Goodwillie filtration and factorization homologyDerivatives

4.1 Derivatives

We now embark on the journey to prove the theorems we stated at the beginning. We shall begin by explicitly calculating PkMFaug(V)P_k \int _{M_*} \mathbb {F}^{\mathrm{aug}}(V). Note that since the construction of PnFP_n F was done pointwise, we can do this calculation without knowing what the whole functor PkM()P_k \int _{M_*} (-) is.

First note that both V\mathcal{V} and Algnaug(V)\mathrm{Alg}_n^{\mathrm{aug}}(\mathcal{V}) have a zero object, and Faug\mathbb {F}^{\mathrm{aug}} sends to zero object to the zero object by virtue of being a left adjoint. So

CT(Faug(V))=Faug(CT(V)). C_T(\mathbb {F}^{\mathrm{aug}}(V)) = \mathbb {F}^{\mathrm{aug}}(C_T(V)).

Using this and fixing a (k+1)(k + 1)-cube SS, we can compute TkM()T_k \int _{M_*}(-):

TkMFaug(V)=limTSMCT(Faug(V))=limTSMFaug(CT(V))=limTS0i<Confifr(M)ΣiO(n)CT(V)i=0i<limTSConfifr(M)ΣiO(n)CT(V)i. \begin{aligned} T_k \int _{M_*}\mathbb {F}^{\mathrm{aug}}(V) & = \lim _{\emptyset \neq T \subseteq S}\int _{M_*} C_T(\mathbb {F}^{\mathrm{aug}}(V)) \\ & = \lim _{\emptyset \neq T \subseteq S}\int _{M_*} \mathbb {F}^{\mathrm{aug}}(C_T(V)) \\ & = \lim _{\emptyset \neq T \subseteq S}\bigoplus _{0 \leq i < \infty } \operatorname{Conf}_i^{{\mathrm{fr}}}(M_*) \bigotimes _{\Sigma _i \wr \mathrm{O}(n)} C_T(V)^{\otimes i}\\ & = \bigoplus _{0 \leq i < \infty } \lim _{\emptyset \neq T \subseteq S}\operatorname{Conf}_i^{{\mathrm{fr}}}(M_*) \bigotimes _{\Sigma _i \wr \mathrm{O}(n)} C_T(V)^{\otimes i}. \end{aligned}

Fixing MM_*, let us write

Ri(V)=Confifr(M)ΣiO(n)Vi. R_i(V) = \operatorname{Conf}_i^{{\mathrm{fr}}}(M_*) \bigotimes _{\Sigma _i \wr \mathrm{O}(n)} V^{\otimes i}.

We have then shown that

TkMFaug(V)=0i<(Tk(Ri))(V). T_k \int _{M_*} \mathbb {F}^{\mathrm{aug}}(V) = \bigoplus _{0 \leq i < \infty } (T_k(R_i))(V).

Similarly, we have

TkjMFaug(V)=0i<(Tkj(Ri))(V). T_k^j \int _{M_*} \mathbb {F}^{\mathrm{aug}}(V) = \bigoplus _{0 \leq i < \infty } (T_k^j(R_i))(V).

Therefore, we conclude that

PkMFaug(V)=0i<(Pk(Ri))(V). P_k \int _{M_*}\mathbb {F}^{\mathrm{aug}}(V) = \bigoplus _{0 \leq i < \infty } (P_k(R_i)) (V).

But we have already concluded that RiR_i is ii-homogeneous (as a functor of VV), so Pk(Ri)P_k(R_i) is just RiR_i if iki \leq k, and 00 otherwise. So

PkMFaug(V)=0i<kConfifr(M)ΣiO(n)Vi. P_k \int _{M_*}\mathbb {F}^{\mathrm{aug}}(V) = \bigoplus _{0 \leq i < k} \operatorname{Conf}_i^{{\mathrm{fr}}}(M_*) \bigotimes _{\Sigma _i \wr \mathrm{O}(n)} V^{\otimes i}.

In particular, the kkth derivative evaluated on Faug(V)\mathbb {F}^{\mathrm{aug}}(V) is exactly

Confkfr(M)ΣkO(n)Vk. \operatorname{Conf}_k^{{\mathrm{fr}}}(M_*) \bigotimes _{\Sigma _k \wr \mathrm{O}(n)} V^{\otimes k}.

But since the kkth derivative evaluated at an augmented nn-disk algebra AA only depends on L(A)L(A), and L(A)=L(Faug(L(A)))L(A) = L(\mathbb {F}^{\mathrm{aug}}(L(A))), we know

Theorem 20

The kkth derivative of M()\int _{M_*}(-) is

AConfkfr(M)ΣkO(n)L(A)k. A \mapsto \operatorname{Conf}_k^{{\mathrm{fr}}}(M_*) \bigotimes _{\Sigma _k \wr \mathrm{O}(n)} L(A)^{\otimes k}.

In other words, we always have a cofiber sequence

Confkfr(M)ΣkO(n)L(A)kPkMAPk1MA. \operatorname{Conf}_k^{{\mathrm{fr}}}(M_*) \bigotimes _{\Sigma _k \wr \mathrm{O}(n)} L(A)^{\otimes k} \to P_k \int _{M_*} A \to P_{k - 1} \int _{M_*} A.