
Part IV — Bounded Cohomology

Based on lectures by M. Burger
Notes taken by Dexter Chua

Easter 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

The cohomology of a group or a topological space in degree k is a real vector space
which describes the “holes” bounded by k dimensional cycles and encodes their relations.
Bounded cohomology is a refinement which provides these vector spaces with a (semi)
norm and hence topological objects acquire mysterious numerical invariants. This
theory, introduced in the beginning of the 80’s by M. Gromov, has deep connections
with the geometry of hyperbolic groups and negatively curved manifolds. For instance,
hyperbolic groups can be completely characterized by the “size” of their bounded
cohomology.

The aim of this course is to give an introduction to the bounded cohomology of groups,
and treat more in detail one of its important applications to the study of groups acting
by homeomorphisms on the circle. More precisely we will treat the following topics:

(i) Ordinary and bounded cohomology of groups: meaning of these objects in low
degrees, that is, zero, one and two; relations with quasimorphisms. Proof that
the bounded cohomology in degree two of a non abelian free group contains an
isometric copy of the Banach space of bounded sequences of reals. Examples
and meaning of bounded cohomology classes of geometric origin with non trivial
coefficients.

(ii) Actions on the circle, the bounded Euler class: for a group acting by orientation
preserving homeomorphisms of the circle, Ghys has introduced an invariant, the
bounded Euler class of the action, and shown that it characterizes (minimal)
actions up to conjugation. We will treat in some detail this work as it leads to
important applications of bounded cohomology to the question of which groups
can act non trivially on the circle: for instance SL(2,Z) can, while lattices in
“higher rank Lie groups”, like SL(n,Z) for n at least 3, can’t.

(iii) Amenability and resolutions: we will set up the abstract machinery of resolutions
and the notions of injective modules in ordinary as well as bounded cohomology;
this will provide a powerful way to compute these objects in important cases. A
fundamental role in this theory is played by various notions of amenability; the
classical notion of amenability for a group, and amenability of a group action on
a measure space, due to R. Zimmer. The goal is then to describe applications of
this machinery to various rigidity questions, and in particular to the theorem
due, independently to Ghys, and Burger–Monod, that lattices in higher rank
groups don’t act on the circle.
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IV Bounded Cohomology

Pre-requisites

Prerequisites for this course are minimal: no prior knowledge of group cohomology of
any form is needed; we’ll develop everything we need from scratch. It is however an
advantage to have a “zoo” of examples of infinite groups at one’s disposal: for example
free groups and surface groups. In the third part, we’ll need basic measure theory;
amenability and ergodic actions will play a role, but there again everything will be
built up on elementary measure theory.

The basic reference for this course is R. Frigerio, “Bounded cohomology of discrete

groups”, arXiv:1611.08339, and for part 3, M. Burger & A. Iozzi, “A useful formula

from bounded cohomology”, available at: https://people.math.ethz.ch/~iozzi/

publications.html.
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1 Quasi-homomorphisms IV Bounded Cohomology

1 Quasi-homomorphisms

1.1 Quasi-homomorphisms

In this chapter, A will denote Z or R. Let G be a group. The usual definition of
a group homomorphism f : G→ A requires that for all x, y ∈ G, we have

f(xy) = f(x) + f(y).

In a quasi-homomorphism, we replace the equality with a weaker notion, and
allow for some “errors”.

Definition (Quasi-homomorphism). Let G be a group. A function f : G→ A
is a quasi-homomorphism if the function

df : G×G→ A

(x, y) 7→ f(x) + f(y)− f(xy)

is bounded. We define the defect of f to be

D(f) = sup
x,y∈G

|df(x, y)|.

We write QH(G,A) for the A-module of quasi-homomorphisms.

Example. Every homomorphism is a quasi-homomorphism with D(f) = 0.
Conversely, a quasi-homomorphism with D(f) = 0 is a homomorphism.

We can obtain some “trivial” quasi-homomorphisms as follows — we take
any homomorphism, and then edit finitely many values of the homomorphism.
Then this is a quasi-homomorphism. More generally, we can add any bounded
function to a quasi-homomorphism and still get a quasi-homomorphism.

Notation. We write

`∞(G,A) = {f : G→ A : f is bounded}.

Thus, we are largely interested in the quasi-homomorphisms modulo `∞(G,A).
Often, we also want to quotient out by the genuine homomorphisms, and obtain

QH(G,A)

`∞(G,A) + Hom(G,A)
.

This contains subtle algebraic and geometric information about G, and we will
later see this is related to the second bounded cohomology H2

b (G,A).
We first prove a few elementary facts about quasi-homomorphisms. The

first task is to find canonical representatives of the classes in the quotient
QH(G,R)/`∞(G,R).

Definition (Homogeneous function). A function f : G→ R is homogeneous if
for all n ∈ Z and g ∈ G, we have f(gn) = nf(g).

Lemma. Let f ∈ QH(G,A). Then for every g ∈ G, the limit

Hf(g) = lim
n→∞

f(gn)

n

exists in R. Moreover,
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1 Quasi-homomorphisms IV Bounded Cohomology

(i) Hf : G→ R is a homogeneous quasi-homomorphism.

(ii) f −Hf ∈ `∞(G,R).

Proof. We iterate the quasi-homomorphism property

|f(ab)− f(a)− f(b)| ≤ D(f).

Then, viewing gmn = gm · · · gm, we obtain

|f(gmn)− nf(gm)| ≤ (n− 1)D(f).

Similarly, we also have

|f(gmn)−mf(gn)| ≤ (m− 1)D(f).

Thus, dividing by nm, we find∣∣∣∣f(gmn)

nm
− f(gm)

m

∣∣∣∣ ≤ 1

m
D(f)∣∣∣∣f(gmn)

nm
− f(gn)

n

∣∣∣∣ ≤ 1

n
D(f).

So we find that ∣∣∣∣f(gn)

n
− f(gm)

m

∣∣∣∣ ≤ ( 1

m
+

1

n

)
D(f). (∗)

Hence the sequence f(gn)
n is Cauchy, and the limit exists.

The fact that Hf is a quasi-homomorphism follows from the second assertion.
To prove the second assertion, we can just take n = 1 in (∗) and take m→∞.
Then we find

|f(g)−Hf(g)| ≤ D(f).

So this shows that f −Hf is bounded, hence Hf is a quasi-homomorphism.
The homogeneity is left as an easy exercise.

Notation. We write QHh(G,R) for the vector space of homogeneous quasi-
homomorphisms G→ R.

Then the above theorem gives

Corollary. We have

QH(G,R) = QHh(G,R)⊕ `∞(G,R)

Proof. Indeed, observe that a bounded homogeneous quasi-homomorphism must
be identically zero.

Thus, if we want to study QH(G,R), it suffices to just look at the ho-
mogeneous quasi-homomorphisms. It turns out these have some very nice
perhaps-unexpected properties.

Lemma. Let f : G→ R be a homogeneous quasi-homomorphism.

(i) We have f(xyx−1) = f(y) for all x, y ∈ G.
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1 Quasi-homomorphisms IV Bounded Cohomology

(ii) If G is abelian, then f is in fact a homomorphism. Thus

QHh(G,R) = Hom(G,R).

Thus, quasi-homomorphisms are only interesting for non-abelian groups.

Proof.

(i) Note that for any x, the function

y 7→ f(xyx−1)

is a homogeneous quasi-homomorphism. By the previous corollary, it
suffices to show that the function

y 7→ f(xyx−1)− f(y)

is a bounded homogeneous quasi-homomorphism, hence zero. This is just
an iteration of the quasi-homomorphism property. We have

|f(xyx−1)− f(y)| ≤ |f(x) + f(y) + f(x−1)− f(y)|+ 2D(f) = 2D(f),

using the fact that f(x−1) = −f(x) by homogeneity.

(ii) If x and y commute, then (xy)n = xnyn. So we can use homogeneity to
write

|f(xy)− f(x)− f(y)| = 1

n
|f((xy)n)− f(xn)− f(yn)|

=
1

n
|f(xnyn)− f(xn)− f(yn)|

≤ 1

n
D(f).

Since n is arbitrary, the difference must vanish.

The case of QH(G,Z)/`∞(G,Z) is more complicated. For example, we have
the following nice result:

Example. Given α ∈ R, define the map gα : Z→ Z by

gα(m) = [mα].

Then this is a homomorphism, and the map

R −→ QH(Z,Z)

`∞(Z,Z)

α 7−→ gα

is an isomorphism. This gives a further isomorphism

R ∼=
QH(Z,Z)

`∞(Z,Z) + Hom(Z,Z)
.
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1 Quasi-homomorphisms IV Bounded Cohomology

We next turn to the case G = F2, the free group on two generators a, b. We
will try to work out explicitly a lot of non-trivial elements of QH(F2,R). In
general, when we try to construct quasi-homomorphisms, what we manage to
get are not homogeneous. So when we construct several quasi-homomorphisms,
it takes some non-trivial work to show that they are distinct. Our construction
will be one such that this is relatively easy to see.

Consider the vector space:

`∞odd(Z) = {α : Z→ R : α bounded and α(−n) = −α(n)}.

Note that in particular, we have α(0) = 0.
Given α, β ∈ `∞odd(Z), we define a quasi-homomorphisms fα,β : F2 → R as

follows — given a reduced word w = an1bm1 · · · ankbmk , we let

fα,β(w) =

k∑
i=1

α(ni) +

k∑
j=1

β(mj).

Allowing for n1 = 0 or mk = 0, this gives a well-defined function fα,β defined on
all of F2.

Let’s see what this does on some special sequences.

Example. We have

fα,β(an) = α(n), fα,β(bm) = β(m),

and these are bounded functions of n,m.

So we see that fα,β is never homogeneous unless α = β = 0.

Example. Pick k1, k2, n 6= 0, and set

w = ank1bnk2(bk2ak1)−n = ank1bnk2 a−k1b−k2 · · · a−k1b−k2︸ ︷︷ ︸
n times

.

This is now in reduced form. So we have

fα,β(w) = α(nk1) + β(nk2)− nα(k1)− nβ(k2).

This example is important. If α(k1) + β(k2) 6= 0, then this is an unbounded
function as n→∞. However, we know any genuine homomoprhisms f : F2 → R
must factor through the abelianization, and w vanishes in the abelianization. So
this suggests our fα,β is in some sense very far away from being a homomorphism.

Theorem (P. Rolli, 2009). The function fα,β is a quasi-homomorphism, and
the map

`∞odd(Z)⊕ `∞odd(Z)→ QH(F2,R)

`∞(F2,R) + Hom(F2,R)

is injective.

This tells us there are a lot of non-trivial elements in QH(F2,R).
The advantage of this construction is that the map above is a linear map.

So to see it is injective, it suffices to see that it has trivial kernel.
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1 Quasi-homomorphisms IV Bounded Cohomology

Proof. Let α, β ∈ `∞odd(Z,R), and define fα,β as before. By staring at it long
enough, we find that

|f(xy)− f(x)− f(y)| ≤ 3 max(‖α‖∞, ‖β‖∞),

and so it is a quasi-homomorphism. The main idea is that

f(bn) + f(b−n) = f(an) + f(a−n) = 0

by oddness of α and β. So when we do the word reduction in the product, the
amount of error we can introduce is at most 3 max(‖α‖∞, ‖β‖∞).

To show that the map is injective, suppose

fα,β = ϕ+ h,

where ϕ : F2 → R is bounded and h : F2 → R is a homomorphism. Then we
must have

h(a`) = f(a`)− ϕ(a`) = α(`)− ψ(a`),

which is bounded. So the map ` 7→ h(a`) = `h(a) is bounded, and so h(a) = 0.
Similarly, h(b) = 0. So h ≡ 0. In other words, fα,β is bounded.

Finally,
f((a`1b`2)k) = k(α(`1) + β(`2)) = 0.

Since this is bounded, we must have α(`1) + β(`2) = 0 for all `1, `2 6= 0. Using
the fact that α and β are odd, this easily implies that α(`1) = β(`2) = 0 for all
1 and 2.

More generally, we have the following theorem, which we shall not prove:

Theorem (Hull–Osin 2013). The space

QH(G,R)

`∞(G,R) + Hom(G,R)

is infinite-dimensional if G is acylindrically hyperbolic.

1.2 Relation to commutators

A lot of interesting information about quasi-homomorphisms can be captured by
considering commutators. Recall that we write

[x, y] = xyx−1y−1.

If f is a genuine homomorphisms, then it vanishes on all commutators, since the
codomain is abelian. For homogeneous quasi-homomorphisms, we can bound
the value of f by the defect:

Lemma. If f is a homogeneous quasi-homomorphism and x, y ∈ G, then

|f([x, y])| ≤ D(f).

For non-homogeneous ones, the value of f on a commutator is still bounded,
but requires a bigger bound.
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1 Quasi-homomorphisms IV Bounded Cohomology

Proof. By definition of D(f), we have

|f([x, y])− f(xyx−1)− f(y−1)| ≤ D(f).

But since f is homogeneous, we have f(xyx−1) = f(y) = −f(y−1). So we are
done.

This bound is in fact the best we can obtain:

Lemma (Bavard, 1992). If f is a homogeneous quasi-homomorphism, then

sup
x,y
|f([x, y])| = D(f).

We will neither prove this nor use this — it is merely for amusement.
For a general element a ∈ [G,G], it need not be of the form [x, y]. We can

define

Definition (Commutator length). Let a ∈ [G,G]. Then commutator length
cl(a) is the word length with respect to the generators

{[x, y] : x, y ∈ G}.

In other words, it is the smallest n such that

a = [x1, y1][x2, y2] · · · [xn, yn]

for some xi, yi ∈ G.

It is an easy inductive proof to show that

Lemma. For a ∈ [G,G], we have

|f(a)| ≤ 2D(f) cl(a).

By homogeneity, it follows that

|f(a)| = 1

n
|f(an)| ≤ 2D(f)

cl(an)

n
.

Definition (Stable commutator length). The stable commutator length is defined
by

scl(a) = lim
n→∞

cl(an)

n
.

Then we have

Proposition.
|f(a)| ≤ 2D(f)scl(a).

Example. Consider F2 with generators a, b. Then clearly we have

cl([a, b]) = 1.

It is not hard to verify that we also have

cl([a, b]2) = 2.

But interestingly, this “pattern” doesn’t extend to higher powers. By writing it
out explicitly, we find that

[x, y]3 = [xyx−1, y−1xyx−2][y−1xy, y2].
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1 Quasi-homomorphisms IV Bounded Cohomology

In general, something completely mysterious can happen as we raise the
power, especially in more complicated groups.

Similar to the previous result by Bavard, the bound of |f(a)| by scl(a) is
sharp.

Theorem (Bavard, 1992). For all a ∈ [G,G], we have

scl(a) =
1

2
sup

φ∈QHh(G,R)

|φ(a)|
|D(φ)|

,

where, of course, we skip over those φ ∈ Hom(G,R) in the supremum.

We’ve seen some “duality” result of this sort before. Recall that if we have a
Banach space X, then for x ∈ X, we have

‖x‖X = sup
φ∈X∗

|φ(x)|
‖φ‖X∗

.

That wasn’t a very exciting result — one direction is by definition of ‖φ‖X∗ and
the other follows from Hahn–Banach. It is possible to view Bavard’s theorem as
a version of this duality, but that involves some complicated twisting.

Example. We have

scl([a, b]) =
1

2
.

However, showing this is not very straightforward.

Corollary. The stable commutator length vanishes identically iff every homoge-
neous quasi-homomorphism is a homomoprhism.

Note that if cl is bounded, then we have scl ≡ 0. There exists interesting
groups with bounded cl, such as nilpotent finitely-generated groups, and so
these have QHh(G,R) = Hom(G,R). We might think that the groups with cl
bounded are “almost abelian”, but it turns out not.

Theorem (Carder–Keller 1983). For n ≥ 3, we have

SL(n,Z) = [SL(n,Z),SL(n,Z)],

and the commutator length is bounded.

More generally, we have

Theorem (D. Witte Morris, 2007). Let O be the ring of integers of some number
field. Then cl : [SL(n,O),SL(n,O)]→ R is bounded iff n ≥ 3 or n = 2 and O×
is infinite.

The groups SL(n,O) have a common property — they are lattices in real
semisimple Lie groups. In fact, we have

Theorem (Burger–Monod, 2002). Let Γ < G be an irreducible lattice in a
connected semisimple group G with finite center and rank G ≥ 2. Then every
homogeneous quasimorphism Γ→ R is ≡ 0.

Example. If Γ < SL(n,R) is a discrete subgroup such that Γ\SL(n,R) is
compact, then it falls into the above class, and the rank condition is n ≥ 3.
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It is in fact conjectured that

– The commutator length is bounded.

– Γ is boundedly generated, i.e. we can find generators {s1, · · · , sk} such
that

Γ = 〈s1〉〈s2〉 · · · 〈sk〉.

There is another theorem that seems completely unrelated to this, but actually
uses the same technology.

Theorem (Burger–Monod, 2009). Let Γ be a finitely-generated group and let
µ be a symmetric probability measure on Γ whose support generates Γ. Then
every class in QH(Γ,R)/`∞(Γ,R) has a unique µ-harmonic representative. In
addition, this harmonic representative f satisfies the following:

‖df‖∞ ≤ ‖dg‖∞

for any g ∈ f + `∞(Γ, R).

This is somewhat like the Hodge decomposition theorem.

1.3 Poincare translation quasimorphism

We will later spend quite a lot of time studying actions on the circle. Thus, we
are naturally interested in the homeomorphism group of the sphere. We are
mostly interested in orientation-preserving actions only. Thus, we need to define
what it means for a homeomorphism ϕ : S1 → S1 to be orientation-preserving.

The topologist will tell us that ϕ induces a map

ϕ∗ : H1(S1,Z)→ H1(S1,Z).

Since the homology group is generated by the fundamental class [S1], invertibility
of ϕ∗ implies ϕ∗([S

1]) = ±[S1]. Then we say ϕ is orientation-preserving if
ϕ∗([S

1]) = [S1].
However, this definition is practically useless if we want to do anything with

it. Note that there is a natural covering map π : R→ S1 given by quotienting
by Z.

Definition (Positively-oriented triple). We say a triple of points x1, x2, x3 ∈ S1

is positively-oriented if they are distinct and ordered as follows:

x1

x2

x3

Formally, we let x̃ ∈ R be any lift of x1. Then let x̃2, x̃3 be the unique lifts of x2

and x3 respectively to [x̃1, x̃1 + 1). Then we say x1, x2, x3 are positively-oriented
if x̃2 < x̃3.
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Definition (Orientation-preserving map). A map S1 → S1 is orientation-
preserving if it sends positively-oriented triples to positively-oriented triples.We
write Homeo+(S1) for the group of orientation-preserving homeomorphisms of
S1.

We can generate a large collection of homeomorphisms of S1 as follows — for
any x ∈ R, we define the translation map

Tx : R→ R
y 7→ y + x.

Then since S1 is R/Z, and this translation map plays nicely in the quotient, we
obtain a map Tx ∈ Homeo+(S1). Of course, if n is an integer, then Tx = Tn+x.

One can easily see that

Proposition. Every lift of ϕ̃ : R→ R of an orientation preserving ϕ : S1 → S1

is a monotone increasing homeomorphism of R, commuting with translation by
Z, i.e.

ϕ̃ ◦ Tm = Tm ◦ ϕ̃

for all m ∈ Z.
Conversely, any such map is a lift of an orientation-preserving homeomor-

phism.

We write Homeo+
Z (R) for the set of all monotone increasing homeomorphisms

R→ R that commute with Tm for all m ∈ Z. Then the above proposition says
there is a natural surjection Homeo+

Z (R)→ Homeo+(S1). The kernel consists of
the translation-by-m maps for m ∈ Z. Thus, Homeo+

Z (R) is a central extension
of Homeo+(S1). In other words,

0 Z Homeo+
Z (R) Homeo+(S1) 0i p

,

where the “central” part refers to the fact that the image of Z is in the center of
Homeo+

Z (R).

Notation. We write Rot for the group of rotations in Homeo+(S1). This
corresponds to the subgroup TR ⊆ Homeo+

Z (R).

From a topological point of view, we can see that Homeo+(S1) retracts to
Rot. More precisely, if we fix a basepoint x0 ∈ S1, and write Homeo+(S1, x0) for
the basepoint preserving maps, then every element in Homeo+(S1) is a product
of an element in Rot and one in Homeo+(S1, x0). Since Homeo+(S1, x0) ∼=
Homeo+([0, 1]) is contractible, it follows that Homeo+(S1) retracts to Rot.

A bit more fiddling around with the exact sequence above shows that
Homeo+

Z (R) → Homeo+(S1) is in fact a universal covering space, and that
π1(Homeo+(S1)) = Z.

Lemma. The map F : Homeo+
Z (R) → R given by ϕ 7→ ϕ(0) is a quasi-

homomorphism.

Proof. The commutation property of ϕ reads as follows:

ϕ(x+m) = ϕ(x) +m.

12
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For a real number x ∈ R, we write

x = {x}+ [x],

where 0 ≤ {x} < 1 and [x] = 1. Then we have

F (ϕ1ϕ2) = ϕ1(ϕ2(0))

= ϕ1(ϕ2(0))

= ϕ1({ϕ2(0)}+ [ϕ2(0)])

= ϕ1({ϕ2(0)}) + [ϕ2(0)]

= ϕ1({ϕ2(0)}) + ϕ2(0)− {ϕ2(0)}.

Since 0 ≤ {ϕ2(0)} < 1, we know that

ϕ1(0) ≤ ϕ1({ϕ2(0)}) < ϕ1(1) = ϕ1(0) + 1.

Then we have

ϕ1(0) + ϕ2(0)− {ϕ2(0)} ≤ F (ϕ1ϕ2) < ϕ1(0) + 1 + ϕ2(0)− {ϕ2(0)}.

So subtracting, we find that

−1 ≤ −{ϕ2(0)} ≤ F (ϕ1ϕ2)− F (ϕ1)− F (ϕ2) < 1− {ϕ2(0)} ≤ 1.

So we find that
D(f) ≤ 1.

Definition (Poincare translation quasimorphism). The Poincare translation
quasimorphism T : Homeo+

Z (R)→ R is the homogenization of F .

It is easily seen that T (Tx) = x. This allows us to define

Definition (Rotation number). The rotation number of ϕ ∈ Homeo+(S1) is
T (ϕ̃) mod Z ∈ R/Z.

This rotation number contains a lot of interesting information about the
dynamics of the homeomorphism. For instance, minimal homeomorphisms of S1

are conjugate iff they have the same rotation number.
We will see that bounded cohomology allows us to generalize the rotation

number of a homeomorphism into an invariant for any group action.
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2 Group cohomology and bounded cohomology

2.1 Group cohomology

We can start talking about cohomology. Before doing bounded cohomology, we
first try to understand usual group cohomology. In this section, A will be any
abelian group. Ultimately, we are interested in the case A = Z or R, but we can
develop the theory in this generality.

The general idea is that to a group Γ, we are going to associate a sequence
of abelian groups Hk(Γ, A) that is

– covariant in A; and

– contravariant in Γ.

Moreover, if X = K(Γ, 1), i.e. X is a CW-complex whose fundamental group is
Γ and has a contractible universal cover, then there is a natural isomorphism

Hk(Γ, A) ∼= Hk
sing(X,A).

To construct this Hk(Γ, A), we first need the following definition:

Definition (Homogeneous k-cochain). A homogeneous k-cochain with values in
A is a map f : Γk+1 → A. The set C(Γk+1, A) is an abelian group and Γ acts
on it by automorphisms in the following way:

(γ∗f)(γ0, · · · , γm) = f(γ−1γ0, · · · , γ−1γk).

By convention, we set C(Γ0, A) ∼= A.

Definition (Differential d(k)). We define the differential d(k) : C(Γk, A) →
C(Γk+1, A) by

(d(k)f)(γ0, · · · , γk) =

k∑
j=0

(−1)jf(γ0, · · · , γ̂j , · · · , γk).

In particular, we set d(0)(a) to be the function that is constantly a.

Example. We have

d(1)f(γ0, γ1) = f(γ1)− f(γ0)

d(2)f(γ0, γ1, γ2) = f(γ1, γ2)− f(γ0, γ2) + f(γ0, γ1).

Thus, we obtain a complex of abelian groups

0 A C(Γ, A) C(Γ2, A) · · ·d(0) d(1) d(2) .

The following are crucial properties of this complex.

Lemma.

(i) d(k) is a Γ-equivariant group homomorphism.

(ii) d(k+1) ◦ d(k) = 0. So im d(k) ⊆ ker d(k+1).

14
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(iii) In fact, we have im d(k) = ker d(k+1).

Proof.

(i) This is clear.

(ii) You just expand it out and see it is zero.

(iii) If f ∈ ker d(k), then setting γk = e, we have

d(k)f(γ0, · · · , γk−1, e) = (−1)kf(γ0, · · · , γk−1)

+

k−1∑
j=0

(−1)jf(γ0, · · · , γ̂j , · · · , γk−1, e) = 0.

Now define the following k − 1-cochain

h(γ0, · · · , γk−2) = (−1)kf(γ0, · · · , γk−2, e).

Then the above reads
f = d(k−1)h.

We make the following definitions:

Definition (k-cocycle and k-coboundaries).

– The k-cocycles are ker d(k+1).

– The k-coboundaries are im d(k).

So far, every cocycle is a coboundary, so nothing interesting is happening.
To obtain interesting things, we use the action of Γ on C(Γk, A). We denote

C(Γk, A)Γ = {f : Γk → A | f is Γ-invariant}.

Since the differentials d(k) commute with the Γ-action, it restricts to a map
C(Γk, A)Γ → C(Γk+1, A)Γ. We can arrange these into a new complex

0 A C(Γ, A)Γ C(Γ2, A)Γ · · ·

0 A C(Γ, A) C(Γ2, A) · · ·

d(0) d(1) d(2)

d(0) d(1) d(2)

.

We are now in a position to define group cohomology.

Definition (Group cohomology Hk(Γ, A)). We define the kth cohomology group
to be

Hk =
(ker d(k+1))Γ

d(k)(C(Γk, A)Γ)
=

(d(k)(C(Γk, A)))Γ

d(k)(C(Γk, A)Γ)
.

15
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We can alternatively provide a model with inhomogeneous cochains. The
idea is to find a concrete description of all invariant cochains.

Observe that if we have a function f : Γk+1 → A that is invariant under the
action of Γ, then it is uniquely determined by the value on {(e, γ1, · · · , γk) : γi ∈
Γ}. So we can identify invariant functions f : Γk+1 → A with arbitrary functions
Γk → A. So we have one variable less to worry about, but on the other hand,
the coboundary maps are much more complicated.

More explicitly, we construct an isomorphism

C(Γk, A)Γ C(Γk−1, A)
ρ(k−1)

τ(k)
,

by setting

(ρ(k−1)f)(g1, · · · , gk−1) = f(e, g1, g2, · · · , g1 · · · gk−1)

(τ (k)h)(g1, · · · , gk) = h(g−1
1 g2, g

−1
2 g3, · · · , g−1

k−1gk).

These homomorphisms are inverses of each other. Then under this identifica-
tion, we obtain a new complex

C(Γk, A)Γ C(Γk+1, A)Γ

C(Γk−1, A) C(Γk, A)

d(k)

ρ(k)
τ(k)

dk

where
dk = ρk ◦ d(k) ◦ τk.

A computation shows that

(dkf)(g1, · · · , gk) = f(g2, · · · , gk) +

k−1∑
j=1

(−1)jf(g1, · · · , gjgj+1, · · · , gk)

+(−1)kf(g1, · · · , gk−1).

It is customary to denote

Zk(Γ, A) = kerd+1 ⊆ C(Γk, A)

Bk(Γ, A) = im dk ⊆ C(Γk, A),

the inhomogeneous k-cocycles and inhomogeneous k-coboundaries.

Computation in degrees k = 0, 1, 2

It is instructive to compute explicitly what these groups mean in low degrees.
We begin with the boring one:

Proposition. H0(Γ, A) ∼= A.

Proof. The relevant part of the cochain is

0 A C(Γ, A)d1=0 .

16
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The k = 1 case is not too much more interesting.

Proposition. H1(Γ, A) = Hom(Γ, A).

Proof. The relevant part of the complex is

A C(Γ, A) C(Γ2, A)d1=0 d2 ,

and we have
(d2f)(γ1, γ2) = f(γ1 − f(γ1γ2) + f(γ2).

The k = 2 part is more interesting. The relevant part of the complex is

C(Γ, A) C(Γ2, A) C(Γ3, A)d2 d3 .

Here d3 is given by

d3α(g1, g2, g3) = α(g2, g3)− α(g1g2, g3) + α(g1, g2g3)− α(g1, g2).

Suppose that d3α(g1, g2, g3) = 0, and in addition, by some magic, we managed to
pick α such that α(g1, e) = α(e, g2) = 0. This is known as a normalized cocycle.
We can now define the following operation on Γ×A:

(γ1, a2)(γ2, a2) = (γ1γ2, a1 + a2 + α(γ1, γ2)).

Then the property that α is a normalized cocycle is equivalent to the assertion
that this is an associative group law with identity elements (e, 0). We will write
this group as Γ×α A.

We can think of this as a generalized version of the semi-direct product. This
group here has a special property. We can organize it into an exact sequence

0 A Γ×α A Γ 0 .

Moreover, the image of A is in the center of Γ×α A. This is known as a central
extension.

Definition (Central extension). Let A be an abelian group, and Γ a group.
Then a central extension of Γ by A is an exact sequence

0 A Γ̃ Γ 0

such that the image of A is contained in the center of Γ̃.

The claim is now that

Proposition. H2(Γ, A) parametrizes the set of isomorphism classes of central
extensions of Γ by A.

Proof sketch. Consider a central extension

0 A G Γ 0i p
.

17
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Arbitrarily choose a section s : Γ→ G of p, as a function of sets. Then we know
there is a unique α(γ1, γ2) such that

s(γ1γ2)α(γ1, γ2) = s(γ1)s(γ2).

We then check that α is a (normalized) 2-cocycle, i.e. α(γ1, e) = γ(e, γ2) = 0.
One then verifies that different choices of s gives cohomologous choices of α.
Conversely, given a 2-cocycle β, we can show that it is cohomologous to a

normalized 2-cocycle α. This gives rise to a central extension G = Γ ×α A as
constructed before (and also a canonical section s(γ) = (γ, 0)).

One then checks this is a bijection.

Exercise. H2(Γ, A) has a natural structure as an abelian group. Then by the
proposition, we should be able to “add” two central extensions.

Example. As usual, write Fr for the free group on r generators. Then

Hk(Fr, A) =


A k = 0

Ar k = 1

0 k = 2

.

The fact that H2(Fr, A) vanishes is due to the fact that Fr is free, so every short
exact sequence splits.

Example. Consider Γg = π1(Sg) for g ≥ 0. Explicitly, we can write

Γg =

{
a1, b1, · · · , ag, bg :

g∏
i=1

[ai, bi] = e

}

Then we have H1(Γg,Z) = Z2g and H2(Γg,Z) ∼= Z.
We can provide a very explicit isomorphism for H2(Γg,Z). We let

0 Z G Γ 0i p

be a central extension. Observe that whenever γ, η ∈ Γg, and γ̃, η̃ ∈ G are lifts,
then [γ̃, η̃] is a lift of [γ, η] and doesn’t depend on the choice of γ̃ and η̃. Thus,
we can pick ã1, b̃1, · · · , ãg, b̃g. Then notice that

g∏
i=1

[ãi, b̃i] ∈ Z

is in the kernel of p, and is hence in Z.

Finally, we look at actions on a circle. Recall that we previously had the
central extension

0 Z Homeo+
Z (R) Homeo+(S1) 0i p

.

This corresponds to the Euler class e ∈ H2(Homeo+(S1),Z).
We can in fact construct a representative cocycle of e. To do so, we pick

a section s : Homeo+(S1) → Homeo+
Z (R) by sending f ∈ Homeo+(S1) to the

unique lift f̄ : R→ R such that f̄(0) ∈ [0, 1).

18
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Then we find that

s(f1, f2)Tc(f1,f2) = s(f1)s(f2)

for some c(f1, f2) ∈ Z.

Lemma. We have c(f1, f2) ∈ {0, 1}.

Proof. We have f1f2(0) ∈ [0, 1), while f̄2(0) ∈ [0, 1). So we find that

f̄1(f̄2(0)) ∈ [f̄1(0), f̄1(1)) = [f̄1(0), f̄1(0) + 1) ⊆ [0, 2).

But we also know that c(f1, f2) is an integer. So c(f1, f2) ∈ {0, 1}.

Definition (Euler class). The Euler class of the Γ-action by orientation-
preserving homeomorphisms of S1 is

h∗(e) ∈ H2(Γ,Z),

where h : Γ→ Homeo+(S1) is the map defining the action.

For example, if Γg is a surface group, then we obtain an invariant of actions
valued in Z.

There are some interesting theorems about this Euler class that we will not
prove.

Theorem (Milnor–Wood). If h : Γg → Homeo+(S1), then |h∗(e)| ≤ 2g − 2.

Theorem (Gauss–Bonnet). If h : Γg → PSL(2,R) ⊆ Homeo+(S1) is the holon-
omy representation of a hyperbolic structure, then

h∗(e) = ±(2g − 2).

Theorem (Matsumoko, 1986). If h defines a minimal action of Γg on S1 and
|h∗(e)| = 2g − 2, then h is conjugate to a hyperbolization.

2.2 Bounded cohomology of groups

We now move on to bounded cohomology. We will take A = Z or R now. The
idea is to put the word “bounded” everywhere. For example, we previously had
C(Γk+1, A) denoting the functions Γk+1 → A. Likewise, we denote

Cb(Γ
k+1, A) = {f ∈ C(Γk+1, A) : f is bounded} ⊆ C(Γk+1, A).

We have d(k)(Cb(Γ
k, A)) ⊆ Cb(Γ

k+1, A), and so as before, we obtain a chain
complexes

0 A Cb(Γ, A)Γ Cb(Γ
2, A)Γ · · ·

0 A Cb(Γ, A) Cb(Γ
2, A) · · ·

d(0) d(1) d(2)

d(0) d(1) d(2)

.

This allows us to define
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Definition (Bounded cohomology). The k-th bounded cohomology group of Γ
with coefficients in A Is

Hk
b (Γ, A) =

ker(d(k+1) : Cb(Γ
k+1, A)Γ → Cb(Γ

k+2, A)Γ)

d(k)(Cb(Γk, A)Γ)
.

This comes with two additional features.

(i) As one would expect, a bounded cochain is bounded. So given an element
f ∈ Cb(Γk+1, A), we can define

‖f‖∞ = sup
x∈Γk+1

|f(x)|.

Then ‖ · ‖∞ makes Cb(Γ
k+1, A) into a normed abelian group, and in the

case A = R, a Banach space.

Then for [f ] ∈ Hk
b (Γ, A), we define

‖[f ]‖∞ = inf{‖f + dg‖∞ : g ∈ Cb(Γk, A)Γ}.

This induces a semi-norm on Hk
b (Γ, A). This is called the canonical semi-

norm.

(ii) We have a map of chain complexes

Cb(Γ, A)Γ Cb(Γ
2, A)Γ Cb(Γ

3, A)Γ · · ·

C(Γ, A)Γ C(Γ2, A)Γ C(Γ3, A)Γ · · ·

Thus, this induces a natural map ck : Hk
b (Γ, A)→ Hk(Γ, A), known as the

comparison map. In general, ck need not be injective or surjective.

As before, we can instead use the complex of inhomogeneous cochains. Then
we have a complex that looks like

0 A Cb(Γ, A) Cb(Γ
2, A) · · ·d1=0 d2 d3

In degree 0, the boundedness condition is useless, and we have

H0
b (Γ, A) = H0(Γ, A) = A.

For k = 1, we have im d1 = 0. So we just have to compute the cocycles. For
f ∈ Cb(Γ, A), we have d2f = 0 iff f(g1)−f(g1g2) +f(g2) = 0, iff f ∈ Hom(Γ, A).
But we have the additional information that f is bounded, and there are no
non-zero bounded homomorphisms to Γ or A! So we have

H1
b (Γ, A) = 0.

If we allow non-trivial coefficients, then H1
b (Γ, A) may be always be zero.

We now look at H2
b (Γ, A). We are going to determine the kernel of the

comparison map
c2;H2

b (Γ, A)→ H2(Γ, A).
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We consider the relevant of the defining complexes, where we take inhomogeneous
cochains

C(Γ, A) C(Γ2, A) C(Γ3, A)

Cb(Γ, A) Cb(Γ
2, A) Cb(Γ

3, A)

d2 d3

d2 d3

Then the kernel of c2 consists of the [α] ∈ H2
b (Γ, A) such that α = d2f for some

f ∈ C(Γ, A). But d2f = α being bounded tells us f is a quasi-homomorphism!
Thus, we have a map

d̄2 : QH(Γ, A) ker c2

f [d2f ].

Proposition. The map d̄2 induces an isomorphism

QH(Γ, A)

`∞(Γ, A) + Hom(Γ, A)
∼= ker c2.

Proof. We know that d̄2 is surjective. So it suffices to show that the kernel is
`∞(Γ, A) + Hom(Γ, A).

Suppose f ∈ QH(Γ, A) is such that d̄2f ∈ H2
b (Γ, A) = 0. Then there exists

some g ∈ Cb(Γ, A) such that
d2f = d2g.

So it follows that d2(f − g) = 0. That is, f − g ∈ Hom(Γ, A). Hence it follows
that

ker d̄2 ⊆ `∞(Γ, A) + Hom(Γ, A).

The other inclusion is clear.

Example.

– For G abelian and A = R, we saw that QH(Γ, A) = `∞(Γ, A) + Hom(Γ, A).
So it follows that c2 is injective.

– For H2
b (Z,Z), we know H2(Z,Z) = 0 since Z is a free group (hence, e.g.

every extension splits, and in particular all central extensions do). Then
we know

H2
b (Z,Z) ∼=

QH(Z,Z)

`∞(Z,Z) + Hom(Z,Z)
∼= R/Z.

– Consider H2
b (Fr,R). We know that H2(Fr,R) = 0. By Rollis’ theorem,

we have an inclusion

`∞odd(Z,R)⊕ `∞odd(Z,R) H2
b (Fr,R)

(α, β) [d2fα,β ]

Recall that H2
b (Fr,R) has the structure of a semi-normed space, which we

called the canonical norm. One can show that

‖[d2fα,β ]‖ = max(‖dα‖∞, ‖dβ‖∞).
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– We have a Gersten long exact sequence (1992) as follows:

Consider the exact sequence of abelian groups

0 Z R R/Z 0 .

By homological algebra, we obtain a short exact sequence of chain com-
plexes

0 Cb(Γ·,Z) Cb(Γ·,R) C(Γ·,R/Z) 0

One should check carefully that this is indeed correct, and in particular we
don’t have a subscript b in the R/Z complex. Then by the snake lemma,
we obtain a long exact sequence

Hk−1(Γ,R/Z) Hk
b (Γ,Z) Hk

b (Γ,R) Hk(Γ,R/Z)δ .

So for example, we have

0 = H1
b (Γ,R) Hom(Γ,R/Z) H2

b (Γ,Z) H2
b (Γ,R)δ .

So in the case Γ = Z, since Γ is abelian, we recover the isomorphism

R/Z = Hom(Z,R/Z) ∼= H2
b (Z,Z).

– In Gersten’s Bounded cocycles and combing of groups (1992) paper, it is
shown that the image of the comparison map c2;H2

b (Γ,Z) → H2(Γ,Z)
describes central extensions with special metric features.

Theorem. Assume Γ is finitely-generated. Let Gα be the central exten-
sion of Γ by Z, defined by a class in H2(Γ,Z) which admits a bounded
representative. Then with any word metric, Γα is quasi-isometric to Γ× Z
via the “identity map”.

A typical application is as follows — for n ≥ 2, the preimage Γ̃ of Sp(2n,Z)
in the universal covering of Sp(2n,R) is a central Z-extension of the above
type. In addition, Γ̃ has property (T). But Γ× Z doesn’t have property
(T).

One of the most important features of bounded cohomology is that (for real
coefficients) it vanishes for amenable groups.

Definition (Amenable group). A discrete group Γ is amenable if there is a
linear form m : `∞(Γ,R)→ R such that

– m(f) ≥ 0 if f ≥ 0;

– m(1) = 1; and

– m is left-invariant, i.e. m(γ∗f) = m(f), where (γ∗f)(x) = f(γ−1x).

A linear form that satisfies the first two properties is known as a mean, and
we can think of this as a way of integrating functions. Then an amenable group
is a group with a left invariant mean. Note that the first two properties imply

|m(f)| ≤ ‖f‖∞.
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Example.

– Abelian groups are amenable, and finite groups are.

– Subgroups of amenable groups are amenable.

– If
0 Γ1 Γ2 Γ3 0

is a short exact sequence, then Γ2 is amenable iff Γ1 and Γ3 are amenable.

– Let Γ = 〈S〉 for S a finite set. Given a finite set A ⊆ Γ, we define ∂A to
be the set of all edges with exactly one vertex in A.

For example, Z2 with the canonical generators has Cayley graph

Then if A consists of the red points, then the boundary consists of the
orange edges.

Then Γ is non-amenable iff there exists c(s,Γ) > 0 such that for all A ⊆ Γ,
we have |∂A| ≥ c|A|.

– There exists infinite, finitely generated, simple, anemable groups.

– If Γ ⊆ GL(n,C), then Γ is amenable iff it contains a finite-index subgroup
which is solvable.

– F2 is non-amenable.

– Any non-elementary word-hyperbolic group is non-amenable.

So quite a few groups are non-amenable. Which is good, because now the
following vanishing theorem would not apply!

Proposition. Let Γ be an amenable group. Then Hk
b (Γ,R) = 0 for k ≥ 1.

The proof requires absolutely no idea.
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Proof. Let k ≥ 1 and f : Γk+1 → R a Γ-invariant bounded cocycle. In other
words,

d(k+1)f = 0

f(γγ0, · · · , γγk) = f(γ0, · · · , γk).

We have to find ϕ : Γk → R bounded such that

d(k)ϕ = f

ϕ(γγ0, · · · , γγk−1) = ϕ(γ0, · · · , γk−1).

Recall that for η ∈ Γ, we can define

hη(γ0, · · · , γk−1) = (−1)k+1f(γ0, · · · , γk+1, η),

and then
d(k+1)f = 0⇐⇒ f = d(k)(hη).

However, hη need not be invariant. Instead, we have

hη(γγ0, · · · , γγk−1) = hγ−1η(γ0, · · · , γk−1).

Now let m : `∞(Γ)→ R be a left-invariant mean. We notice that the map

η 7→ hη(γ0, · · · , γk−1)

is bounded by ‖f‖∞. So we can define

ϕ(γ0, · · · , γk−1) = m
{
η 7→ hη(γ0, · · · , γk−1)

}
.

Then this is the ϕ we want. Indeed, we have

ϕ(γγ0, · · · , γγk−1) = m
{
η 7→ hγ−1η(γ0, · · · , γk−1)

}
.

But this is just the mean of a left translation of the original function. So this is
just ϕ(γ0, · · · , γk−1. Also, by properties of the mean, we know ‖ϕ‖∞ ≤ ‖f‖∞.

Finally, by linearity, we have

d(k)ϕ(γ0, · · · , γk) = m
{
η 7→ d(k)hη(γ0, · · · , γk)

}
= m

{
f(γ0, · · · , γk) · 1Γ

}
= f(γ0, · · · , γk)m(1Γ)

= f(γ0, · · · , γk).
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3 Actions on S1

3.1 The bounded Euler class

We are now going to focus our study on actions on S1. Recall that the central
extension

0 Z Homeo+
Z (R) Homeo+(S1) 0

defines the Euler class e ∈ H2(Homeo+(S1),Z). We have also shown that there
is a representative cocycle c(f, g) taking the values {0, 1}, defined by

f ◦ g ◦ Tc(f,g) = f̄ ◦ ḡ,

where for any f , the map f̄ is the unique lift to R such that f̄(0) = [0, 1).
Since c takes values in {0, 1}, in particular, it is a bounded cocycle. So we

can use it to define

Definition (Bounded Euler class). The bounded Euler class

eb ∈ H2
b (Homeo+(S1),Z)

is the bounded cohomology class represented by the cocycle c.

By construction, eb is sent to e via the comparison map

c2 : H2
b (Homeo+(S1),Z) H2(Homeo+(S1),Z) .

In fact, the comparison map is injective. So this eb is the unique element that is
sent to e, and doesn’t depend on us arbitrarily choosing c as the representative.

Definition (Bounded Euler class of action). The bounded Euler class of an
action h : Γ→ Homeo+(S1) is h∗(eb) ∈ H2

b (Γ,Z).

By naturality (proof as exercise), h∗(eb) maps to h∗(e) under the comparison
map. The following is also an exercise:

Exercise. Show that if h : Z → Homeo+(S1) and ϕ = h(1), then under the
isomorphism

H2
b (Z,Z)→ R/Z,

we have h∗(eb) = Rot(ϕ), the Poincaré rotation number of ϕ.

So this tells us the bounded Euler class is a natural generalization of the
Poincaré rotation number.

Exercise. Assume h : Γ→ Homeo+(S1) takes values in the rotations Rot. Let
χ : Γ → R/Z the corresponding homomorphism. Then under the connecting
homomorphism

Hom(Γ,R/Z) H2
b (Γ,Z)δ ,

we have δ(χ) = h∗(eb).
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Exercise. If h1 and h2 are conjugate in Homeo+(S1), i.e. there exists a ϕ ∈
Homeo+(S1) such that h1(γ) = ϕh2(γ)ϕ−1, then

h∗1(e) = h∗2(e), h∗1(eb) = h∗2(eb).

The proof involves writing out a lot of terms explicitly.

How powerful is this bounded Euler class in distinguishing actions? We saw
that conjugate actions have the same bounded Euler class. The converse does
not hold. One can show that any action with a global fixed point has trivial
bounded Euler class, and there are certainly non-conjugate actions that both
have global fixed points (e.g. take one of them to be the trivial action).

It turns out there is a way to extend the notion of conjugacy so that the
bounded Euler class becomes a complete invariant.

Definition (Increasing map of degree 1). A map ϕ : S1 → S1 is increasing of
degree 1 if there is some ϕ̃ : R → R lifting ϕ such that ϕ̃ is is monotonically
increasing and

ϕ̃(x+ 1) = ϕ̃(x) + 1

for all x ∈ R.

Note that there is no continuity assumption made on ϕ. On the other hand,
it is an easy exercise to see that any monotonic map R→ R has a countable set
of discontinuities. This is also not necessarily injective.

Example. The constant map S1 → S1 sending x→ 0 is increasing of degree 1,
as it has a lift ϕ̃(x) = [x].

Equivalently, such a map is one that sends a positive 4-tuple to a weakly
positive 4-tuple (exercise!).

Definition (Semiconjugate action). Two actions h1, h2 : Γ→ Homeo+(S1) are
semi-conjugate if there are increasing maps of degree 1 ϕ1, ϕ2 : S1 → S1 such
that

(i) h1(γ)ϕ1 = ϕ1h2(γ) for all γ ∈ Γ;

(ii) h2(γ)ϕ2 = ϕ2h1(γ) for all γ ∈ Γ.

One can check that the identity action is semiconjugate to any action with a
global fixed point.

Recall the following definition:

Definition (Minimal action). An action on S1 is minimal if every orbit is dense.

Lemma. If h1 and h2 are minimal actions that are semiconjugate via ϕ1 and
ϕ2, then ϕ1 and ϕ2 are homeomorphisms and are inverses of each other.

Proof. The condition (i) tells us that

h1(γ)(ϕ1(x)) = ϕ1(h2(γ)(x)).

for all x ∈ S1 and γ ∈ Γ. This means imϕ1 is h1(Γ)-invariant, hence dense in
S1. Thus, we know that im ϕ̃1 is dense in R. But ϕ̃ is increasing. So ϕ̃1 must
be continuous. Indeed, we can look at the two limits

lim
x↗y

ϕ̃1(x) ≤ lim
x↘y

ϕ̃1(x).
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But since ϕ̃1 is increasing, if ϕ̃1 were discontinuous at y ∈ R, then the inequality
would be strict, and hence the image misses a non-trivial interval. So ϕ̃1 is
continuous.

We next claim that ϕ̃1 is injective. Suppose not. Say ϕ(x1) = ϕ(x2). Then
by looking at the lift, we deduce that ϕ((x1, x2)) = {x} for some x. Then by
minimality, it follows that ϕ is locally constant, hence constant, which is absurd.

We can continue on and then decide that ϕ1, ϕ2 are homeomorphisms.

Theorem (F. Ghys, 1984). Two actions h1 and h2 are semiconjugate iff h∗1(eb) =
h∗2(eb).

Thus, in the case of minimal actions, the bounded Euler class is a complete
invariant of actions up to conjugacy.

Proof. We shall only prove one direction, that if the bounded Euler classes agree,
then the actions are semi-conjugate.

Let h1, h2 : Γ → Homeo+(S1). Recall that c(f, g) ∈ {0, 1} refers to the
(normalized) cocycle defining the bounded Euler class. Therefore

c1(γ, η) = c(h1(γ), h1(η))

c2(γ, η) = c(h2(γ), h2(η)).

are representative cocycles of h∗1(eb), h∗2(eb) ∈ H2
b (Γ,Z).

By the hypothesis, there exists u : Γ→ Z bounded such that

c2(γ, η) = c1(γ, η) + u(γ)− u(γη) + u(η)

for all γ, η ∈ Γ.
Let Γ̄ = Γ×c1 ×Z be constructed with c1, with group law

(γ, n)(η,m) = (γη, c1(γ, η) + n+m)

We have a section

s1 : Γ→ Γ̄

γ 7→ (γ, 0).

We also write δ = (e, 1) ∈ Γ̄, which generates the copy of Z in Γ̄. Then we have

s1(γη)δc1(γ,η) = s1(γ)s2(η).

Likewise, we can define a section by

s2(γ) = s1(γ)δu(γ).

Then we have

s2(γη) = s1(γη)δu(γη)

= δ−c1(γ,η)s1(γ)s1(η)δu(γη)

= δ−c1(γ,η)δ−u(γ)s2(γ)δ−u(η)s2(η)δu(γη)

= δ−c1(γ,η)−u(γ)+u(γη)−u(η)s2(γ)s2(η)

= δ−c2(γ,η)s2(γ)s2(η).
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Now every element in Γ̄ can be uniuely written as a product s1(γ)δn, and the
same holds for s2(γ)δm.

Recall that for f ∈ Homeo+(S1), we write f̄ for the unique lift with f̄(0) ∈
[0, 1). We define

Φi(si(γ)δn) = hi(γ) · Tn.

We claim that this is a homomorphism! We simply compute

Φi(si(γ)δnsi(η)δm) = Φi(si(γ)si(η)δn+m)

= Φi(si(γη)δci(γ,η)+n+m)

= hi(γη)Tci(γ,η)Tn+m

= hi(γ)hi(η)Tn+m

= hi(γ)Tnhi(η)Tm

= Φi(si(γ)δn)Φi(si(η)δm).

So we get group homomorphisms Φi : Γ̄→ Homeo+
Z (R).

Claim. For any x ∈ R, the map

Γ̄→ R
g 7→ Φ1(g)−1Φ2(g)(x)

is bounded.

Proof. We define
v(g, x) = Φ1(g)−1Φ(g)x.

We notice that

v(gδm, x) = Φ1(gδm)−1Φ2(gδm)(x)

= Φ1(g)−1T−mTmΦ2(g)

= v(g, x).

Also, for all g, the map x 7→ v(g, x) is in Homeo+
Z (R).

Hence it is sufficient to show that

γ 7→ v(s2(γ), 0)

is bounded. Indeed, we just have

v(s2(γ), 0) = Φ1(s2(γ)−1Φ2(s2(γ))(0)

= Φ1(s1(γ)δu(γ))−1Φ2(s2(γ))(0)

= δ−u(γ)h1(γ)
−1
h2(γ)(0)

= −u(γ) + h1(γ)
−1

(h2(γ)(0)).

But u is bounded, and also

h1(γ)
−1

(h2(γ)(0)) ∈ (−1, 1).

So we are done.
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Finally, we can write down our two quasi-conjugations. We define

ϕ̃(x) = sup
g∈Γ̄

v(g, x).

Then we verify that
ϕ̃(Φ2(h)x) = Φ1(h)(ϕ(x)).

Reducing everything modulo Z, we find that

ϕh2(γ) = h1(γ)ϕ.

The other direction is symmetric.

3.2 The real bounded Euler class

Definition (Real bounded Euler class). The real bounded Euler class is the
class ebR ∈ H2

b (Homeo+(S1),R) obtained by change of coefficients from Z→ R.
The real bounded Euler class of an action h : Γ → Homeo+(S1) is the

pullback
h∗(ebR) ∈ H2

b (Γ,R).

Hence, ebR is the image under the morphism induced by Z→ R in cohomology
of eb ∈ H2

b (Homeo+(S1),Z).
A priori, this class contains less information that the original Euler class.

However, the vanishing or non-vanishing of h∗(ebR) distinguishes between very
different dynamical properties.

Corollary. An action h is semi-conjugate to an action by rotations iff h∗(ebR) = 0.

Proof.

(⇒) Let h1 : Γ→ Rot ⊆ Homeo+(S1) be semi-conjugate to h. Let χ : Γ→ R/Z
be the associated group homomorphism under the isomorphism Rot ∼= R/Z.
Recall from a previous exercise that

h∗1(eb) = δ(χ),

where δ is the connecting homomorphism in

0 Hom(Γ,R/Z) H2
b (Γ,Z)→ H2

b (Γ,R)δ .

So h∗(eb) = h∗1(eb) = δ(χ). But by exactness, the image in H2
b (Γ,R)

vanishes.

(⇐) Suppose h∗(ebR) = 1. Then h∗(eb) ∈ H2
b (Γ,Z) is in the kernel of the map

H2
b (Γ,Z)→ H2

b (Γ,R). Hence, by exactness, there exists χ ∈ Hom(Γ,R/Z)
such that δ(χ) = h∗(ebR). Then we can define h1 : Γ→ Rot to be given by
χ. Then h∗1(eb) = δ(χ) = h(eb). So h is semi-conjugate to h1.

We want to use the real bounded Euler class to classify different kinds of
actions. To do so, we need the following trichotomy concerning actions on S1.
More details can be found in Hector–Hirsch’s Introduction to the geometry of
foliations.
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Theorem. Let h : Γ→ Homeo+(S1) be an action. Then one of the following
holds:

(i) There is a finite orbit, and all finite orbits have the same cardinality.

(ii) The action is minimal.

(iii) There is a closed, minimal, invariant, infinite, proper subset K ( S1 such
that any x ∈ S1, the closure of the orbit h(Γ)x contains K.

Proof sketch. First one uses compactness and Zorn’s lemma to show the existence
of a minimal, non-empty, closed, invariant subset.

Let K ⊆ S′ be such a subset, and let ∂K = K \ K̊. We let K ′ be the
set of all accumulation points of K (i.e. the set of all points x such that every
neighbourhood of x contains infinitely many points of K). Clearly K ′ and ∂K
are closed and invariant as well, and contained in K. By minimality, they must
be K or empty.

(i) If K ′ = ∅, then K is finite. It is an exercise to show that all orbits have
the same size.

(ii) If K ′ = K, and ∂K = ∅, then K = K̊, and hence is open. Since S1 is
connected, K = S1, and the action is minimal.

(iii) If K ′ = K = ∂K, then K is perfect, i.e. every point is an accumulation
point, and K is totally disconnected. We definitely have K 6= S1 and K is
infinite. It is also minimal and invariant.

Let x ∈ S1. If it is in K, then the closure of its orbit is certainly contained
in K. If x 6∈ K, then S1\K is a disjoint (countable) union of open intervals.
More precisely, if a, b ∈ S1 and a 6= b, then an open interval is

(a, b) = {z ∈ S1 : (a, z, b) is positively oriented}.

Now let (a, b) be the connected component of S1 \K containing x.

Since h(Γ)a consists of end points of open intervals, it must be countable.
But since K is perfect, it is not countable. So K \ h(Γ)a is non-empty,
hence dense in K. So it suffices to approximate any y ∈ K \ h(Γ)a.

Now observe that a ∈ K. Hence by minimality, there exists a sequence
(γn)n≥1 such that h(γn)a → y. But since y 6∈ h(Γ)a, we may wlog that
all the points {h(γn)a : n ≥ 1} are distinct. Hence {h(γn)(a, b)}n≥1 is a
collection of disjoint intervals in S1. Hence their lengths tend to 0. And
then we are done, because then h(γn)x gets arbitrarily close to h(γn)a as
well.

From this, and a bit more work, we can deduce the following corollary.

Corollary. Let h : Γ→ S1 be an action. Then one of the following is true:

(i) h∗(ebR) = 0 and h is semi-conjugate to an action by rotations.

(ii) h∗(ebR) 6= 0, and then h is semi-conjugate to a minimal unbounded action,
i.e. {h(γ) : γ ∈ Γ} is not equicontinuous.
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Observe that if Λ ⊆ Homeo+(S1) is equicontinuous, then by Arzela–Ascoli,
its closure Λ̄ is compact.

To prove this, we first need the following lemma:

Lemma. A minimal compact subgroup U ⊆ Homeo+(S1) is conjugate to a
subgroup of Rot.

Proof. By Kakutani fixed point theorem, we can pick an U -invariant probability
measure on S1, say µ, such that µ(S1) = 2π.

We parametrize the circle by p : [0, 2π) → S1. We define ϕ ∈ Homeo+(S1)
by

ϕ(p(t)) = p(s),

where s ∈ [0, 2π) is unique with the property that

µ(p([0, s)) = t.

One then verifies that ϕ is a homeomorphism, and ϕUϕ−1 ⊆ Rot.

Proof of corollary. Suppose h∗(ebR) 6= 0. Thus we are in case (ii) or (iii) of the
trichotomy.

We first show how to reduce (iii) to (ii). Let K ( S1 be the minimal h(Γ)-
invariant closed set given by the trichotomy theorem. The idea is that this K
misses a lot of open intervals, and we want to collapse those intervals.

We define the equivalence relation on S1 by x ∼ y if {x, y} ⊆ Ī for some
connected component I of S1 \K. Then ∼ is an equivalence relation that is
h(Γ)-invariant, and the quotient map is homeomorphic to S1 (exercise!). Write
i : S1/ ∼→ S1 for the isomorphism.

In this way, we obtain an action of ρ : Γ→ Homeo+(S1) which is minimal,
and the map

ϕ : S1 S1/ ∼ S1pr i

intertwines the two actions, i.e.

ϕh(γ) = ρ(γ)ϕ.

Then one shows that ϕ is increasing of degree 1. Then we would need to find
ψ : S1 → S1 which is increasing of degree 1 with

ψρ(γ) = h(γ)ψ.

But ϕ is surjective, and picking an appropriate section of this would give the ψ
desired.

So h is semi-conjugate to ρ, and 0 6= h∗(ebR) = ρ∗(ebR).
Thus we are left with ρ minimal, with ρ∗(ebR) 6= 0. We have to show that ρ is

not equicontinuous. But if it were, then ρ(Γ) would be contained in a compact
subgroup of Homeo+(S1), and hence by the previous lemma, would be conjugate
to an action by rotation.

The following theorem gives us a glimpse of what unbounded actions look
like:
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Theorem (Ghys, Margulis). If ρ : Γ → Homeo+(S1) is an action which is
minimal and unbounded. Then the centralizer CHomeo+(S1)(ρ(Γ)) is finite cyclic,

say 〈ϕ〉, and the factor action ρ0 on S1/〈ϕ〉 ∼= S1 is minimal and strongly
proximal. We call this action the strongly proximal quotient of ρ.

Definition (Strongly proximal action). A Γ-action by homeomorphisms on a
compact metrizable space X is strongly proximal if for all probability measures
µ on X, the weak-∗ closure Γ∗µ contains a Dirac mass.

For a minimal action on X = S1, the property is equivalent to the following:

– Every proper closed interval can be contracted. In other words, for every
interval J ⊆ S1, there exists a sequence (γn)n≥1 such that diam(ρ(γn)J)→
0 as n→∞.

Proof of theorem. Let ψ commute with all ρ(γ) for all γ ∈ Γ, and assume ψ 6= id.

Claim. ψ has no fixed points.

Proof. Otherwise, if ψ(p) = p, then

ψ(ρ(γ)p) = ρ(γ)ψ(p) = ρ(γ)(p).

Then by density of {ρ(γ)p : γ ∈ Γ}, we have ψ = id.

Hence we can find ε > 0 such that length([x, ψ(x)]) ≥ ε for all x by compact-
ness. Observe that

ρ(γ)[x, ψ(x)] = [ρ(γ)x, ρ(γ)ψ(x)] = [ρ(γ)x, ψ(ρ(γ)x)].

This is just an element of the above kind. So length(ρ(γ)[x, ψ(x)]) ≥ ε.
Now assume ρ(Γ) is minimal and not equicontinuous.

Claim. Every point x ∈ S1 has a neighbourhood that can be contracted.

Proof. Indeed, since ρ(Γ) is not equicontinuous, there exists ε > 0, a sequence
(γn)n≥1 and intervals Ik such that length(Ik)↘ 0 and length(ρ(γn)In) ≥ ε.

Since we are on a compact space, after passing to a subsequence, we may
assume that for n large enough, we can find some interval J such that length(J) ≥
ε
2 and J ⊆ ρ(γn)In.

But this means
ρ(γn)−1J ⊆ In.

So J can be contracted. Since the action is minimal,⋃
γ∈Γ

ρ(γ)J = S1.

So every point in S1 is contained in some interval that can be contracted.

We shall now write down what the homeomorphism that generates the
centralizer. Fix x ∈ S1. Then the set

Cx = {[x, y) ∈ S1 : [x, y) can be contracted}
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is totally ordered ordered by inclusion. Define

ϕ(x) sup Cx.

Then
[x, ϕ(x)) =

⋃
Cx.

This gives a well-defined map ϕ that commutes with the action of γ. It is then
an interesting exercise to verify all the desired properties.

– To show ϕ is homeomorphism, we show ϕ is increasing of degree 1, and
since it commutes with a minimal action, it is a homeomorphism.

– If ϕ is not periodic, then there is some n such that ϕn(x) is between x and
ϕ(x). But since ϕ commutes with the action of Γ, this implies [x, ϕn(x)]
cannot be contracted, which is a contradiction.

Exercise. We have
ρ∗(eb) = kρ∗0(eb),

where k is the cardinality of the centralizer.

Example. We can decompose PSL(2,R) = PSO(2)AN , where

A =

{(
λ 0
0 λ−1

)
: λ > 0

}
, N =

{(
1 x
0 1

)}
.

More precisely, SO(2) × A × N → SL(2,R) is a diffeomorphism and induces
on PSO(2) × A × N → PSL(2,R). In particular, the inclusion i : PSO(2) ↪→
PSL(2,R) induces an isomorphism on the level of π1

∼= Z.
We can consider the subgroup kZ ⊆ Z. which gives us a covering of PSO(2)

and PSL(2,R) that fits in the diagram

PSO(2)k PSL(2,R)

PSO(2) PSL(2,R)

ik

p p

i

.

On the other hand, if we put B = A ·N , which is a contractible subgroup, we
obtain a homomorphism s : B → PSL(2,R)k, and we find that

PSL(2,R)k ∼= PSO(2)k · s(B).

So we have
PSL(2,R)k

s(B)
∼= PSO(2)k.

So PSL(2,R)k/s(B) is homeomorphic to a circle. So we obtain an action of
PSL(2,R)k on the circle.

Now we can think of Γ ∼= Fr as a lattice in PSL(2,R). Take any section
σ : Γ → PSL(2,R)k. This way, we obtain an unbounded minimal action with
centralizer isomorphic to Z/kZ.
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Definition (Lattice). A lattice in a locally compact group G is a discrete
subgroup Γ such that on Γ\G, there is a G-invariant probability measure.

Example. Let O be the ring of integers of a finite extension k/Q. Then
SL(n,O) is a lattice in an appropriate Lie group. To construct this, we write
[k : Q] = r + 2s, where r and 2s are the number of real and complex field
embeddings of k. Using these field embeddings, we obtain an injection

SL(n,O)→ SL(n,R)r × SL(n,C)s,

and the image is a lattice.

Example. If X is a complete proper CAT(0) space, then Isom(X) is locally
compact, and in many cases conatins lattices.

Theorem (Burger, 2007). Let G be a second-countable locally compact group,
and Γ < G be a lattice, and ρ : Γ→ Homeo+(S1) a minimal unbounded action.
Then the following are equivalent:

– ρ∗(ebR) is in the image of the restriction map H2
bc(G,R)→ H2

b (Γ,R)

– The strongly proximal quotient ρss : Γ → Homeo+(S1) extends continu-
ously to G.

Theorem (Burger–Monod, 2002). The restriction map H2
bc(G)→ H2

b (Γ,R) is
an isomorphism in the following cases:

(i) G = G1 × · · · ×Gn is a cartesian product of locally compact groups and Γ
has dense projections on each individual factor.

(ii) G is a connected semisimple Lie group with finite center and rank G ≥ 2,
and Γ is irreducible.

Example. Let k/Q be a finite extension that is not an imaginary quadratic
extension. Then we have an inclusion

SL(2,O) ↪→ SL(2,R)r × SL(2,C)s

and is a product of more than one thing. One can actually explicitly compute
the continuous bounded cohomology group of the right hand side.

Exercise. Let Γ < SL(3,R) be any lattice. Are tehre any actions by oriented
homeomorphisms on S1?

Let’s discuss according to ρ∗(ebR).

– If ρ∗(ebR) = 0, then there is a finite orbit. Then we are stuck, and don’t
know what to say.

– If ρ∗(ebR) 6= 0, then we have an unbounded minimal action. This leads
to a strongly proximal action ρss : Γ → Homeo+(S1). But by the above
results, this implies the action extends continuously to an action of SL(3,R)
on S1. But SL(3,R) contains SO(3), which is a compact group. But we
know what compact subgroups of Homeo+(S1) look like, and it eventually
follows that the action is trivial. So this case is not possible.

We say a topological group T has small subgroups if every neighbourhood of
the identity contains a non-trivial subgroup. Typical examples include (Z/2Z)N,
under the product topology.

34



4 The relative homological approach IV Bounded Cohomology

4 The relative homological approach

4.1 Injective modules

When we defined ordinary group cohomology, we essentially defined it as the
right-derived functor of taking invariants. While we do not need the machinery
of homological algebra and derived functors to define group cohomology, having
that available means we can pick different injective resolutions to compute group
cohomology depending on the scenario, and often this can be helpful. It also
allows us to extend group cohomology to allow non-trivial coefficients. Thus, we
would like to develop a similar theory for bounded cohomology.

We begin by specifying the category we are working over.

Definition (Banach Γ module). A Banach Γ-module is a Banach space V
together with an action Γ× V → V by linear isometries.

Given a Banach Γ-module V , we can take the submodule of Γ-invariants
V Γ. The relative homological approach tells us we can compute the bounded

cohomology H·b (Γ,R) by first taking an appropriate exact sequences of Banach
Γ-modules

0 R E0 E1 · · · ,d(0) d(1) d(2)

and then take the cohomology of the complex of Γ-invariants

0 EΓ
0 EΓ

1 EΓ
2 · · ·d(1) d(2) .

Of course, this works if we take Ek = C(Γk+1, A) and d(k) to be the differentials
we have previously constructed, since this is how we defined bounded cohomology.
The point is that there exists a large class of “appropriate” exact sequences such
that this procedure gives us the bounded cohomology.

We first need the following definition:

Definition (Admissible morphism). An injective morphism i : A→ B of Banach
spaces is admissible if there exists σ : B → A with

– σi = idA; and

– ‖σ‖ ≤ 1.

This is a somewhat mysterious definition, but when we have such a situation,
this in particular implies imA is closed and B = i(A)⊕kerσ. In usual homological
algebra, we don’t meet these kinds of things, because our vector spaces always
have complements. However, here we need them.

Definition (Injective Banach Γ-module). A Banach Γ-module is injective if for
any diagram

A B

E

i

α
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where i and α are morphisms of Γ-modules, and i is injective admissible, then
there exists β : B → E a morphism of Γ-modules such that

A B

E

i

α
β

commutes and ‖β‖ ≤ ‖α‖.

In other words, we can extend any map from a closed complemented subspace
of B to E.

Definition (Injective resolution). Let V be a Banach Γ-module. An injective
resolution of V is an exact sequence

V E0 E1 E2 · · ·

where each Ek is injective.

Then standard techniques from homological algebra imply the following
theorem:

Theorem. Let E· be an injective resolution of R Then

H·(E·Γ) ∼= H·b (Γ,R)

as topological vector spaces.
In case E· admits contracting homotopies, this isomorphism is semi-norm

decreasing.

Unsurprisingly, the defining complex for bounded cohomology were composed
of injective Γ-modules.

Lemma.

– `∞(Γn) for n ≥ 1 are all injective Banach Γ-modules.

– `∞alt(Γ
n) for n ≥ 1 are injective Banach Γ-modules as well.

This is a verification. More interestingly, we have the following

Proposition. The trivial Γ-module R is injective iff Γ is amenable.

As an immediate corollary, we know that if Γ is amenable, then all the higher
bounded cohomology groups vanish, as 0 → R → 0 → 0 → · · · is an injective
resolution.

Proof.

(⇒) Suppose A is injective. Consider the diagram

R `∞(Γ)

R

i

,
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where i(t) is the constant function t. We need to verify that i is an
admissible injection. Then we see that σ(f) = f(e) is a left inverse to i
and ‖σ‖ ≤ 1. Then there exists a morphism β : `∞(Γ)→ R filling in the
diagram with ‖β‖ ≤ ‖ idR ‖ = 1 and in particular

β(1Γ) = 1

Since the action of Γ on R is trivial, this β is an invariant linear form on
Γ, and we see that this is an invariant mean.

(⇐) Assume Γ is amenable, and let m : `∞(Γ) → R be an invariant mean.
Consider a diagram

A B

R

i

α

as in the definition of injectivity. Since i is an admissible, it has a left
inverse σ : B → A. Then we can define

β(v) = m{γ 7→ α(σ(γ∗v))}.

Then this is an injective map B → R and one can verify this works.

This theory allows us to study bounded cohomology with more general
coefficients. This can also be extended to G a locally-compact second-countable
groups with coefficients a G-Banach module E which is the dual of a continuous
separable Banach module Eb. This is more technical and subtle, but it works.

4.2 Amenable actions

In Riemannian geometry, we have the Hodge decomposition theorem. It allows
us to understand the de Rham cohomology of a Riemannian manifold in terms
of the complex of harmonic forms, whose cohomology is the complex itself. In
bounded cohomology, we don’t have something like this, but we can produce a
complex such that the complex is equal to the cohomology in the second degree.

The setting is that we have a locally-compact second-countable group G with
a non-singular action on a standard measure space (S,M, µ). We require that
the action map G× S → S which is measurable. Moreover, for any g ∈ G, the
measure g∗µ is equivalent to µ. In other words, the G-action preserves the null
sets.

Example. Let M be a smooth manifold. Then the action of Diff(M) on M is
non-singular.

We want to come up with a notion similar to amenability. This is what we
call conditional expectation.

Definition (Conditional expectation). A conditional expectation on G× S is a
linear map M : L∞(G× S)→ L∞(S) such that

(i) M(1) = 1;
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(ii) If M ≥ 0, then M(f) ≥ 0; and

(iii) M is L∞(S)-linear.

We have a left G-action on L∞(G × S) given by the diagonal action, and
also a natural on L∞(S). We say M is G-equivariant if it is G-equivariant.

Definition (Amenable action). A G-action on S is amenable if there exists a
G-equivariant conditional expectation.

Note that a point (with the trivial action) is a conditional G-space if G is
amenable itself.

Example. Let H be a closed subgroup of G, then the G action on G/H is
amenable iff H is amenable.

Theorem (Burger–Monod, 2002). Let G × S → S be a non-singular action.
Then the following are equivalent:

(i) The G action is amenable.

(ii) L∞(S) is an injective G-module.

(iii) L∞(Sn) for all n ≥ 1 is injective.

So any amenable G-space can be used to compute the bounded cohomology
of G.

Corollary. If (S, µ) is an amenable G-space, then we have an isometric isomor-
phism H·(L∞(Sn, µ)G, dn) ∼= H·(L∞alt(S

n, µ)G, dn) ∼= Hb(G,R).

Example. Let Γ < G be a lattice in SL(n,R), say. Let P < G be a parabolic
subgroup, e.g. the subgroup of upper-triangular matrices. We use L∞alt((G/P )n)Γ

to compute bounded cohomology of Γ, since the restriction of amenable actions
to closed subgroups is amenable. We have

0 L∞(G/p)Γ Lalt((G/P )2)Γ Lalt((G/P )3)Γ · · ·

R 00

So we know that H2
b (Γ,R) is isometric to Z(L∞alt((G/P )3)Γ). In particular, it is

a Banach space.

38



Index IV Bounded Cohomology

Index

C(Γk+1, A), 14
C(Γk, A)Γ, 15
Cb(Γ

k+1, A), 19
G-equivariant, 38
Hk(Γ, A), 15
R(ϕ), 13
Γ-module

Banach, 35
injective Banach, 35

cl(a), 9
`∞(G,A), 4
QH(G,A), 4
QHh(G,R), 5
Homeo+(S1), 12
Homeo+

Z (R), 12
Rot, 12
d(k), 14
eb, 25
k-coboundary, 15

inhomogeneous, 16
k-cochain, 14
k-cocycle, 15

inhomogeneous, 16
k-th bounded cohomology, 20

action
amenable, 38
minimal, 26
semiconjugate, 26
strongly proximal, 32
unbounded, 30

admissible morphism, 35
amenable action, 38
amenable group, 22

Banach Γ-module, 35
injective, 35

bounded cohomology, 20
bounded Euler class, 25

real, 29

canonical semi-norm, 20
central extension, 12, 17
chain complex, 14
coboundary, 15

inhomogeneous, 16
cochain, 14

cocycle, 15
inhomogeneous, 16

commutator length, 9
comparison map, 20
complex, 14
conditional expectation, 37
conjugate

semi-, 26

defect, 4
differential, 14

Euler class, 18, 19
bounded, 25
real bounded, 29

function
homogeneous, 4

group cohomology, 15

homegeneous function, 4
homogeneous k-cochain, 14

increasing map, 26
degree 1, 26

inhomogeneous k-coboundaries, 16
inhomogeneous k-cocycles, 16
inhomogeneous cochains, 16
injective Banach Γ-module, 35
injective resolution, 36

lattice, 34

mean, 22
minimal action, 26

normalized cocycle, 17

open interval
of circle, 30

orientation-preserving map, 12

Poincare translation
quasimorphism, 13

positively-oriented triple, 11

quasi-homomorphism, 4
defect, 4

real bounded Euler class, 29
rotation number, 13
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semiconjugate action, 26
stable commutator length, 9
strongly proximal action, 32

strongly proximal quotient, 32

unbounded action, 30
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