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In [2], Atiyah, Bott and Shapiro calculated certain groups Ak associated to
real Clifford algebra representations, and observed that they were isomorphic to
KO−k(∗). The same can be said for complex K-theory, but a sequence of groups
alternating between Z and 0 is less impressive. In their paper, they constructed a
map Ak → KO−k(∗), and using their knowledge of KO−k(∗), they showed this is in
fact an isomorphism. It wasn’t a particularly exciting proof, since both sides have a
ring structure that the map respects, and so they only had to check the map does
the right thing to the handful of generators.

Later, in [3], Atiyah and Singer found a good reason why they had to be isomorphic.
Roughly, the idea is that KO−k is represented by some group of Clifford algebra
representation homomorphisms, and it is not too difficult to show that π0 of this this
space is isomorphic to Ak. The goal of these notes is to work through these results
and conclude the Bott periodicity theorem.

If the reader finds the details lacking, they may refer to [3] (which does not
provide a very detailed treatment either, but the intersection of details missed out
should be minimal).

In these notes, “homotopy equivalence” will mean “weak homotopy equivalence”.
However, it follows from results of Milnor [7] that the spaces involved are CW
complexes, so it doesn’t actually matter.

1 Clifford Algebras and Representations

We begin by defining Clifford algebras.
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Definition. Let V be a vector space over R and Q : V → R a quadratic form. The
Clifford algebra C(V ;Q) is defined by the quotient

C(V ;Q) =

⊕∞
k=0 V

⊗k

(x⊗ x−Q(x))
.

Example. Let Qk be the standard negative-definite quadratic form on Rk, so that

Q(x1, . . . , xk) = −
∑

x2i .

We define Ck = C(Rk;Qk) and C ′k = C(Rk;−Qk). These are the Clifford algebras
we are interested in.

Observe that our Clifford algebras are non-commutative algebras. For many
purposes, it is convenient to treat them as Z2-graded algebras∗, with V being in
degree 1. In particular, it gives the correct tensor product.

Recall that if A,B are Z2-graded algebras, then the graded tensor product A ⊗̂B
is defined by the algebra with underlying vector space A⊗B and multiplication

(x⊗ y) · (v ⊗ w) = (−1)|y||v|xv ⊗ yw.

Lemma. If V = V1 ⊕ V2 and Q(x+ y) = Q1(x) +Q2(y) for all x ∈ V1 and y ∈ V2,
then

C(V ;Q) = C(V1;Q1) ⊗̂ C(V2;Q2).

Here the graded product is needed because we want

Q(a+ b) = (a⊗ 1 + 1⊗ b)2 = a2 ⊗ 1 + 1⊗ b2 = Q1(a) +Q2(b).

From this lemma, we immediately deduce that

Corollary. We have
Ck = C1 ⊗̂ · · · ⊗̂ C1︸ ︷︷ ︸

k times

.

Explicitly, Ck is generated by e1, . . . , ek subject to the relations

e2i = −1, eiej + ejei = 0.

In particular, dimCk = 2k, and the dimension in each degree is 2k−1. Similar
statements can be made for C ′k.

Ultimately, we wish to understand the representations of Ck. To do so, it is
convenient to explicitly identify the Clifford algebras Ck. While graded tensor
products are the “morally correct” things to consider, they are not computationally
helpful. Instead, we want to rephrase everything in terms of ordinary tensor products.
We have the following result:

∗ Here Z2 always means the integers mod 2; we will make no use of the 2-adics in these notes.
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Proposition. We have

Ck+2
∼= C ′k ⊗R C2

C ′k+2
∼= Ck ⊗R C

′
2

Proof. Let e′1, . . . , e
′
k be the generators of C ′k. Consider the map of algebras C ′k+2 →

Ck ⊗R C
′
2 defined by

e′1 7→ 1⊗ e′1
e′2 7→ 1⊗ e′2
e′i 7→ ei−2 ⊗ e′1e′2 for i ≥ 3.

One checks that this is well-defined, and surjects onto the generators of Ck ⊗R C
′
2.

So this map is surjective, and since both sides have the same dimension, this is an
isomorphism. The other isomorphism is obtained by swapping e′i with ei.

Using this, we are now in a position to explicitly describe the Clifford algebras
inductively. We first identify the Clifford algebras in low dimensions explicitly.

Notation. For any algebra R, we write R(n) for the algebra of n× n matrices with
entries in R.

Proposition.

C1
∼= C C ′1

∼= R⊕ R
C2
∼= H C ′2

∼= R(2).

Proof. The descriptions of C1 and C2 are essentially by definition. The identification

of C ′1 is obtained by picking basis vectors
1±e′1
2 . The identification of C ′2 is obtained

by setting

e′1 =
1√
2

(
1 1
1 −1

)
, e′2 =

1√
2

(
−1 1
1 1

)
.

We will also need the following observations:

Lemma. We have
C⊗R C ∼= C⊕ C

and

H⊗R C ∼= EndC(H) ∼= C(2) H⊗R H ∼= EndR(H) ∼= R(4)

p⊗ z 7→ (q 7→ zqp̄) p⊗ r 7→ (q 7→ pqr̄)

We can then write down the table of Clifford algebras
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k Ck C ′k

1 C R⊕ R
2 H R(2)
3 H⊕H C(2)
4 H(2) H(2)
5 C(4) H(2)⊕H(2)
6 R(8) H(4)
7 R(8)⊕ R(8) C(8)
8 R(16) R(16)

Moreover, Ck+8 = Ck ⊗R R(16).
Note that all our Clifford algebras are semi-simple, and most of them are in fact

simple. One might think the representations are therefore quite uninteresting, but
that would be wrong.

Definition. Let A be an Z2-graded algebra. We define M(A) to be the Grothendieck
group of graded representations of A, and N(A) be the Grothendieck group of
ungraded representations of A. We also write A0 for the degree zero part of A.

Lemma. We have an isomorphism of groups

M(Ck) ∼= N(C0
k)

M0 ⊕M1 7→M0

Ck ⊗C0
k
M 7→M.

Moreover, we can also easily identify C0
k :

Lemma. We have an isomorphism of algebras

φ : Ck−1 ∼= C0
k

ei 7→ eiek.

This immediately allows us to write down the Grothendieck group of representa-
tions of Ck, as well as the dimensions of the representations.

k Ck M(Ck) dimR(M0)

1 C Z 1
2 H Z 2
3 H⊕H Z 4
4 H(2) Z⊕ Z 4
5 C(4) Z 8
6 R(8) Z 8
7 R(8)⊕ R(8) Z 8
8 R(16) Z⊕ Z 8
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Now there is always an inclusion i : Ck → Ck+1, which induces a map i∗ : M(Ck+1)→
M(Ck).

Definition. We define Ak = M(Ck)/i∗M(Ck+1).

When k 6= 4n, computing Ak is trivial, since there is only one irreducible
representation. Hence we know what the image of i∗ is simply by looking at the
dimension of the pulled back representation. We claim that A4n = Z for all n.

One can prove this using some more direct arguments, but it is convenient for
us to prove this by understanding the module structure better. Given a graded Ck
module M = M0⊕M1, we can obtain a new Ck module M∗ = M1⊕M0. If k 6= 4n,
then for purely dimensional reasons, we must have M ∼= M∗.

Proposition. Let k = 4n, and let M and N be the irreducible Ck-modules. Then
M = N∗ and N = M∗.

Proof. We wish to reduce this problem to a problem of ungraded modules.
Note that in general, for an algebra A and an automorphism α, if M is an

A-module, then we can construct another A-module Mα whose underlying set is the
same, but the action is given by

x ·m = α(x)m.

With this in mind, consider the automorphisms

α : Ck 7→ Ck β : Ck−1 7→ Ck−1

x 7→ ekxe
−1
k x 7→ (−1)|x|x.

Check that these are related by the commutative diagram

Ck−1 Ck

Ck−1 Ck.

φ

β α

φ

Since multiplication by ek gives an isomorphism of vector spaces M0 ∼= M1, we
know that M∗ ∼= Mα. Hence under the correspondence M(Ck) ∼= N(Ck−1), the
operation M 7→M∗ corresponds to M0 7→ (M0)β .

Thus, it suffices to show that β swaps the two irreducible ungraded representations
of Ck−1. Since Ck−1 ∼= Ck−2 ⊕ Ck−2, we want to find the central idempotents that
project to the two ideals, and show that β swaps the two. We can just write this
down.

Set
w = e1e2 · · · e4n−1.

Then 1 and w are in the center, and w2 = 1. So the desired idempotents are 1±w
2 ,

and β(w) = −w.
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Corollary. A4n
∼= Z.

Proof. Let x, y be the two irreducible modules in M(C4n), and z the irreducible
module in M(C4n+1). Then z∗ = z, so (i∗z)∗ = i∗z∗ = i∗z. So we must have
i(z) = x+ y.

This w will be useful later on. Observe that, when restricted to degree 0
components, w acts as 1 on one of the irreducible representations and −1 on the
other. So if we are given some representation of C4n, if we want to know how many
of each irrep we have got, we simply have to take the degree 0 component and count
the eigenvectors of φ(w).

We can now tabulate

k Ck M(Ck) dimR(M0) Ak

1 C Z 1 Z2

2 H Z 2 Z2

3 H⊕H Z 4 0
4 H(2) Z⊕ Z 4 Z
5 C(4) Z 8 0
6 R(8) Z 8 0
7 R(8)⊕ R(8) Z 8 0
8 R(16) Z⊕ Z 8 Z

Note that we have Ck+8 = Ck ⊗R R(16), so we see that Ak is 8-periodic. In fact,
more is true.

Observe that if M ∈M(Ck) and N ∈M(Cm), then since Ck+m ∼= Ck ⊗̂ Cm, we
can view M ⊗̂N as an Ck+m module. Then this turns M∗ = M(C∗) into a ring, and
since the image of i∗ : M∗ →M∗ is an ideal (M · i∗N = i∗(M ·N)), this implies A∗
is a ring as well.

Theorem (Bott Periodicity). Let λ be the irreducible module of C8. Then multi-
plication by λ induces an isomorphism M(Ck)→M(Ck+8), hence an isomorphism
Ak ∼= Ak+8.

Proof. This is trivial except in the case k = 4n, by dimension counting. If M(C4n)
is generated by the irreps x, y, then λ · x is one of the irreps in M(C4n+8), and then

λ · y = λ · x∗ = (λ · x)∗

is the other irrep.

This is interesting, since we observe that we have Ak ∼= KO−k(∗), and after a bit
of checking, this is in fact an isomorphism of rings! Of course, it would be terrible
to just observe that we know what both sides are, and that they are the same. We
should prove that they are the same without knowledge of KO−k(∗), and this would
give us both Bott periodicity, as well as explicit computations of KO−k(∗).
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2 Fredholm Operators and K-theory

It is difficult to directly connect Clifford algebras to K-theory. Instead, we have to
find an alternative model for K-theory. One such model is given by the space of
Fredholm operators.

2.1 Basic properties of Fredholm operators

Definition. Let H be a Hilbert space. A bounded linear operator T : H → H is
Fredholm if kerT and cokerT are both finite-dimensional.

Exercise. T induces an isomorphism between kerT⊥ and imT . In particular, imT
is closed and (if kerT 6= 0) 0 is an isolated point in the spectrum of T .

Definition. The index of a Fredholm operator T : H → H ′ is

idxT = dim kerT − dim cokerT.

Example. If H = H ′ is finite-dimensional, then all operators are Fredholm with
index 0, by the rank-nullity theorem.

Example. Let shift : `2 → `2 be the map

shift(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ).

Then this has index 1. The adjoint of shift, written shift−1, is given by

shift−1(x1, x2, x3, . . . ) = (0, x1, x2, . . . ).

which has index −1.
One can similar see that idx(shiftk) = k for all k ∈ Z. So in particular, every

integer is the index of some operator.

The fact that the index of shiftk is the negative of the index of its adjoint is not
a coincidence.

Exercise. Let T : H → H be Fredholm. Then so is T ∗, and idxT ∗ = − idxT .

We shall prove some basic properties of Fredholm operators. They all follow from
the following result:

Lemma. Consider the commutative diagram

0 H H ′ H ′′ 0

0 H H ′ H ′′ 0

T S R

If the rows are short exact, and any two of T , S and R are Fredholm, then so is the
third, and

idxS = idxT + idxR.
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Proof. Apply the snake lemma to obtain a long exact sequence

0 kerT kerS kerR cokerT cokerS cokerR 0 .

Corollary. If T : H → H and S : H ′ → H ′ are Fredholm, then so is T ⊕ S :
H ⊕H ′ → H ⊕H ′, and we have

idx(T ⊕ S) = idxT + idxS.

Of course, we could have proved this directly.

Corollary. Let T : H → H ′ and S : H ′ → H ′′ be Fredholm. Then ST is Fredholm,
and

idx(ST ) = idxT + idxS.

Proof.

0 H H ⊕H ′ H ′ 0

0 H ′ H ′′ ⊕H ′ H ′′ 0

(I,T )

T

T−I

ST⊕I S

(S,I) I−S

Corollary. Let I : H → H be the identity and K : H → H be a compact operator.
Then I +K is Fredholm and has index 0.

Proof. First consider the case where K has finite-dimensional image. Then consider
the short exact sequences

0 imK H cokerK 0

0 imK H cokerK 0

where the vertical maps are all restrictions of I +K. One sees that the maps are
well-defined.

Now note that the left-hand map is one between finite-dimensional vector spaces,
so is Fredholm with index 0. On the other hand, the right-hand map is in fact the
identity, since we quotiented out by the image of K, and is in particular Fredholm
with index 0. So we are done.

For general compact K, we can approximate K arbitrarily well by finite-rank
operators†. So pick K ′ such that K ′ has finite rank and ‖K − K ′‖ < 1. Thus
I + (K −K ′) is invertible, and we can write

I +K = (I + (K −K ′))(I + (I +K −K ′)−1K ′).
† The image of the unit ball is totally bounded, so there is a finite-dimensional subspace that

approximates it well. Then compose K with the projection to this subspace. Note that this is
false for general Banach spaces [5].
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The first term is invertible, hence Fredholm with index 0. The second is I plus
something of finite rank, so is Fredholm with index 0. So the general result follows.

Theorem. Let T be a bounded linear operator. Then T is Fredholm iff there exists
S : H → H such that TS − I and ST − I are compact.

Proof.

(⇒) Note that T gives an isomorphism between (kerT )⊥ and imT . So we can make
sense of (T |imT )−1 : imT → (kerT )⊥. Then we can take S to be

H ∼= imT ⊕ (imT )⊥ (kerT )⊥ ⊕ kerT ∼= H
(T |imT )−1⊕0

.

Then ST − I and TS − I have finite rank, as they vanish on (kerT )⊥ and
imT respectively.

(⇐) Using the previous corollary, we know ST and TS are Fredholm. Since ST
is Fredholm, kerT is finite-dimensional. Since TS is Fredholm, cokerT is
finite-dimensional. So we are done.

Corollary. If T is Fredholm and K is compact, then T +K is also Fredholm.

Proof. We can use the same S, since the algebra of compact operators is a two-sided
ideal in End(H).

2.2 Kuiper’s theorem

We shall take a short break from Fredholm operators, and prove the following
extremely important theorem:

Theorem (Kuiper, 1964, [6]). Let H be a separable infinite-dimensional (real or
complex) Hilbert space. Then for any compact space X, we have [X,GL(H)] = 0.
In particular, GL(H) is weakly contractible.

To prove this, we first establish a useful “move”.

Lemma. Let X be a fixed space, and S, T : X → GL(H) continuous functions.
Then the maps (

ST 0
0 I

)
,

(
T 0
0 S

)
: X → GL(H ⊕H)

are homotopic as maps X → GL(H ⊕H).

The mental picture we should have in mind is that we are allowed to “rotate” S
from the top-left corner to the bottom-right corner. The proof, unsurprisingly, is a
literal rotation.
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Proof. We pick

Ht =

(
cos t − sin t
sin t cos t

)(
S 0
0 I

)(
cos t sin t
− sin t cos t

)(
T 0
0 I

)
for t going from 0 to π

2 .

Corollary. If f : X → GL(H) is such that there is an infinite-dimensional subspace
H0 ⊆ H with f(x)|H0 = I for all x ∈ X, then f is homotopic to the constant map I.

Proof. In the decomposition H = H⊥0 ⊕H0, the matrix of f(x) looks like(
Q 0
∗ I

)
.

for some invertible matrix Q = Q(x). We can linearly homotopy f̃ to kill off the ∗ on
the bottom left corner. We then write H0 as the infinite sum of infinite-dimensional
Hilbert subspaces, so that the matrix now looks like this:

Q
I
I
I
I
I

. . .

 ,

Using the fact that I = Q−1Q, the previous lemma tells us we have homotopies
Q

QQ−1

I
QQ−1

I
QQ−1

. . .

 

Q

Q−1

Q

Q−1

Q

Q−1

. . .

 ,

We now apply the lemma again, but “bracketing” in a different way, to obtain
Q

Q−1

Q

Q−1

Q

Q−1

. . .

 

I
I
I
I
I
I . . .

 .

So the idea is to pick some subspace H0 ⊆ H and modify f until the f is the
identity on H0. In general, suppose we have another map g(x) : H0 → H, and we
want to modify f so that f(x)|H0

= g(x) for all x. The key idea is that we can do so
as long as g(x) and f(x) have orthogonal images, in which case we just do a simple
rotation, using g(x)f(x)−1 to identify the two subspaces we want to rotate. I must
emphasize that the actual result and proofs are much easier and more intuitive than
how I wrote them down, but I couldn’t find a better way to do so.
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Lemma. Suppose H = H0 ⊕H1, f(x) : H → H, and g(x) : H0 → H are such that
f(x)(H0) ⊥ g(x)(H0) for all x and g(x) is an isomorphism onto its image. Then f is
homotopic to a map f̃ such that f̃(x)|H0

= g(x).

Proof. For each x, decompose H = f(x)H0 ⊕ g(x)H0 ⊕Hx for some Hx. Then the
map

ϕx : f(x)H0 ⊕ g(x)H0 ⊕Hx → f(x)H0 ⊕ g(x)H0 ⊕Hx

f(x)a⊕ g(x)b⊕ c 7→ f(x)b⊕ (−g(x)a)⊕ c.

is homotopic to the identity. Indeed, we can achieve this if f(x) and g(x) weren’t
there by a rotation, and we just have to conjugate that homotopy by f(x)⊕g(x)⊕IHx .
Then take f̃(x) = ϕ−1x f(x).

Thus, if we can decompose H = H0⊕H1⊕H2 such that f(x)(H0) ⊥ H2, then the
theorem follows by performing two swaps — first homotope f so that f(x)(H0) = H2,
and then swap the image back to the identity on H0.

Proposition. We may assume the image of f is contained in a finite-dimensional
subspace of End(H).

Proof. This is a special case of the following more general fact: Let V be a normed
vector space and U ⊆ V an open set. Suppose x1, . . . , xn are points in U and
εi > 0 are such that B(xi, 3εi) ⊆ U . Then there is a deformation retract of
U∗ =

⋃n
i=1B(xi, εi) into the simplicial complex spanned by x1, . . . , xn. Indeed, pick

a partition of unity

ψj(x) = max(εi − ‖x− xj‖, 0),

φj(z) =
ψj(z)∑N
k=1 ψk(z)

.

Then we can use the deformation

gt(x) = (1− t)x+ t

N∑
j=1

φj(x)xj ,

and the hypothesis ensures this remains in GL(H).

Proposition. There exists an orthogonal decomposition H = H1 ⊕H2 ⊕H3 such
that f(x)(H1) ⊥ H3 for all x, and H1 and H3 are both infinite-dimensional.

Proof. Pick a vector a1, put it in H1. The span of all f(x)(a1) is finite-dimensional,
so we can put finitely many vectors in H2 so that f(x)(a1) ∈ H1⊕H2 for all x. Pick
any vector orthogonal to the vectors we have chosen and put it in H3.

Next, pick a2 that is orthogonal to everything chosen so far, and also so that
f(x)(a2) is orthogonal to everything chosen so far for all x. This is possible since
these conditions only exclude a finite-dimensional subspace. Keep going on countably
many times, and afterwards if there is anything left, put it in H2.
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2.3 The Atiyah–Jänich theorem

Equipped with Kuiper’s theorem, we can finally prove what we wanted to.

Theorem (Atiyah, Jänich). Let H be an infinite-dimensional real Hilbert space,
and F the space of all Fredholm operators on H. Then for every compact space X,
there is a natural isomorphism

idx : [X,F ]→ KO(X).

The same holds in the complex case with KO replaced by KU .

For f : X → F , we would like to define idx(f) by setting the fiber at each x ∈ X
to be the formal difference between ker f(x) and coker f(x). In general, this does
not give a vector bundle, but it is a general fact (which we shall not prove) that we
can homotope f so that it does, and the difference [ker f ]− [coker f ] is independent
of the choice of homotopy. In particular, it depends only on the homotopy class of f .

Proof (cf. [1]). First observe the following trivial lemma:

Lemma. Let f : M → G be a surjective homomorphism from a monoid to an
abelian group with trivial kernel, i.e. f−1({0}) = {0}. Then f is in fact injective,
hence an isomorphism.

So it suffices to show our map is surjective and has trivial kernel.

• To show the kernel is trivial, by Kuiper’s theorem, it suffices to show that every
map T : X → F with index 0 is homotopic to a map with image in GL(H).

If idxT = 0, we can homotope T so that [kerT ] = [cokerT ]. Thus, by definition
of the K-groups, we can find some large m such that

kerT ⊕ (X × Rm) ∼= cokerT ⊕ (X × Rm).

Thus, by homotoping T to vanish further on a trivial subbundle isomorphic to
X × Rm, we may assume that there is an isomorphism φ : kerT → cokerT ∼=
(imT )⊥. Then we have a homotopy

(tφ, T |(kerPnT )⊥) : kerPnT ⊕ (kerPnT )⊥ → H

going from T to an isomorphism. Then we are done.

• To show surjectivity, since every element in K(X) is of the form [E]− [X×Rk],
it suffices to show that we can produce maps with index [E] and −[X × Rk].

The case of −[X × Rk] is easy — take the map T to constantly be shift−k.

To construct the one with [E], first pick some bundle F such that E ⊕ F ∼=
X × RN for some N .

Now consider the bundle (E⊕F )⊕(E⊕F )⊕(E⊕F )⊕· · · , which is isomorphic
to X ×H. Then take the Fredholm operator to be

(e1, f1, e2, f2, e3, f3, . . . ) 7→ (e2, f1, e3, f2, e4, f3, . . . ).
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3 Proving Bott Periodicity I

3.1 The last part of the proof

We can now return to Clifford algebras and Bott periodicity. The idea of Atiyah
and Singer [3] was to extend the Atiyah–Jänich theorem to provide explicit descrip-
tions of the loop spaces ΩkF(H). It turns out we can interpret this space (up to
homotopy equivalence, of course) as Fredholm homomorphisms of Clifford algebra
representations.

Note that Ck naturally comes with an involution defined by e∗i = −ei, and we
shall require our representations to respect this. Let H = H0 ⊕H1 be a Z2-graded
Hilbert space with a simultaneous graded action of all Ck, i.e. there are bounded
linear operators J1, J2, . . . of degree 1 such that

JiJj + JjJi = 0, J2
i = −1, J∗i = −Ji,

for all i 6= j. We will focus on skew-Hermitian operators. Since we have a graded
Hilbert space, we require our skew-Hermitian operators to have degree 1. So that B
takes the form (

0 −T ∗
T 0

)
.

Definition. We let

F̂(H) = {B ∈ F(H) : B is skew-Hermitian}
Fk(H) = {B ∈ F̂ : BJi + JiB = 0 for i = 1, . . . , k}

After picking an arbitrary isomorphism H0 ∼= H1 of vector spaces, sending B ∈
F̂(H) = F0(H) to T ∈ F(H0) as above gives a homeomorphism F(H0)→ F0(H).
Hence F0 represents KO = KO0.

It turns out these Fk(H) are not what we want. To understand this, suppose
B ∈ Fk(H) is unitary (which we can achieve by restricting to kerB⊥ and then
rescaling), so that B2 = −B∗B = −1. Then B “acts as” Jk+1 on H, and this
gives H a new Ck+1 action. If k 6≡ −1 (mod 4), then there is a unique irreducible
Ck+1 module, hence the structure of H as a Ck+1-module is completely determined.
However, if k ≡ −1 (mod 4), then we want to ensure H has infinitely many copies
of each irreducible module, for it to be well-behaved.

Recall that to count how many copies of each each irrep we’ve got, we are supposed
to count the eigenvalues of w = e1e2 · · · ek after turning H0 to a Ck-module. The
process of turning H0 into a Ck-module involves the inclusion Ck ↪→ Ck+1, which
sends ei to eiek+1. In our case, ek+1 = B, and ei = Ji for i = 1, . . . , k. Thus, we are
counting the eigenvalues of

w = (J1B)(J2B)(J3B) · · · (JkB).
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Since k ≡ −1 (mod 4) and B2 = −1, this is equal to

w = J1J2 · · · JkB.

We then want to require that the eigenvalues ±1 to both have infinite multiplicity. In
general, for an arbitrary B, it is not unitary, or even injective. The desired “niceness”
property is now that when we restrict B to the kerB⊥, and then rescale B so that it
is unitary, the multiplicity of ±1 in w are both infinite. Equivalently, without doing
the restriction and rescaling business, we want J1J2 · · · JkB to have infinitely many
eigenvalues of each sign, counted with multiplicity.

Definition. We say a self-adjoint operator is essentially definite if all but finitely
many of its eigenvalues are of the same sign.

Definition. If k 6≡ −1 (mod 4), we define Fk∗ (H) = Fk(H). Otherwise, we define

Fk∗ (H) = {B ∈ Fk(H) : J1J2 · · · JkB|H0 is not essentially definite}.

Observe that these form a component of Fk(H).
The main theorem of Atiyah and Singer is the following:

Theorem A. For k ≥ 1, there is a homotopy equivalence

Fk∗ (H)→ Ω(Fk−1∗ (H)).

Thus, combined with the Atiyah–Jänich theorem, we know that Fk∗ (H) represents
KO−k.

We first see how this proves that KO−k(∗) = Ak, and in particular implies Bott
periodicity.

Theorem (Bott periodicity). There is a natural‡ homotopy equivalence Fk+8
∗ ' Fk∗ .

Proof. Let M be an irreducible C8-module. Then there is an isomorphism

Fk∗ (H) ∼= Fk+8
∗ (H ⊗̂M)

A 7→ A⊗ I,

and there is a contractible space of Ck+8-module isomorphisms H ∼= H ⊗̂M .

Theorem (Computation of KO−k(∗)). The map idx : Fk∗ (H) → Ak defined by
A 7→ [kerA] is continuous, and induces a bijection π0(Fk∗ )→ Ak.

This in fact gives us an isomorphism of rings.

‡ More precisely, there is a natural contractible space of such homotopy equivalences.
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Proof. For convenience, we drop the (H) in F k∗ (H) when it is clear.
We leave the k = 0 case for the reader. Note that C0 = R is concentrated in

degree 0, and it has two irreducible graded representations given by 0⊕R and R⊕ 0.
For k > 0, we first show that the kernel map is continuous, so that it factors

through π0(Fk∗ ). Let B ∈ Fk∗ . Note that B2 is self-adjoint and negative, since

〈B2x, x〉 = −〈Bx,Bx〉 ≤ 0.

Hence we know that σ(B2) ⊆ (−∞, 0]. In fact, since B is Fredholm, we know 0 is
an isolated point in the spectrum, and by scaling B, we may assume

σ(B2) ⊆ (−∞,−1] ∪ {0}.

Since the spectrum depends continuously on B2, we can pick a small neighbourhood
of B in F̂k∗ such that whenever C is in the neighbourhood,

σ(C2) ⊆ (−∞,−1 + ε] ∪ [−ε, 0],

and further that ‖B2 − C2‖ < ε < 1
2 .

Let E be the spectral projection to [−ε, 0]. We claim that E is isomorphic to
kerB. Indeed, consider the orthogonal projection P from E to kerB.

• P is injective. If not, suppose x ∈ E ∩ (kerB)⊥, and wlog assume ‖x‖ = 1.
Since σ(B2|kerB⊥) ⊆ (−∞,−1], we have

|〈(B2 − C2)x, x〉| = |〈B2x, x〉 − 〈C2x, x〉| ≥ 1− ε,

a contradiction.

• P is surjective. If not, suppose x ∈ kerB ∩ E⊥, and again assume ‖x‖ = 1.
Then

〈(B2 − C2)x, x〉 = −〈C2x, x〉 ≥ 1− ε,

a contradiction.

Now B2 and C2 commute with Ck, so the orthogonal projection is in fact a Ck-module
isomorphism. We write E = kerC ⊕ kerC⊥. Then

idxB − idxC = [kerC⊥].

But the restriction of C to kerC⊥ is non-singular and skew-Hermitian, so we can
use the action of C to turn kerC⊥ into a Ck+1 module. Morally, we should be able
to just “scale” C, and the correct thing to write down is

Jk+1 = C(−C2)−1/2.
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Surjectivity is trivial (for [M ] ∈ Ak, pick an isomorphism H ∼= H ⊕M and use
Jk+1 ⊕ 0 ∈ Fk∗ (H ⊕M)).

Injectivity follows from the following sequence of observations:

Claim. Any B ∈ Fk∗ can be deformed so that it is unitary on the complement of
kerB.

By restricting to the complement of kerB, we may assume kerB is trivial. Note
that the operator B(−B2)−1/2 is unitary. So we can use the path B(t−(1−t)B2)−1/2.

Claim. Let B ∈ Fk∗ , and let V be a Ck+1 module. Then we can deform B to B′ so
that kerB′ = kerB ⊕ V as a Ck-module.

We may assume B is unitary on the complement of kerB. Since B ∈ Fk∗ , we
know each Ck+1 module appears as a direct summand of kerB⊥ when B acts as
Jk+1. So we can decompose

H = kerB ⊕ V ⊕ remaining,

and then linearly scale B to vanish on V .
Thus, if B,C ∈ Fk∗ are such that [kerB] = [kerC], then we can deform B and C

so that their kernels are in fact isomorphic.

Claim. If B,C ∈ Fk∗ are such that kerB ∼= kerC as Ck-modules, then there is a
Ck-module isomorphism T : H → H such that TBT−1 = C.

Again wlog assume B and C are unitary on the complement, so that they act
as Jk+1. Then the complements are isomorphic as Ck+1 modules, since both have
infinitely many copies of each irrep. Hence there must be a Ck-module isomorphism
that sends B to C.

We can then conclude the theorem if we can find a path from T to the identity.

Claim. The group of Ck-module isomorphisms H → H is connected.

By Schur’s lemma, this group is isomorphic to GL(H), hence is in fact contractible.
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3.2 The first part of the proof

We can now begin to prove Theorem A. In the remainder of this section, we shall
reduce the problem to something easier via a chain of rather straightforward homotopy
equivalences, and then in the next section, we shall do some work to finish it off.

The representation theory of Clifford algebras was easier to study with graded
modules, but analysis is easier on ungraded things. For k ≥ 1, we let

F̃k(H0) = {B ∈ F(H0) : B∗ = −B, BJi + JiB = 0 for i = 1, . . . , k − 1},

and whenever k ≡ −1 (mod 4), we set

F̃k∗ (H0) = {B ∈ F̃k∗ (H0) : J1J2 · · · JkB is not essentially definite}.

Otherwise, we set F̃k∗ (H0) = F̃k(H0). Then B 7→ BJk gives a homeomorphism
F̃k∗ (H0) ∼= Fk∗ (H). Similarly, we set F̃0

∗ (H0) = F(H0). Thus, from now on, we will
write Fk∗ to mean F̃k∗ (H0).

In this notation, we want to prove

Theorem A’. For k ≥ 1, there is a homotopy equivalence

Fk∗ → Ω(Fk−1∗ ).

Note that our loops start from Jk−1 to −Jk−1, but that doesn’t matter.
To prove the theorem, it is convenient to consider the subspace of unitary

elements in our operator algebras. We make the following huge list of definitions.
Let A = End(H), and U denote the unitary elements in a Banach algebra. Then
define

Ak = {T ∈ A : T ∗ = −T, TJi + JiT = 0 for i = 1, . . . , k − 1}
K = compact operators in A Kk = A ∩Ak
B = A/K Bk = Ak/Kk
G = B× Gk = G ∩ Bk Gk∗ = Gk ∩ p(Fk∗ )
Gk∗ = Gk∗ ∩ U F k∗ = p−1Gk∗ ∩ U
L = A× = GL(H) L = L ∩ U Lk = L ∩ Ak
Ωk = {T ∈ Ak : T ∗T = 1, T ≡ Jk−1 (mod K)}

where p : A → A/K is the natural projection (recall that F = p−1(G)).
We need a theorem of Bartle and Graves.

Theorem (Bartle–Graves, [4]). Let U,B be Banach spaces and π : U → B be a
bounded linear surjection. Then π has a (not necessarily linear) section.
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Lemma. All the arrows marked as ∼ in the diagram below are homotopy equiva-
lences:

F k∗ P (Lk−1∗ ,Ωk−1) Ωk−1

Fk∗ ΩFk−1∗

Gk∗ ΩGk−1∗

Gk∗ ΩGk−1∗

α

∼

∼

∼β

∼ ∼

∼

where α(T )t = Jk−1 exp(πtTJk−1), and β is defined by the same formula. Note
that by assumption, since elements T ∈ Gk∗ satisfy T 2 = −1 and anti-commute with
Jk−1, it follows that (TJk−1)2 = −1 as well. So we can equivalently write

β(T )t = Jk−1 cosπt+A sinπt,

which makes it clearer that the maps indeed land in where we claim they do.

The dashed lines are there to make the diagram look like a cube, as opposed to
indicating the existence of certain morphisms. The theorem would then follow once
we prove that the red and green arrows are homotopy equivalences.

Proof.

• Fk∗ → Gk∗ : Pick a section of A → B and average to give a local section, hence
this is a fiber bundle with contractible fiber Kk∗ .

• ΩFk−1∗ → ΩGk−1∗ : Follows from the previous result (for a different k).

• Gk∗ → Gk∗ : Use the unitary retraction xt = x((1− t)
√
x∗x

−1
+ tI), noting that

x∗x commutes with all Ji.

• F k∗ → Fk∗ : The elements of F k∗ consist of the elements x ∈ Fk∗ that satisfy
the addition hypothesis that ess. specx = {±i}, ‖x‖ = 1. Noting that ess. spec
is continuous in A, we can construct a deformation retract of Fk∗ into F k∗ by
first scaling so that inf | ess. specx| = 1, then choose a symmetric deformation
retract of the imaginary axis onto the closed interval [−i,+i] and apply spectral
deformation. Since such a function is odd, it preserves the matrices that
commute and anti-commute with B, and hence the whole process lives inside
Fk∗ .

18



4 Proving Bott Periodicity II

It remains to show that the green and red arrows are homotopy equivalences. Note
that the loop space involves only the identity component. Let Lk−1� and Gk−1� denote
the components of Lk−1 and Gk−1 respectively that contain Jk−1. Then the fact that
the green arrows are homotopy equivalences follow from the following two lemmas:

Lemma. We have a fiber sequence

Ωk−1 → Lk−1� → Gk−1� ,

Lemma. Lk−1� is contractible.

Proof of first lemma. Let Lk be the subgroup of L consisting of matrices that com-
mute with J1, . . . , Jk.

First observe that Lk−1� → Gk−1� has a local section by restricting the local section

of A → A/K, averaging, and then applying unitary retract. So Lk−1� → Gk−1� is a
fiber bundle. So it suffices to show that the fiber through Jk−1 is Ωk−1. It is clear
that it is given by Ωk−1 ∩ Lk−1� . So we want to show that Ωk−1 ⊆ Lk−1� .

Since Lk−1 is connected (and in fact contractible, by Schur’s lemma and Kuiper’s
theorem), it suffices to show that if J ∈ Ωk−1, then J is conjugate to Jk−1 by an
element in Lk−1. Equivalently, we want to show that when J acts as Jk−1, there are
infinitely many copies of each irrep.

We only have to consider the case when Ck−1 is not simple. In this case, we know
the projections onto the subspaces spanned by each irrep are given by 1±w

2 . Thus,
the image is finite dimensional iff 1±w

2 is compact. But the w(J) ≡ w(Jk−1) modulo
compact operators. Since w(Jk−1) is not compact, the same is true for w(J).

Proof of second lemma. We claim that there is a fiber sequence

Lk → Lk−1 → Lk−1� .

This would imply the result, since both Lk and Lk−1 are contractible.
The second map is given the action A 7→ AJk−1A

−1, and since Lk−1 is connected,
the image lies in Lk−1� . It follows from [4, Theorem 6] that Lk−1 → Lk−1� has a local
section, which implies that the orbit of Jk−1 open. Since the same would be true for
the orbits of all other elements in Lk−1 under the conjugation action, the orbit of
Jk−1 is closed, hence a component, i.e. it is Lk−1� . Since the stabilizer of Jk−1 is Lk,
we would be done.

It remains to show that the red arrow is a homotopy equivalence. To do so, we
first translate the spaces involved by Jk−1, so that the map between them is simply
given by exponentiation. Define

F̃ k∗ = F k∗ Jk−1, Ω̃k−1 = Jk−1Ωk−1.

Then we can characterize F̃ k∗ as the operators B such that
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1. B is Fredholm and skew-Hermitian;

2. B commutes with J1, . . . , Jk−2 and anti-commutes with Jk−1;

3. ‖B‖ = 1 and BB∗ = 1 modulo compact operators.

4. If k ≡ −1 (mod 4), then J1 · · · Jk−2B is not essentially definite.

Similarly, Ω̃k−1 consists of operators S such that

1. S is orthogonal;

2. S commutes with J1, . . . , Jk−2 and (Jk−1S)2 = −1

3. S ≡ −1 modulo compact operators.

We now want to show that expπ : F̃ k∗ → Ω̃k−1 is a homotopy equivalence.
Dropping the tildes, we consider filtrations on F k∗ and Ωk−1 as follows: We define
Ωk−1(n) to be those operators T such that I + T has rank ≤ n, and F k∗ (n) =
(expπ)−1(Ωk−1(n)).

Lemma. For any m and a ∈ Ωk−1(m), b ∈ F k∗ (m), the natural inclusion induces
bijections

lim
n→∞

πk(Ωk−1(n), a)→ πk(Ωk−1, a)

lim
n→∞

πk(F k∗ (n), b)→ πk(F k∗ , b).

Proof. We only do the case of Ωk−1. The other is similar. Given an element T ∈ Ωk−1,
its spectrum looks roughly like this:

Here orthogonality forces the eigenvalues to lie on the unit circle, and the fact that
I + T is compact means −1 is the only point in the essential spectrum.

Thus, given any angle θ, we can apply a spectral deformation to shrink all the
points that are at most θ away from −1 to −1, and what is left is something in
Ωk−1(n) for some n, since there are only finitely many eigenvalues at an angle > θ
away from −1. By picking a spectral deformation that maps the unit circle to the
unit circle and invariant under complex conjugation, this ensures the operator stays
orthogonal and real. If we further choose it so that it is odd, then this preserves the
set of operators that commute and anti-commute with it. So we stay inside Ωk−1.
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In fact, given any compact subset of Ωk−1, applying such a spectral deformation
will send it to something lying in Ωk−1(n) for some large n. Thus, given any
a ∈ Ωk−1(m), we can pick θ so that all the eigenvalues of T are either −1 or > θ
away from −1. Then the associated spectral deformation fixes a, but retracts any
compact subset (and in particular, any image of maps from spheres) into one of the
Ωk−1(n).

In the case of F ∗k (m), the spectrum instead looks like

Now it suffices to show that expπ : F k∗ (m)→ Ωk−1(m) is a homotopy equivalence
for all m. For convenience, set Hk(m) = F k∗ (m)\F k∗ (m−1) and Dk(m) = Ωk−1(m)\
Ωk−1(m − 1). We shall show that expπ : Hk(m) → Dk(m) is a fiber bundle with
contractible fiber for all m, and then use the following standard result in homotopy
theory:

Lemma. Let (Y, Y1, Y2) and (Z,Z1, Z2) be excisive triads, and f : Y → Z a map of
triads. If

f |Y1
: Y1 → Z1, f |Y2

: Y2 → Z2, f |Y1∩Y2
→ Z1 ∩ Z2

are all weak homotopy equivalences, then so is f .

We shall take

Y = F k∗ (m) Y1 = F k∗ (m− 1)

Z = Ωk−1(m) Z1 = Ωk−1(m− 1).

By a simple spectral deformation argument, we can show that F k∗ (n − 1) is the
deformation retract of some open neighbourhood of F k∗ (n) (add to F k∗ (n− 1) those
operators whose eigenvalue closest to −1 has small real part, then retract those to
−1), and similarly for Ωk−1(n− 1) in a compatible way. We can then Y2 and Z2 to
be these neighbourhoods.

By induction, we can conclude that f |Y1 is a homotopy equivalence. Then the
fact that expπ restricts to a fiber bundle with contractible fiber shows that the other
two maps are homotopy equivalences.

Theorem. expπ : Hk(m)→ Dk(m) is a fiber bundle with contractible fiber.

Proof. Visually, the exponential map does something like this:
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Essentially, the “information lost” by passing from T ∈ Hk(m) to expπT ∈ Dk(m)
is how the spectrum is distributed between ±i.

To make this concrete, observe that since A ∈ D(n) is such that I+A has constant
rank n, it follows that ker(I +A) is a Hilbert space subbundle H of D(n)×H with
orthogonal complement H⊥ an n-dimensional vector bundle.

Given T ∈ Hk(m), it acts on H and H⊥ disjointly. Its action on H⊥ is completely
determined by expπT (by linear algebra), and the action of T on H is orthogonal,
skew-Hermitian, etc. Thus, local triviality of H and H⊥ implies expπ : Hk(m)→
Dk(m) is a fiber bundle whose fiber consists of operators T : H ′ → H ′ (where H ′ is
any fiber of H) that are

1. Orthogonal and square −1;

2. Commuting with J1, . . . , Jk−2 and anti-commuting with Jk−1;

3. If k ≡ −1 (mod 4), then J1 · · · Jk−2T is not essentially definite.

Equivalently, if we replace B by BJk−1 (thus reversing the previous shift), this is
the number of choices of Jk such that each irrep appears with infinite multiplicity.
Thus, this is given by the quotient of the space of unitary Ck−1-automorphisms of
H ′ by the centralizer of Jk, i.e. by the space of Ck-automorphisms of H ′. Both of
these are contractible. So we are done.
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5 Coda: The ABS Orientation

Suppose π : V → X is a rank k vector bundle with a Euclidean metric. Then taking
the Clifford algebra with respect to (the negation of) the metric fiberwise gives us a
Ck-bundle C(V ) over X. Let M(V ) be the Grothendieck group of C(V )-modules.
If E = E0 ⊕ E1 is a graded C(V )-module, then the pullbacks π∗E1 and π∗E0 are
isomorphic over V #, the complement of the zero section, where the isomorphism at
v ∈ V # is given by multiplication by v (with inverse a multiple of v, since v2 = −‖v‖).
This thus gives us an element of K̃O(V, V #) ∼= K̃O(XV ), where XV is the Thom
space. In other words, we have a canonical map

M(V )→ K̃O(XV ).

Suppose E came from a C(V ⊕ 1)-module, then by a linear deformation, we can use
a vector in the trivial factor as the isomorphism between π∗E1 and π∗E2 instead,
and this extends to an isomorphism defined on all of V . So the resulting class is
trivial in K̃O(XV ). Moreover, this map is natural with respect to products, namely
if V → X and W → Y are two bundles, then the following diagram commutes:

A(V )⊗A(W ) A(V ⊕W )

K̃O(XV )⊗ K̃O(YW ) K̃O(X × Y V⊕W ).

In particular, taking X = ∗, we obtain ring homomorphisms

A∗ →
∑
k≥0

KO−k(∗)

In fact, this is the same map as the one we constructed above, which is just a matter
of tracing through all the constructions we have done.

Let GSpin(k) be the even invertible elements of Ck that preserve Rk ⊆ Ck under
the conjugation action, and let Spin(k) consist of those elements of “spinor norm”
1. The natural action on Rk begets a map Spin(k) → SO(k) that is a non-trivial
double cover. Crucially, Spin(k) acts as automorphisms of the whole of Ck.

Thus, V has the structure of a Spin(k)-bundle, so that there is a principal Spin(k)-
bundle P → X with V = P ×Spin(k) Rk, then C(V ) = P ×Spin(k) Ck and there is a
natural map Ak → A(V ) that sends an Ck module M to P ×Spin(k) M . This gives a
long composite

Ak → K̃O(XV ).

In particular, if k = 8m, and λ is the generator of A8m, then by naturality, the image
of λm restricts to a generator of K̃O(S8m). So this is a Thom class of the bundle V .
Stabilizing, we get

Theorem. Every spin bundle is naturally KO-oriented.
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