Homology of the Ed\mathbb {E}_d operadOperad and cooperad structures

5 Operad and cooperad structures

We now describe an operad structure on Poisd\mathrm{Pois}^d and the corresponding dual cooperad structure on Siopd\mathrm{Siop}^d.

Given an SS-tree, we can produce a bracket expression. For example, we send

\begin{useimager} 
  \[
    \begin{tikzpicture}[scale=0.3, baseline={([yshift=-.5ex]current bounding box.center)}]
      \draw (0, 0) -- (-1, 1) node [above=-0.05] {\tiny i};
      \draw (-0.5, 0.5) -- (0, 1) node [above=-0.05] {\tiny j};
      \draw (0, 0) -- (1, 1) node [above=-0.05] {\tiny k};
    \end{tikzpicture}
    \mapsto \{\{x_i, x_j\}, x_k\}.
  \]
\end{useimager}

We can then send forests to products of bracket expressions, e.g.

\begin{useimager} 
  \[
    \begin{tikzpicture}[scale=0.3, baseline={([yshift=-.5ex]current bounding box.center)}]
      \draw (0, 0) -- (-1, 1) node [above=-0.05] {\tiny $i$};
      \draw (-0.5, 0.5) -- (0, 1) node [above=-0.05] {\tiny $j$};
      \draw (0, 0) -- (1, 1) node [above=-0.05] {\tiny $k$};
      \begin{scope}[shift={(3, 0)}]

        \draw (0, 0) -- (-0.5, 0.5) node [above=-0.05] {\tiny $\ell$};
        \draw (0, 0) -- (0.5, 0.5) node [above=-0.05] {\tiny $m$};
      \end{scope}
    \end{tikzpicture}
    \mapsto \{\{x_i, x_j\}, x_k\} \cdot \{x_\ell, x_m\}.
  \]
\end{useimager}

The Jacobi identity translates to the usual Jacobi identity of the Lie/Poisson bracket. With the bracket expressions, we can interpret Poisd\mathrm{Pois}^d as operad in the usual way by imposing the Leibniz rule

{X,YZ}={X,Y}Z+(1)XYY{X,Z} \{ X, Y \cdot Z\} = \{ X, Y\} \cdot Z + (-1)^{|X| |Y|} Y \cdot \{ X, Z\}

Under the configuration pairing, one checks that this gives the following cooperad structure on Siopd\mathrm{Siop}^d. To give an operad structure is to give a map a:O(m)O(n)O(m+n1)\circ _a: \mathcal{O}(m) \otimes \mathcal{O}(n) \to \mathcal{O}(m + n - 1) for every tree of the form

\begin{tikzpicture} 
    \foreach \x in {-1.5, -1, -0.5, 0, 0.5, 1, 1.5} {
      \draw (0, 0) -- (\x, 1);
    }
    \node [above] at (-1.5, 1) {\scriptsize $1$};
    \node [above] at (1.5, 1) {\scriptsize $m\! +\! n\! -\! 1$};
    \begin{scope}[shift={(0.5, 1)}]
      \foreach \x in {-0.75, -0.25, 0.25, 0.75} {
        \draw (0, 0) -- (\x, 1);
      }
      \node [above] at (-0.75, 1) {\scriptsize $a$};
      \node [above] at (0.75, 1) {\scriptsize $a + n$};
    \end{scope}
    \node [below] at (0, 0) {$A$};

    \node [right] at (0.5, 1) {\tiny $B$};
  \end{tikzpicture}

where the grafting vertex is the aath vertex. Label the two vertices AA and BB. To make Siopd\mathrm{Siop}^d a cooperad, we need a map Siopd(m+n1)Siopd(m)Siopd(n)\mathrm{Siop}^d(m + n - 1) \to \mathrm{Siop}^d(m) \otimes \mathrm{Siop}^d(n). This map sends GG to GAGBG_A \otimes G_B, where the edges of G1G_1 and G2G_2 are specified by the following procedure:

Theorem 5.1

The map Siopd(n)H(Confn(Rd))=H(Ed(n))\mathrm{Siop}^d(n) \to H^*(\operatorname{Conf}_n(\mathbb {R}^d)) = H^*(\mathbb {E}_d(n)) is an isomorphism of cooperads.

Corollary 5.2

The map Poisd(n)H(Confn(Rd))=H(Ed(n))\mathrm{Pois}^d(n) \to H_*(\operatorname{Conf}_n(\mathbb {R}^d)) = H_*(\mathbb {E}_d(n)) is an isomorphism of operads.

Proof
Since the cooperad structure is compatible with the product structure, it suffices to show that it preserves a\circ _a on aija_{ij}.

Consider the composite

Ed(m)×Ed(n)aEd(m+n1)αijSd1. \mathbb {E}_d(m) \times \mathbb {E}_d(n) \overset {\circ _a}{\longrightarrow } \mathbb {E}_d(m + n - 1) \overset {\alpha _{ij}}{\longrightarrow } S^{d - 1}.

Consider the homotopy where at time tt, the disks in the first factor are scaled by tt and the disks in the second factor are scaled by t2t^2. As t0t \to 0, we see that this approaches the projection onto the vvth factor followed by αJv(i)Jv(j)\alpha _{J_v(i) J_v(j)}, as promised.

Proof