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1 Introduction

The fundamental theorem of Galois theory says

Theorem (Galois theory). Let k be a field and G = Gal(k̄/k) be the absolute Galois
group∗. Then there is a contravariant equivalence of categories between

• the category of finite separable extensions of k; and

• the category of finite sets with a continuous transitive action of G.

The second category is also isomorphic to the category of open subgroups of G
by sending the subgroup H ≤ G to G/H, which is how Galois theory is often stated.

There is a very similar theorem in algebraic topology.

Theorem (Covering space theory). Let X be a path connected, locally path connected
and semi-locally simply connected topological space. Then there is an equivalence of
categories between

• the category of finite connected covering spaces of X; and

• the category of finite sets with a transitive action of π1(X,x), for any base
point x ∈ X.

∗ The notation k̄ will always mean the separable closure of k
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There are some superficial differences between these two isomorphisms. In
Galois theory, we have a contravariant equivalence of categories, instead of a usual
equivalence, but this is easily explained by the fact that we really should apply Spec
to all our fields, thereby reversing the arrow.

On the other hand, in covering space theory, we have to pick a basepoint of X to
talk about the fundamental group, and the correspondence is natural (in the English
sense) only after we fix such a basepoint. The analogous situation in Galois theory
is that in fact, G is not canonically associated to k either. Instead, we must fix an
embedding of k into a separably closed field, which is the same as picking a geometric
point of Spec k.

To push the analogy further, there is a sense in which a separable field extension
is a “covering space”. By definition, a map p : Y → X is a covering space iff there is
some space X ′ and a map f : X ′ → X such that

1. f is surjective;

2. restricted to each component of X ′, the map f is the inclusion of an open
subspace; and

3. the pullback Y ×X X ′ is a disjoint union of copies of X ′, and the map f∗p :
Y ×X X ′ → X ′ is the map sending each copy isomorphically onto X ′.

This is just the local triviality condition phrased in a fancy way.
The idea is to think of the (surjective!) morphism Spec k̄ → Spec k as an inclusion

of an “open subset”, and an extension K/k is separable iff the pullback to Spec k̄ is
a disjoint union of copies of Spec k̄, i.e. K ⊗k k̄ = k̄× · · · × k̄. Of course, we can also
replace k̄ by some appropriate finite Galois extension if we want to remain in the
finite world.

By using an appropriate generalized notion of “open subset”, hence “covering
space”, we will generalize the notion of fundamental group to arbitrary schemes, of
which Galois theory and covering space theory (of complex algebraic surfaces) are
special cases.

Notes

• All schemes considered will be locally Noetherian, and the base scheme will
usually be assumed to be connected. There are obvious generalizations to the
non-connected cases.

• We will occasionally use certain technical results about fpqc descent, which are
stated as necessary in the main text and proved (somewhat) in the appendix.
They are not difficult to prove, but the reader is encouraged not to read the
appendix, because they are boring.

• There are no in-text citations. The main references are [1] and [2].
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2 Étale Morphisms

We wish to define the notion of a “covering map” for arbitrary schemes. One way
to think about covering maps is that they are local homeomorphisms plus some
extra conditions. The notion of étale morphisms is the correct analogue of local
homeomorphisms for schemes. In the next section, we will strengthen this to finite
étale covers afterwards as an analogue of finite covering spaces, and prove that finite
étale covers are exactly the “locally trivial” ones in a suitable sense.

We first give some examples of maps, and discuss why they should or should not
be considered étale. Afterwards, we will write down the definition of étale.

Example. Let X = P1, and f : X → X the double cover given by squaring. Then
this should not be étale, because it is ramified at 0 and ∞, where there is only one
geometric point in the preimage.

Algebraically, if we localize at the point 0, then this is represented by the map
k[x](x) → k[x](x) that sends x to x2, and in particular sends the maximal ideal m to
m2. Thus, as an extension of discrete valuation rings, this is ramified.

Example. The inclusion of a proper closed subscheme should not be étale, because
it is not a local homeomorphism. Alternatively, because it is not flat.

Example. The inclusion of an open subscheme is étale, because it is locally a
homeomorphism, but should not be a étale cover.

Finally, for our theory to describe Galois theory proper, we want

Example. An extension of fields SpecK → Spec k is an étale cover iff it is a finite
separable extension.

Based on the geometric examples, the following definition is entirely reasonable.

Definition (Étale morphism). A morphism is étale if it is flat and unramified.

To make sense of such a definition, I must explain what it means to be unramified.

Theorem. Let f : Y → X be a morphism locally of finite type, y ∈ Y and x = f(y).
Then the following are equivalent:

1. my = f∗mx, and k(y) is a finite separable extension of k(x).

2. ΩY/X is trivial at y.

3. The diagonal morphism ∆Y/X : Y → Y ×X Y is an open immersion in a
neighbourhood of y.

If any (hence all) of these hold, we say f is unramified at y. We say f is unramified
if it is unramified at all y ∈ Y .
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Each of these are reasonable definitions of “unramified”.

Proof.

(1) ⇔ (2) Assuming (1), we consider the diagram

Spec k(x) SpecOy Y

Spec k(x) SpecOx X

where the left-hand square is a pull-back by (1) and the right-hand
square is a localization at a point in the total space. So they both
preserve the differential. So ΩY/X is trivial at y iff ΩOy/Ox

is trivial, iff
Ωk(y)/k(x) is trivial by Nakayama, iff k(y)/k(x) is finite separable.

To prove the converse, if ΩY/X is trivial at y, then pulling back shows
that Oy/mx → k(x) has trivial Kähler differentials. So it suffices to
show that if A is a finite local k-algebra, then ΩA/k = 0 iff A is a finite
separable extension of y (which implies my = f∗mx since A/f∗mx is a
field, hence f∗mx is a maximal ideal).

By direct calculation, the result is true if A = k[x]/f for some f , since
the only interesting relation is df = 0. For general A, use that if
k ⊆ B ⊆ A, then there is a surjection ΩA/k � ΩB/k, and so taking
B to be the subalgebra generated by each x ∈ A, we see that every
element is separable and invertible over A.

(2) ⇔ (3) Restricted to affine patches, ∆Y/X is a closed immersion, and ΩY/X = 0
implies the (proper) ideal I defining the image satisfies I2 = I. By
Nakayama, I = 0, so this is an open immersion as well. The converse is
clear as well.

We also record the following immediate consequences:

Lemma.

1. Open immersions are étale.

2. Pullback of étale maps are étale.

3. Composition of étale maps are étale.

4. Étale morphisms satisfy fpqc descent.
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Recall that we say a property P of morphisms satisfies fpqc descent if whenever
we have a pullback diagram

Y ×X X ′ Y

X ′ X

p′

f ′

p

f

,

if f : X ′ → X is fpqc (faithfully flat and quasi-compact, or fidélement plat et
quasi-compact), then p has property P iff p′ does.

We quickly look at some examples. It is clear from definition that

Example. An étale cover of a field is a disjoint union of finite separable extensions.

The following two theorems, which we shall not prove, characterize étale mor-
phisms over smooth varieties, especially over C. They are exactly what we would
expect from the case of manifolds.

Theorem. Let X be a smooth variety over an algebraically closed field, and f : Y →
X. Then f is étale iff Y is a smooth variety and the derivative dfy : TyY → Yf(y)X
is an isomorphism for all y ∈ Y .

Theorem (Riemann existence theorem). Let X be a smooth variety over C. Then
every finite covering space X(C) has the structure of a smooth variety.

Example. The line with two origins is étale over A1 under the obvious projection
map.

Returning to general theory, recall that covering spaces satisfy the unique lifting
property. The same is true for étale maps if we assume, of course, that our morphism
is separated.

Lemma. Let f : Y → X be a separated étale morphism. Then ∆ : Y → Y ×X Y is
an inclusion into a component.

Proof. It is true topologically since ∆ is open (since f is unramified) and closed
(since f is separated). It is true scheme-theoretically because ∆ is locally an open
immersion.

Corollary. Let p : Y → X be étale and separated, and Z be a connected scheme
over X. Suppose z is a geometric point of Z and f1, f2 : Z → Y are morphisms such
that f1(z) = f2(z). Then f1 = f2.

Proof. Consider the map (f1, f2) : Z → Y ×X Y . Since the diagonal in Y ×X Y
is a component, the preimage under this map is open and closed. Since it is non-
empty (it contains z), it must be everything. So it factors through the diagonal
(scheme-theoretically, since ∆ is a component), hence f1 = f2.
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3 Étale Covers

Definition (Étale cover). An (finite) étale cover is a morphism that is finite and
étale. We write FEtX for the category of étale covers of X.

A trivial cover of X is one that is a finite disjoint union of copies of X.

Lemma. Étale covers are closed under pullback and composition, and satisfy fpqc
descent.

Lemma. Affine, and in particular étale morphisms are separated.

It turns out being an étale cover imposes strong conditions on the map.

Lemma. A finite and flat morphism f : Y → X is locally free, i.e. f∗OY is a locally
free OX-module.

Proof. We check this on stalks. Suppose A is a Noetherian local ring and M is a flat
A-module. We want to show A is free. By Nakayama, there is a surjection Ak →M
whose quotient by m is an isomorphism. Then by the Tor long exact sequence, the
quotient of the kernel by m is also trivial. By Nakayama, this implies Ak → M is
injective.

Corollary. For any Y ∈ FEtX and geometric point x : Spec k̄ → X, the pullback
x∗Y is finite and the cardinality does not depend on x. In particular, Y → X is
surjective, hence faithfully flat. We call this cardinality the degree of x.

Proof. x∗Y → Spec k̄ is an étale morphism over a separably closed field, hence
a discrete number of copies of Spec k̄. This number is the rank of f∗OY as an
OX -module, and is locally constant, hence constant.

Proposition. The degree is invariant under pullback, and non-empty covers have
non-empty degree.

In algebraic topology, a map is a covering space if it is locally trivial. The same
is true for étale covers, if we allow ourselves to view any étale morphism to X as an
“open set” of X.

Lemma. If p : Y → X is an étale cover, then there is an étale cover f : X ′ → X
such that f∗p is trivial.

Proof. If we pull back p along itself, then we can split off the diagonal as a trivial
component of Y ×X Y . So we are done by induction on the degree.

Corollary. If we have a composition

Z Y X
q p

where p and p ◦ q are étale covers, then so is q.

Proof. By fpqc descent, we may assume that Z and Y are both trivial covers, in
which case the proposition is clear.
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4 The Étale Fundamental Group

In Galois theory and covering space theory, a lot of information can be understood
by looking at automorphisms of covers. To understand these automorphisms, it is
useful to look at what it does to geometric points. Fix a base point x ∈ X.

Definition. For any Y ∈ FEtX , we define F (Y ) to be the set of all lifts of x to Y .

By definition, |F (Y )| = deg Y .

Definition (Étale fundamental group). Let X be a scheme and x a base point.
The étale fundamental group π1(X,x) is defined to be AutF , the group of all
automorphisms of the functor F : FEtX → Sets.

In the case of covering theory or Galois theory, this functor F is “representable”.
For Galois groups, this is represented by the separable closure k̄, and for topological
spaces, this is represented by the universal cover. Hence we can (almost) simply define
the fundamental group to be the group of automorphisms of this universal object.
However, Spec k̄ → Spec k is not a finite étale cover, and the universal cover may be
an infinite cover. Nevertheless, we can produce arbitrarily good approximations to
these universal covers.

Definition (Pro-representable). A functor F : C → Sets is pro-representable if there
is a directed/pro-system (Xα)α of objects in C such that

F (Y ) = colim
α

HomC(Xα, Y )

for all Y ∈ C.

In this case, we have
Aut(F ) = lim

α
Aut(Xα)op,

and in particular, this is a profinite group (since each Aut(Xα) acts freely on the
finite set F (Xα)). In the case of Galois theory, the functor F is pro-represented by
the pro-system of all Galois extensions. In covering space theory, F is pro-represented
by the pro-system of all normal covers. In fact,

Theorem (Fundamental Theorem of Galois Theory).

1. F is always pro-representable. Hence, π1(X,x) is profinite, acting continuously
on F .

2. FEtX is equivalent to the category of finite continuous π1(X,x)-sets.

3. In particular, the isomorphism class of π1(X,x) does not depend on the choice
of basepoint. Thus, we may write π1(X) instead.
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The proof of the theorem is the content of the next section. For now, we shall
amuse ourselves by computing some fundamental groups.

Example. Let k be a field. Then π1(Spec k) = Gal(k̄/k).

Example. Let X be a projective variety over C. Then π1(X) is the pro-completion
of the topological fundamental group, by the characterization of étale maps and the
Riemann existence theorem.

Example. By Riemann–Hurwitz, over any algebraically closed field of characteristic
zero, any covering of P1 is trivial. So π1(P1) = 0. This agrees with what topology
tells us if we work over C.

5 Galois Theory

The usual proof of the usual Fundamental Theorem of Galois Theory can pretty
much be carried over to the general case if we can say the word “Galois”. Fortunately,
the word is not too difficult to utter.

Definition (Galois cover). A Galois cover of X is an element Y ∈ FEtX such that
Aut(Y ) acts transitively on F (Y ).

The following proposition should be reassuring, but will not be used.

Proposition. Let Y ∈ FEtX be Galois. Then Y ×X Y splits as finitely many disjoint
copies of Y , and Aut(Y ) acts freely and transitively over the copies, where Aut(Y )
acts as an automorphism of π1 : Y ×X Y → Y by pullback.

Proof. The diagonal map Y → Y ×X Y gives an isomorphism between Y and a
component of Y ×X Y . We fix a geometric point z ∈ F (Y ), and then we have a
diagram

(Spec k)n Y ×X Y Y

Spec k Y X

π1

z

By definition of the pullback, the lifts of z to Y ×X Y bijects with the lifts of x to
Y , and this preserves the action of Aut(Y ). Since Aut(Y ) acts freely on the lifts of
z, it must act freely on Y ⊆ Y ×X Y . So Y ×X Y splits as n copies of Y , and there
is nothing left since Y ×X Y → Y has degree n.

In Galois theory, we can construct Galois closures. We can do the same here.

Lemma. Let Y ∈ FEtX be connected. Then there is a Galois cover Y ′ with a map
Y ′ → Y such that if Z ∈ FEtX is any Galois cover, then any map Z → Y factors
through Y ′.
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In Galois theory, the Galois closure is constructed by taking the field generated
by all field embeddings into the algebraic closure. The construction here is similar.

Proof. Let y1, . . . , yn ∈ F (Y ), which gives rise to a geometric point y = (y1, . . . , yn) ∈
Y n. Let Y ′ be the component of y ∈ Y n, mapping to Y by first projection. This is
an étale cover since it is a connected component of one. We claim that this works.

Claim. If (x1, . . . , xn) ∈ Y ′, then xi 6= xj for all i and j.

If πi,j : Y n → Y 2 is the projection onto the i, j coordinates, then this is the
same as saying π−1ij (∆(Y )) ∩ Y ′ = ∅. But since ∆(Y ) is open and closed and π−1ij is

continuous, we know π−1ij (∆(Y )) ∩ Y ′ is either Y ′ or empty. But it does not contain
(y1, . . . , yn) ∈ Y ′. So it is empty.

Claim. Y ′ → X is Galois.

Any element in F (Y n) is of the form (xi1 , . . . , xin), and by the above, if it is in
Y ′, then it is of the form (xσ(1), . . . , xσ(n)) for some permutation σ ∈ Sn. This σ
also acts on Xn by permuting the coordinates, and σ(Y ′) ∩ Y ′ is non-empty since it
contains (xσ(1), . . . , xσ(n)). So σ(Y ′) = Y ′, and hence σ ∈ Aut(Y ′). So Aut(Y ′) acts
transitively on F (Y ′).

Claim. If Z is Galois and q : Z → Y , then it factors through Y ′.

Fix a lift z ∈ F (Z). Then by composing with automorphisms of Aut(Z), we
can pick maps q1, . . . , qn : Z → Y such that qi(z) = yi. Then the image of
(q1, . . . , qn) : Z → Y n includes a point in Y ′, namely y, and hence maps into Y ′ by
connectedness of Z.

Theorem. Let (Xα)α ⊆ FEtX be the poset of Galois covers of X, ordered under
Xα ≤ Xβ if there is a morphism Xβ → Xα. For each Xα, pick a point xα ∈ F (Xα).
Then if Xα ≤ Xβ, we pick the morphism that sends xα to xβ for use in the pro-system.
Then this pro-system pro-represents F .

Proof. This is indeed a pro-system since the pullback of two Galois covers is yet
another Galois cover of X. There is a natural transformation

colim Hom(Xα, Y )→ F (Y )

that sends a map q : Xα → Y to q(xα). Conversely, given any y ∈ F (Y ), we
may restrict to the component of y and assume Y is connected. Then since Xα →
Y is surjective and Aut(Xα) acts transitively on F (Xα), precomposing with an
automorphism gives a morphism Xα → Y that sends xα to y, and such a map is
unique since Aut(Xα) acts freely. This gives the desired inverse map.

Theorem. FEtX is naturally equivalent to the category of continuous finite π1(X,x)-
sets.
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Proof. The functor is given by F . Conversely, given a continuous finite π1(X,x)
set S, pick Xα such that Aut(Xα) acts transitively with stabilizer H. Then X ∼=
F (Xα)/H ∼= F (Xα/H)†. Functions can be constructed similarly.

A Faithfully flat morphisms

In this appendix, we document some important facts about flat and faithfully flat
morphisms.

Definition. Let f : A→ B be a ring homomorphism. We say f is flat if the functor

−⊗A B : A-Mod→ B-Mod

is exact.

Definition. A morphism p : Y → X is flat if for all y ∈ Y and x = f(y), the map
OX,x → OY,y is flat. This in particular implies the pullback functor

p∗ : QCoh(Y )→ QCoh(X)

is exact.

If X is quasi-compact and quasi-separated, then p∗ being exact implies p being
flat.

Lemma. Compositions and pullbacks of flat maps are flat.

Proof. We only have to show that the pullback of flat maps is flat. Since flatness is
local, it suffices to show that if f : A→ B is a flat map of rings and g : A→ C is
any map of rings, then C → B ⊗A C is flat. But if M· is a exact sequence of chain
complexes, then

B ⊗A C ⊗C M· = B ⊗AM·,
where we think of M· as an A-module via g. So this is exact.

Theorem. Let p : Y → X be flat. Then the following are equivalent:

1. p∗ is faithful, i.e. if h : F → F ′ is a morphism of quasi-coherent sheaves over
Y , and p∗h = 0, then h = 0.

2. If p∗F = 0, then F = 0.

† Quotienting an affine scheme SpecA by a finite group action G is okay — simply take SpecAG.
It is then easy to extend to affine, and in particular finite morphisms. To show this is an étale
cover, one uses that being an étale cover is the same as being fpqc-locally trivial, and observe
that pullback is compatible with quotients and everything works with trivial covers.
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3. p∗ reflects exactness, i.e. if a sequence F· is such that p∗F· is exact, then so
is F·.

4. p is surjective.

When these hold, we say p is faithfully flat.

Proof.

(1) ⇒ (2) Take h = id : F → F .

(2) ⇒ (3) Apply (2) to the homology groups of F·.
(3) ⇒ (1) h = 0 iff F h→ F ′ 1→ F ′ is exact.

(4) ⇒ (2) Take F 6= 0. We may assume F is in fact coherent, for F contains
a coherent subsheaf G and p∗ preserves subsheaves by flatness. So if
p∗G 6= 0, then p∗F 6= 0.

Pick x ∈ X such that Fx 6= 0. By surjectivity, there is a field k and a
map x̃ : Spec k → X that sends the unique point to x and has a lift to
Y (e.g. by first picking a map to Y that hits a preimage of x). This
means the pullback Y ×Spec k X is non-empty. Moreover, x̃∗F 6= 0 by
Nakayama, and is free since Spec k is a field. So the pullback of F to
Y ×Spec k X is non-zero. Hence p∗F 6= 0.

(2) ⇒ (4) Let p ∈ X, and SpecA ⊆ X an affine open containing p. Set F|SpecA =

Ãp/pAp and extend by zero. Then p∗F 6= 0 implies there is some affine

open SpecB ⊆ Y such that B ⊗A Ap

pAp
= Bp/pBp 6= 0. Then a prime of

Bp/pBp is a prime of B that gets mapped to p under p.

Using (4), it is clear that

Lemma. Compositions and pullbacks of faithfully flat maps are faithfully flat.

We say a property P of morphisms satisfies fpqc descent if whenever we have a
pullback diagram

Y ×X X ′ Y

X ′ X

p′

f ′

p

f

with f faithfully flat, then p has property P iff p′ does.

Theorem. Flat morphisms satisfy fpqc descent.
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Proof. Suppose p′ is flat. If we have a sequence F· of quasi-coherent sheaves on X,
then p′∗f∗F· is exact since f and p′ are flat, and since p′∗f∗ = f ′∗p∗, we know p∗F·
is exact by faithfulness.

Theorem. Finite morphisms satisfy fpqc descent.

Proof sketch. The pullback of a finite morphism is clearly finite. For the other
direction, We will prove the affine version. The gluing step part (which is the hard
step) is annoying and will be omitted.

Suppose that f : R → S is faithfully flat and M is an R-module. We want to
show that M ⊗R S being finitely-generated implies M is finitely generated.

Suppose y1, . . . ym generate M ⊗R S, and yj =
∑
xi,j ⊗ fi,j . Then the xi,j

generate M , since they generate M ⊗R S as an S-module and R→ S is faithfully
flat, hence reflects surjectivity.
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