The sinc \operatorname{sinc} sinc function is defined by
sinc ( x ) = sin ( x ) x . \operatorname{sinc}(x) = \frac{\sin (x)}{x}. sinc ( x ) = x sin ( x ) .
A standard contour integral tells us
∫ − ∞ ∞ sinc ( x ) d x = π . \int _{-\infty }^\infty \operatorname{sinc}(x) \; \mathrm{d}x = \pi . ∫ − ∞ ∞ sinc ( x ) d x = π .
Alternatively, we can observe that
sinc ( x ) = 1 2 ∫ − 1 1 e i k t d k . \operatorname{sinc}(x) = \frac{1}{2} \int _{-1}^1 e^{i k t}\; \mathrm{d}k. sinc ( x ) = 2 1 ∫ − 1 1 e ik t d k .
So up to some factors sinc x \operatorname{sinc}x sinc x is the Fourier transform of the indicator function of [ − 1 , 1 ] [-1, 1] [ − 1 , 1 ] . The preceding integral of sinc x \operatorname{sinc}x sinc x can be thought of as the value of the Fourier transform at 0 0 0 . Applying the Fourier inversion formula and carefully keeping track of the coefficients gives us the previous calculation.
David and Jonathan Borwein observed that we also have
∫ − ∞ ∞ sinc ( x ) sinc ( x 3 ) d x = π , ∫ − ∞ ∞ sinc ( x ) sinc ( x 3 ) sinc ( x 5 ) d x = π , ∫ − ∞ ∞ sinc ( x ) sinc ( x 3 ) sinc ( x 5 ) sinc ( x 7 ) d x = π . \begin{aligned} \int _{-\infty }^\infty \operatorname{sinc}(x) \operatorname{sinc}\left(\frac{x}{3}\right) \; \mathrm{d}x & = \pi ,\\ \int _{-\infty }^\infty \operatorname{sinc}(x) \operatorname{sinc}\left(\frac{x}{3}\right)\operatorname{sinc}\left(\frac{x}{5}\right) \; \mathrm{d}x & = \pi ,\\ \int _{-\infty }^\infty \operatorname{sinc}(x) \operatorname{sinc}\left(\frac{x}{3}\right) \operatorname{sinc}\left(\frac{x}{5}\right) \operatorname{sinc}\left(\frac{x}{7}\right) \; \mathrm{d}x & = \pi . \end{aligned} ∫ − ∞ ∞ sinc ( x ) sinc ( 3 x ) d x ∫ − ∞ ∞ sinc ( x ) sinc ( 3 x ) sinc ( 5 x ) d x ∫ − ∞ ∞ sinc ( x ) sinc ( 3 x ) sinc ( 5 x ) sinc ( 7 x ) d x = π , = π , = π .
This pattern holds up until
∫ − ∞ ∞ sinc ( x ) sinc ( x 3 ) ⋯ sinc ( x 13 ) d x = π . \int _{-\infty }^\infty \operatorname{sinc}(x) \operatorname{sinc}\left(\frac{x}{3}\right) \cdots \operatorname{sinc}\left(\frac{x}{13}\right) \; \mathrm{d}x = \pi . ∫ − ∞ ∞ sinc ( x ) sinc ( 3 x ) ⋯ sinc ( 13 x ) d x = π .
Afterwards, we have
∫ − ∞ ∞ sinc ( x ) sinc ( x 3 ) ⋯ sinc ( x 15 ) d x = 467807924713440738696537864469 467807924720320453655260875000 π . \int _{-\infty }^\infty \operatorname{sinc}(x) \operatorname{sinc}\left(\frac{x}{3}\right) \cdots \operatorname{sinc}\left(\frac{x}{15}\right) \; \mathrm{d}x = \frac{467807924713440738696537864469}{467807924720320453655260875000} \pi . ∫ − ∞ ∞ sinc ( x ) sinc ( 3 x ) ⋯ sinc ( 15 x ) d x = 467807924720320453655260875000 467807924713440738696537864469 π .
As we keep going on, the value continues to decrease.
Table of Contents