{tmf}} via the Leibniz rule again. They look as follows:

\printpage[name = ddiff, page = 2]
\printpage[name = ddiff, page = 3]
\printpage[name = ddiff, page = 4]
\printpage[name = ddiff, page = 5]

The two “hooks” with lower left corner at (17,8)(17, 8) and (25,4)(25, 4) are v14v_1^4 periodic. The classes left (including the hollow ones) are killed by elements in k[v1,w]x35,6k[v_1, w] \cdot x_{35, 6}.

\begin{sseqpage} [name = tmf ass, page = 2, no differentials]
    \foreach \n in {-1, 0, 1, 2, 3} {
      \draw [differential style] (71 + 8 * \n, 14 + 4 * \n, 1) -- (70 + 8 * \n, 16 + 4 * \n, 2);
    }
    \foreach \n in {0, 1, 2} {
      \draw [differential style] (74 + 8 * \n, 14 + 4 * \n, 1) -- (73 + 8 * \n, 16 + 4 * \n, 2);
      \draw [differential style] (77 + 8 * \n, 14 + 4 * \n, 1) -- (76 + 8 * \n, 16 + 4 * \n, 2);
      \draw [differential style] (80 + 8 * \n, 14 + 4 * \n, 1) -- (79 + 8 * \n, 16 + 4 * \n, 2);
    }
  \end{sseqpage}
Figure 3 E2E_2 page for Adams spectral sequence of tmfΣRP{\mathrm{tmf}}\wedge \Sigma ^\infty {\mathbb {RP}}^\infty without differentials
\begin{sseqpage} [name = tmf ass, page = 2]
    \foreach \n in {-1, 0, 1, 2, 3} {
      \draw [differential style] (71 + 8 * \n, 14 + 4 * \n, 1) -- (70 + 8 * \n, 16 + 4 * \n, 2);
    }
    \foreach \n in {0, 1, 2} {
      \draw [differential style] (74 + 8 * \n, 14 + 4 * \n, 1) -- (73 + 8 * \n, 16 + 4 * \n, 2);
      \draw [differential style] (77 + 8 * \n, 14 + 4 * \n, 1) -- (76 + 8 * \n, 16 + 4 * \n, 2);
      \draw [differential style] (80 + 8 * \n, 14 + 4 * \n, 1) -- (79 + 8 * \n, 16 + 4 * \n, 2);
    }
  \end{sseqpage}
Figure 4 E2E_2 page for Adams spectral sequence of tmfΣRP{\mathrm{tmf}}\wedge \Sigma ^\infty {\mathbb {RP}}^\infty
\begin{sseqpage} [name = tmf ass, page = 3]
    \foreach \n in {0, 1, 2, 3} {
      \draw [differential style] (66 + 8 * \n, 12 + 4 * \n) -- (65 + 8 * \n, 15 + 4 * \n, 1);
    }
  \end{sseqpage}
Figure 5 E3E_3 page for Adams spectral sequence of tmfΣRP{\mathrm{tmf}}\wedge \Sigma ^\infty {\mathbb {RP}}^\infty
\begin{sseqpage} [name = tmf ass, page = 4]
    \foreach \n in {0, 1, 2} {
      \draw [differential style] (75 + 8 * \n, 14 + 4 * \n, 1) -- (74 + 8 * \n, 18 + 4 * \n);
    }
    \foreach \n in {0, 1, 2, 3, 4, 5} {
      \draw [differential style] (50 + 8 * \n, 9 + 4 * \n, 1) -- (49 + 8 * \n, 13 + 4 * \n);
    }
  \end{sseqpage}
Figure 6 E4E_4 page for Adams spectral sequence of tmfΣRP{\mathrm{tmf}}\wedge \Sigma ^\infty {\mathbb {RP}}^\infty

\printpage[name = tmf ass, page = 5]

Figure 7 EE_\infty page for Adams spectral sequence of tmfΣRP{\mathrm{tmf}}\wedge \Sigma ^\infty {\mathbb {RP}}^\infty