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These notes are not endorsed by the lecturers, and I have modified them (often
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was actually lectured, and in particular, all errors are almost surely mine.

Part IB Linear Algebra, Analysis II and Metric and Topological Spaces are essential

Normed and Banach spaces. Linear mappings, continuity, boundedness, and norms.
Finite-dimensional normed spaces. [4]

The Baire category theorem. The principle of uniform boundedness, the closed graph
theorem and the inversion theorem; other applications. [5]

The normality of compact Hausdorff spaces. Urysohn’s lemma and Tiezte’s exten-
sion theorem. Spaces of continuous functions. The Stone-Weierstrass theorem and
applications. Equicontinuity: the Ascoli-Arzela theorem. (5]

Inner product spaces and Hilbert spaces; examples and elementary properties. Or-
thonormal systems, and the orthogonalization process. Bessel’s inequality, the Parseval
equation, and the Riesz-Fischer theorem. Duality; the self duality of Hilbert space. [5]

Bounded linear operations, invariant subspaces, eigenvectors; the spectrum and resolvent
set. Compact operators on Hilbert space; discreteness of spectrum. Spectral theorem
for compact Hermitian operators. (5]
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1 Normed vector spaces

Proposition. Addition + : V xV — V' and scalar multiplication - : FxV — V
are continuous with respect to the topology induced by the norm (and the usual
product topology).

Proof. Let U be open in V. We want to show that (+)7'(U) is open. Let
(vi,v2) € (+)71(U), i.e. vi+ v € U. Since vy + vy € U, there exists € such that
B(vi+va,e) CU. By the triangle inequality, we know that B(vy, 5)+B(v2, 5) C
U. Hence we have (vi,vs) € B ((v1,v2),5) C (+)"}(U). So (+)*(U) is open.

Scalar multiplication can be done in a very similar way. O

Proposition. If (V|| - ||) is a normed vector space, then B(t) = B(0,t) = {v :
[Iv|l <t} is absolutely convex.

Proof. By triangle inequality. O

Proposition. A topological vector space (V,U) is normable if and only if there
exists an absolutely convex, bounded open neighbourhood of 0.

Proof. One direction is obvious — if V' is normable, then B(¢) is an absolutely
convex, bounded open neighbourhood of 0.

The other direction is not too difficult as well. We define the Minkowski
functional p:V — R by

po(v) =inf{t > 0:v e tC},

where C' is our absolutely convex, bounded open neighbourhood.

Note that by definition, for any ¢ < puc(v), v € tC. On the other hand, by
absolute convexity, for any ¢ > pc(v), we have v € tC.

We now show that this is a norm on V:

(i) If v =10, then v € 0C. So uc(0) = 0. On the other hand, suppose v # 0.
Since a singleton point is closed, U = V' \ {v} is an open neighbourhood of
0. Hence there is some ¢ such that C C tU. Alternatively, %C C U. Hence,
v 1C. Sopc(v)>1>0. Sopc(v)=0iff v=0.

(ii) We have
pe(Av) =1inf{t > 0: Av € tC} = Ainf{t > 0: v € tC} = Auc(v).
(iii) We want to show that

pe(v+w) < pe(v) + pe(w).
This is equivalent to showing that
inf{t >0:v+wetC} <inf{t >0:vetC}+inf{r >0:werC}
This is, in turn equivalent to proving that if v € tC' and w € rC, then
(v+w)e(t+r)C.
Let v/ = v/t,w' = w/r. Then we want to show that if v/ € C'and w’ € C,

then ﬁ(tv’ +rw’) € C. This is exactly what is required by convexity.

So done. O



1 Normed vector spaces IT Linear Analysis (Theorems with proof)

1.1 Bounded linear maps

Proposition. Let X, Y be normed vector spaces, T : X — Y a linear map.
Then the following are equivalent:

(i) T is continuous.
(ii) T is continuous at 0.
(iii) T is bounded.

Proof. (i) = (ii) is obvious.
(ii) = (iii): Comsider By (1) C Y, the unit open ball. Since T is continuous
at 0, T~1(By(1)) C X is open. Hence there exists € > 0 such that Bx(g) C
T~1(By(1)). So T(Bx()) € By(1). So T(Bx(1)) € By (). So T is bounded.
(111) = (l) Let € > 0. Then HTXl _TX2HY = ||T(X1 _X2)HY < C||X1 _X2||X~
This is less than ¢ if ||x; — x2|| < C~!e. So done. O

1.2 Dual spaces

Proposition. Let V' be a normed vector space. Then V* is a Banach space.

Proof. Suppose {T;} € V* is a Cauchy sequence. We define T as follows: for
any v € V, {T;(v)} C F is Cauchy sequence. Since F is complete (it is either R
or C), we can define T: V — R by

T(v) = lim T,(v).

n—oo

Our objective is to show that T; — T'. The first step is to show that we indeed
have T' € V*, i.e. T' is a bounded map.
Let ||v|| < 1. Pick € = 1. Then there is some N such that for all i > N, we
have
T(v) = T(v)| < 1.

Then we have

I T(V)| < |Ti(v) = T(v)| + |Ti(v)]
< 1+|Ti
< 1+ || T5l|v-
< 1+ sup || T3]y

Since T; is Cauchy, sup; ||T;||v~ is bounded. Since this bound does not depend
on v (and N), we get that T is bounded.

Now we want to show that ||T; — T'||y~ — 0 as n — oo.

For arbitrary € > 0, there is some N such that for all ,j > N, we have

1T = Tillv+ <e.
In particular, for any v such that ||v| < 1, we have

Ti(v) = T5(v)] < =.
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Taking the limit as j — 0o, we obtain

Ti(v) =T(v)| <e.

Since this is true for any v, we have
1T = Tlv- <e.

foralli > N. SoT; — T. O

1.3 Adjoint
Proposition. 7™ is bounded.

Proof. We want to show that ||T™||g(y+ x~) is finite. For simplicity of notation,
the supremum is assumed to be taken over non-zero elements of the space. We
have

T* x
o 1T @
gev=  llglly-

T*

oy wp TG Il
geEY * xeX HgHY*
l9(Tx)|
x|l x
glly 1Ty
x|l x

1T |8y =, x+)

= sup sup
geY* xeX HgHY*

IN

sup sup
geEY * x€X HgHY*

1T 30x,v) lIxlx

INA
)

xeX HX”X

ITl5x,v)

So it is finite. O

1.4 The double dual

Proposition. Let ¢ : V — V** be defined by ¢(v)(g) = g(v). Then ¢ is a
bounded linear map and ||| zv,v+) <1

Proof. Again, we are taking supremum over non-zero elements. We have

(b Vv Vo
H¢||B(V,V*) = sup w
vev Ivlv
T
vevV gev V||V||9HV*
— sup sup —IWL
vev gev Vv Ilgllv-
<1. O
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1.5 Isomorphism

1.6 Finite-dimensional normed vector spaces

Proposition. Let V' be an n-dimensional vector space. Then all norms on V'
are equivalent to the norm || - [[¢n.

Corollary. All norms on a finite-dimensional vector space are equivalent.

Proof. Let || - || be a norm on V.
Let v = (v1, - ,v,) = > v;e; € V. Then we have

vl = |3 vies
n
<3 fuillle]
i=1
n
< (sup ) o1
v i=1

< Clvler,

where C' = sup ||e;|| < oo since we are taking a finite supremum.
For the other way round, let Sy = {v € V : ||v[|¢n = 1}. We will show the
two following results:

@) Il - = (Su,ll - [lep) — R is continuous.
(ii) Sy is a compact set.

We first see why this gives what we want. We know that for any continuous map
from a compact set to R, the image is bounded and the infimum is achieved. So
there is some v, € S7 such that

= inf .
vl = inf [1vI

Since v, # 0, there is some ¢’ such that ||v|| > ¢ for all v € 5.
Now take an arbitrary non-zero v € V', since W € 51, we know that
1

VI = Elvle

>

ju )

Ivlley
which is to say that
Since we have found ¢, ¢’ > 0 such that
Ivlley < IVl < cellviley,
now let C' = max {c, %} > 0. Then
C7Hvllz < Vil < ClIv]l2-

So the norms are equivalent. Now we can start to prove (i) and (ii).
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First, let v,w € V. We have
vl =lwl| < v =wl < Cllv = wlg-

Hence when v is close to w under £7, then ||v|| is close to ||w]|. So it is continuous.
To show (ii), it suffices to show that the unit ball B={v eV : v < 1}
is compact, since Sp is a closed subset of B. We will do so by showing it is
sequentially compact.
Let {v(®}2° | be a sequence in B. Write

n
W =3 2\ e,
=1

Since v(¥) € B, we have
ST <1
i=1

), which is a sequence in F.

Consider the sequence )\gk
We know that |)\§k)| < 1. So by Bolzano-Weierstrass, there is a convergent

subsequence )\gk“).
Now look at )\;k“). Since this is bounded, there is a convergent subsequence
(kjy)
Ay 727

Iterate this for all n to obtain a sequence k;, such that )\Ekj”') is convergent
for all i. So v(¥in) is a convergent subsequence. O

Proposition. Let V be a finite-dimensional normed vector space. Then the
closed unit ball

B1)={veV:|v|| <1}
is compact.
Proof. This follows from the proof above. O

Proposition. Let V be a finite-dimensional normed vector space. Then V is a
Banach space.

Proof. Let {v;} € V be a Cauchy sequence. Since {v;} is Cauchy, it is bounded,
i.e. {v;} € B(R) for some R > 0. By above, B(R) is compact. So {v;} has a
convergent subsequence v;, — v. Since {v;} is Cauchy, we must have v, — v.
So v; converges. O

Proposition. Let V, W be normed vector spaces, V' be finite-dimensional. Also,
let T : V — W be a linear map. Then T is bounded.

Proof. Recall discussions last time about V* for finite-dimensional V. We will
do a similar proof.

Note that since V is finite-dimensional, im T finite dimensional. So wlog W
is finite-dimensional. Since all norms are equivalent, it suffices to consider the
case where the vector spaces have ¢§ and ¢ norm. This can be represented by
a matrix Tj; such that

T(xla"' 7xn)

(Z Tyixg,--- 72 Tmi$i> .
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We can bound this by
m n n
TG sl < 35 Mllas] < m (sup 1) 3 kol < Clxl
j=1i=1 b i=1

for some C' > 0, since we are taking the supremum over a finite set. This implies
that |1y epy < C. O

Proof. (alternative) Let T : V' — W be a linear map. We define a norm on V
by |[v|] = [[vllv + [|Tv|lw. It is easy to show that this is a norm.

Since V is finite dimensional, all norms are equivalent. So there is a constant
C > 0 such that for all v, we have

VI < Clivllv-

In particular, we have
[Tv]l < Cllvlv.

So done. O

Proposition. Let V' be a normed vector space. Suppose that the closed unit
ball B(1) is compact. Then V is finite dimensional.

Proof. Consider the following open cover of B(1):

Buyc |J B (y, ;)

yeB(1)
Since B(1) is compact, this has a finite subcover. So there is some y1,--+ , ¥y,
such that
_ " 1
B1)C| |Blyi, = ).
meUs(voy)
Now let Y = span{y1, -+ ,yn}, which is a finite-dimensional subspace of V. We

want to show that in fact we have Y = V.
Clearly, by definition of Y, the unit ball

B(l)CY+B<;),

i.e. for every v € B(1), there is some y € Y,w € B(3) such that v =y + w.
Multiplying everything by %7 we get

r(B)eren(l)

B(1)§Y+B<411)'

Hence we also have

By induction, for every n, we have

B(1)§Y+B(21n>.
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As a consequence, -
B(1)CY.

Since Y is finite-dimensional, we know that Y is complete. So Y is a closed
subspace of V. So Y =Y. So in fact

B(1) CY.
Since every element in V' can be rescaled to an element of B(1), we know that
V =Y. Hence V is finite dimensional. O

1.7 Hahn-Banach Theorem

Proposition. Let V be a real normed vector space, and W C V has co-
dimension 1. Assume we have the following two items:

— p: V = R (not necessarily linear), which is positive homogeneous, i.e.

p(Av) = Ap(v)
for all v € V, A > 0, and subadditive, i.e.

p(vi+va) < p(vi) + p(va)

for all vi,vy € V. We can think of something like a norm, but more
general.

— f: W = R a linear map such that f(w) < p(w) for all w € W.

Then there exists an extension f : V — R which is linear such that f lw = f and

f(v) <p(v) foralvevV.

Proof. Let vg € V'\ W. Since W has co-dimension 1, every element v € V can
be written uniquely as v = w +avy, for some w € W, a € R. Therefore it suffices
to define f(vg) and then extend linearly to V.

The condition we want to meet is

f(w+avg) < p(w+ avy) (%)

for all w € W,a € R. If a = 0, then this is satisfied since f restricts to f on W.
If @ > 0 then (x) is equivalent to

F(w) +af(vo) < p(w + avo).
We can divide by a to obtain
fla™w) + fvo) < pla™'w + vy).

We let w/ = a~'w. So we can write this as

f(vo) < p(w' + vo) = f(W'),

for all w' € W.
If a < 0, then (x) is equivalent to

f(w) +af(vo) < p(w + avo).

10
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We now divide by a and flip the sign of the equality. So we have
Flatw) + F(vo) > —(—a~V)p(w + avo).
In other words, we want
f(vo) = =p(—a™'w —v) — f(a”'w).

We let w/ = —a~'w. Then we are left with

f(vo) 2 =p(w' = o) + f(W').

for all w' e W. 3
Hence we are done if we can define a f(v() that satisfies these two conditions.
This is possible if and only if

—p(w1 —vo) + f(w1) < p(wa +vo) — f(w2)

for all w1, ws. This holds since

f(wi) + f(wa) = f(w1 + w2)
< p(wi + wa)
= p(w1 — v + Wz + Vo)
< p(wi — vo) + p(wa + Vo).
So the result follows. O

Lemma (Zorn’s lemma). Let (S, <) be a non-empty partially ordered set such
that every totally-ordered subset S’ has an upper bound in S. Then S has a
maximal element.

Theorem (Hahn-Banach theorem*). Let V be a real normed vector space, and
W CV a subspace. Assume we have the following two items:

— p:V — R (not necessarily linear), which is positive homogeneous and
subadditive;

— f: W — R a linear map such that f(w) < p(w) for all w € W.

Then there exists an extension f : V' — R which is linear such that f lw = f and

f(v)<p(v)forallveV.
Proof. Let S be the set of all pairs (f/, f) such that

11
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We introduce a partial order < on S by (Vl,fl) < (‘72,]?2) if V; C Vs and
f2|‘~,1 = fl. It is easy to see that this is indeed a partial order.

We now check that this satisfies the assumptions of Zorn’s lemma. Let
{(Via, fa)Yaca C S be a totally ordered set. Define (V, f) by

V= U Vo,  f(X) = falx) for x € V,.
acA

This is well-defined because {g‘?,fa)}aeA is totally ordered. So if x € Va,

and x € V,,, wlog assume (Vu,, fo;) < (Vas, fas)- SO Q)E,12|‘~/a2 = fa,- SO
far (%) = fa,(x). - ..

It should be clear that (V, f) € S and (V, f) is indeed an upper bound of
{(Vi, fa)}aca. So the conditions of Zorn’s lemma are satisfied.

Hence by Zorn’s lemma, there is an maximal element (W, f) € S. Then by
definition, f is linear, restricts to f on W, and bounded by p. We now show
that W = V.

Suppose not. Then there is some vo € V \ W. Define V = span{W,vo}.
Now W is a co-dimensional 1 subspace of V. By our previous result, we know

that there is some f : V — R linear such that f‘W = fand f(v) < p(v) for all
vev.

Hence we have ~(VT/,]%) e S but (W,f) < (V, f) This contradicts the
maximality of (W, f). O

Corollary (Hahn-Banach theorem 2.0). Let W C V be real normed vector
spaces. Given f € W*, there exists a f € V* such that f|yw = f and || f]

I1f -

Proof. Use the Hahn-Banach theorem with p(x) = || f|w+|x|lv for all x € V.
Positive homogeneity and subadditivity follow directly from the axioms of the
norm. Then by definition f(w) < p(w) for all w € W. So Hahn-Banach theorem
says that there is f : V — R linear such that fly = f and f(v) < p(w) =
[fllw= vy

Now notice that

v =

F&) < fllw-lvllv,  =Fv) = F(=v) < || fllw-

implies that |f(v)| < | fllw=lv]v for all v € V.
On the other hand, we have (again taking supremum over non-zero v)

Pl = sup HON 5 g VOO
e ol A e

\4[%

So indeed we have ||f|

ve = [ fllwe O

Proposition. Let V be a real normed vector space. For every v € V' \ {0},
there is some f, € V* such that f,(v) = ||v||y and || fy ||y~ = 1.

Proof. Apply Hahn-Banach theorem (2.0) with W = span{v}, fl(v) = ||v]v.
O

Corollary. Let V be a real normed vector space. Then v = 0 if and only if
f(v)=0forall feV*.

12
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Corollary. Let V be a non-trivial real normed vector space, v,w € V with
v # w. Then there is some f € V* such that f(v) # f(w).

Corollary. If V is a non-trivial real normed vector space, then V* is non-trivial.

Proposition. The map ¢ : V — V** is an isometry, i.e. ||¢(v)]

vee = [vlv.
Proof. We have previously shown that
s,y < 1.
It thus suffices to show that the norm is greater than 1, or that
lo(v)l

We can assume v # 0, for which the inequality is trivial. We have

[V o [o(v)(fv)]

[¢(v)[|v+ = sup > =AM = lvllv,
reve fllv- v llv-
where f, is the function such that fy(v) = ||v]v,||fv]lv = 1 as we have
previously defined.
So done. 0
Proposition.

1T lsew=v+) = 1Tl Bv,w)-
Proof. We have already shown that

1T lsew=v+) < IT[lB0v,w)-
For the other inequality, first let € > 0. Since
ITvIw

Ivilv

|T||gv,wy = sup
veVv

by definition, there is some v € V such that ||T'v|w > ||T||gwv,m)llv|lv — €.
wlog, assume ||v|y = 1. So

1Tvlw = Tlsv,w) — €.
Therefore, we get that
1T (N)llv+

IT* | Bow=,v+) = P Ry v
> | (frv)||v
> |T*(frv)(v)]
= |frv(TV)|

= |Tvllw

> T sv.wy — &,

where we used the fact that || f7v|lw+ and ||v||y are both 1. Since € is arbitrary,
we are done. O

13
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2 Baire category theorem

2.1 The Baire category theorem

Theorem (Baire category theorem). Let X be a complete metric space. Then
X is of second category.

Proof. We will prove that the intersection of a countable collection of open dense
sets is non-empty. Let U, be a countable collection of open dense set.

The key to proving this is completeness, since that is the only information
we have. The idea is to construct a sequence, show that it is Cauchy, and prove
that the limit is in the intersection.

Construct a sequence z,, € X and g, > 0 as follows: let z1,e; be defined
such that B(x1,e1) C U;. This exists Uy is open and dense. By density, there is
some z1 € Uy, and €; exists by openness.

We define the z,, iteratively. Suppose we already have z,, and ¢,. Define
ZTnt1,Ent1 such that B(z,41,€n41) C B(xp,en) N Upy1. Again, this is possible
because U, 41 is open and dense. Moreover, we choose our €,4; such that
Ent1 < = so that &, — 0.

Since €, — 0, we know that z,, is a Cauchy sequence. By completeness of
X, we can find an x € X such that z,, — x. Since x is the limit of z,,, we know
that x € B(xy,e,) for all n. In particular, = € U, for all n. So done. O

2.2 Some applications
Proposition. R\ Q # (), i.e. there is an irrational number.

Proof. Recall that we defined R to be the completion of Q. So we just have to
show that Q is not complete.

First, note that Q is countable. Also, for all ¢ € Q, {¢} is closed and has
empty interior. Hence

Q=J{g

q€Q

is the countable union of nowhere dense sets. So it is not complete by the Baire
category theorem. O

Proposition. Let /1 be a normed vector space defined by the vector space
V ={(z1,22,--+) : ® € R,3I € Nsuch that i > I = z; = 0},

with componentwise addition and scalar multiplication. This is the space of all
sequences that are eventually zero.
We define the norm by
oo
lzllg, =D lil.
i=1

Then /; is not a Banach space.

Proof. Let A
E,={zx€t:2;,=0,Yi >n}.

14
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By definition,
b= En.
n=1

We now show that FE, is nowhere dense. We first show that E,, is closed. If
T; — T in él with z; € F,, then since z; is 0 from the nth component onwards,
x is also 0 from the nth component onwards. So we must have x € E,,. So E,, is
closed.

We now show that F, has empty interior. We need to show that for all
z € E, and ¢ > 0, there is some y € ¢, such that ||y — z|| < ¢ but y € E,,. This
is also easy. Given ¢ = (21, ,%,-1,0,0,---), we consider

Yy = (1'17"' 7$n7175/230707"')'

Then |ly — z[|;, <e but y ¢ E,. Hence by the Baire category theorem, /; is not
complete. O

Proposition. There exists an f € C([0,1]) which is nowhere differentiable.

Proof. (sketch) We want to show that the set of all continuous functions which
are differentiable at at least one point is contained in a meagre subset of C([0, 1]).
Then this set cannot be all of C([0,1]) since C([0, 1]) is complete.

Let E,, ., be the set of all f € C([0,1]) such that

(5)(%9) 0 < ly — ] < — = |f(y) ~ f(@)] < nly— 2.

(where the quantifiers range over [0, 1]).
We now show that

{f € C(]0,1]) : f is differentiable somewhere} C U Epn.

n,m=1
This is easy from definition. Suppose f is differentiable at x¢. Then by definition,
lim fy) — f(z0)

_ gl
A fao)-
Let n € N be such that |f/'(z¢)| < n. Then by definition of the limit, there

is some m such that whenever 0 < |y — | < X, we have U=7@l S0

ly—o
f € Bmn.
Finally, we need to show that each FE,, , is closed and has empty interior.
This is left as an exercise for the reader. O

Theorem (Banach-Steinhaus theorem/uniform boundedness principle). Let V'
be a Banach space and W be a normed vector space. Suppose Ty, is a collection
of bounded linear maps T, : V' — W such that for each fixed v € V,

sup || Ta (V) ||lw < 0.
[e3

Then
sup || To || Bov,w) < oo.

15
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Proof. Let
E,={veV:supl|Ta(v)|w < n}.

Then by our conditions,
oo
V= U E,.
n=1
We can write each E,, as

E,=({veV:|T.(v)llw <n}.

Since T, is bounded and hence continuous, so {v € V : |[To(v)|lw < n} is
the continuous preimage of a closed set, and is hence closed. So E,,, being the
intersection of closed sets, is closed.

By the Baire category theorem, there is some n such that E,, has non-empty
interior. In particular, (3n)(3e > 0)(Ivo € V) such that for all v € B(vy,e), we
have

sup | 7a(v) | < .
o

Now consider arbitrary ||v’|y < 1. Then

Vo + gv’ € B(Vg,ef).

/
T, <v0—|—€v>H < n.
2 w

2
sup | Tov'[lw < = (n+sup ||Tav0||) )
« E «

sup
«

Therefore

Note that the right hand side is independent of v’. So

sup sup ||[Tov'||lw < oo. O
Ivi<i «

Theorem (Osgood). Let f, : [0,1] — R be a sequence of continuous functions
such that for all z € [0, 1]
sup | fn ()] < 00

Then there are some a,b with 0 < a < b < 1 such that

sup sup |fn(z)] < 0.
n  xcla,b]

Proof. See example sheet. O

Theorem (Open mapping theorem). Let V' and W be Banach spaces and
T :V — W be a bounded surjective linear map. Then T is an open map, i.e.
T(U) is an open subset of W whenever U is an open subset of V.

Proof. We can break our proof into three parts:

16
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(i)

(i)
(i)

We first want an easy way to check if a map is an open map. We want
to show that T is open if and only if T'(By (1)) 2 Bw (¢) for some ¢ > 0.
Note that one direction is easy — if T" is open, then by definition T'(By (1))
is open, and hence we can find the epsilon required. So we are going to
prove the other direction.

We show that T'(By (1)) 2 Bw (e) for some € > 0

By rescaling the norm in W, we may wlog the € obtained above is in fact
1. We then show that if T(By (1)) 2 Bw (1), then T(By (1)) 2 Bw/(3).

We now prove them one by one.

(i)

(i)

Suppose T(By (1)) 2 Bw (e) for some € > 0. Let U C V be an open set.
We want to show that T'(U) is open. So let p € U,q = T'p.

Since U is open, there is some § > 0 such that By (p,d) C U. We can also
write the ball as By (p,d) = p + By (4). Then we have

TU)2T(p+ Bv(d))
=Tp+T(Bv(9))
= Tp+ 6T (By (1))
2 q+ éBw(e)
=q+ Bw(d¢)
= Bw(q, d¢).

So done.

This is the step where we use the Baire category theorem.

Since T is surjective, we can write W as

W= J T(Bv(n) = |J T(nBv (1)) = |J T(nBv(1)).

We have written W as a countable union of closed sets. Since W is a
Banach space, by the Baire category theorem, there is some n > 1 such that
T(nBy (1)) has non-empty interior. But since T'(nBy (1)) = nT(By (1)),
and multiplication by n is a homeomorphism, it follows that T'(By (1)) has
non-empty interior. So there is some € > 0 and wy € W such that

T(Bv(l)) 2 Bw(Wo, 6).

We have now found an open ball in the neighbourhood, but we want a ball
centered at the origin. We will use linearity in two ways. Firstly, since if
v € By (1), then —v € By (1). By linearly of T, we know that

T(Bv(l)) 2 Bw(—Wo, E).

Then by linearity, intuitively, since the image contains the balls By (wy, €)
and By (—wy, £), it must contain everything in between. In particular, it
must contain By (¢).

17
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To prove this properly, we need some additional work. This is easy if we had
T(Bv(1)) D Bw(wyq,¢) instead of the closure of it — for any w € By (¢),
we let vy, vy € By (1) be such that T(vy) = wo +w, T(ve) = —wg + W.
Then v = Y1¥2 satisfies [|[v|ly < 1 and T(v) = w.

Since we now have the closure instead, we need to mess with sequences.
Since T'(By (1)) 2 £wo+Bw (), for any w € By (g), we can find sequences
(vi) and (u;) such that ||v;|v, ||u;|lvy <1 for all i and T'(v;) — wo + w,
T(u;) = —wo + w.

Now by the triangle inequality, we get

v; +u;
2

)

and we also have

Vi +uy; Wo—|—W+—W0—|—W
2 2 2

= W.

Sow € T(By(1)). So T(Bv(1)) 2 Bw(e).

(iii) Let w € Bw (). For any &, we know
T(Bv(0)) 2 B ().

Thus, picking § = %, we can find some v; € V such that

1
[villv < 2

Suppose we have recursively found v,, such that

1
Vallv < 5o 1TVt +va) =Wl < oo
Then picking § = 54+, we can find v, 11 satsifying the properties listed
above. Then ZZO=1 v, is Cauchy, hence convergent by completeness. Let
v be the limit. Then

oo
Ivilv <> lIvilly < 1.

i=1
Moreover, by continuity of 7', we know T'v = w. So we are done. O

Theorem (Inverse mapping theorem). Let V, W be Banach spaces, and T :
V — W be a bounded linear map which is both injective and surjective. Then
T~ exists and is a bounded linear map.

Proof. We know that 7~! as a function of sets exists. It is also easy to show
that it is linear since T is linear. By the open mapping theorem, since T'(U) is
open for all U C V open. So (T~1)~}(U) is open for all U C V. By definition,
T~ is continuous. Hence 7' is bounded since boundedness and continuity are
equivalent. O

18
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Theorem (Closed graph theorem). Let V, W be Banach spaces, and T : V. — W
a linear map. If the graph of T is closed, i.e.

NT) ={(v,T(v)):veV}CVxW

is a closed subset of the product space (using the norm |[(v,w)|vxw =
max{||v||v, |[w|lw}), then T is bounded.

Proof. Consider ¢ : T'(T') — V defined by ¢(v,T(v)) = v. We want to apply
the inverse mapping theorem to this. To do so, we need to show a few things.
First we need to show that the spaces are Banach spaces. This is easy — I'(T)
is a Banach space since it is a closed subset of a complete space, and we are
already given that V is Banach.

Now we need to show surjectivity and injectivity. This is surjective since for
any v € V, we have ¢(v,T(v)) = v. It is also injective since the function T is
single-valued.

Finally, we want to show ¢ is bounded. This is since

[vllv: < max{|[v]l, [T()[I} = [[(v, T(v))l[rery-

By the inverse mapping theorem, ¢! is bounded, i.e. there is some C > 0 such
that
max{[[v|v, [T(v)[[} < Cllv]v

In particular, |T'(v)|| < C||v]|y. So T is bounded. O
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3 The topology of C(K) IT Linear Analysis (Theorems with proof)

3 The topology of C(K)

3.1 Normality of compact Hausdorff spaces

Theorem. Let X be a Hausdorff space. If C1,Cy C X are compact disjoint
subsets, then there are some Uy, Us C X disjoint open such that C; C Uy, Cy, C
Us.

In particular, if X is a compact Hausdorff space, then X is normal (since
closed subsets of compact spaces are compact).

Proof. Since C1 and Cs are disjoint, by the Hausdorff property, for every p € C
and g € Co, there is some U, 4, V), 4 € X disjoint open with p € Uy 4,q € Vp q-

Now fix a p. Then quc2 Vp,q 2 C2 is an open cover. Since C is compact,
there is a finite subcover, say

Cy C U Vp.q: for some {q1,---,¢n} C Ca.

=1

Note that n and ¢; depends on which p we picked at the beginning.
Define

n n
Up = m Upgir Vo= U Vooai-
i=1 i=1
Since these are finite intersections and unions, U, and V}, are open. Also, U,
and V), are disjoint. We also know that Cy C V.

Now note that Upe(h U, 2 C is an open cover. By compactness of C, there
is a finite subcover, say

C, C U Uy, for some {p1,---,pm} C Ci.

j=1
Now define . .
U=Ut,, V=V,
j=1 j=1
Then U and V are disjoint open with Cy C U, Cs C V. So done. O

3.2 Tietze-Urysohn extension theorem

Lemma (Urysohn’s lemma). Let X be normal and Cy, C; be disjoint closed
subsets of X. Then there is a f € C(X) such that f|¢, =0 and f|¢, =1, and
0< f(z) <1 for all X.

Proof. In this proof, all subsets labeled C' are closed, and all subsets labeled U
are open.

First note that normality is equivalent to the following: suppose C C U C X,
where U is open and C is closed. Then there is some C' closed, U open such that
ccuccCcu.

We start by defining U; = X \ (4. Since Cy and C are disjoint, we know
that Cy C U;. By normality, there exists C 1 and U 1 such that

COQU%QC%QUL
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3 The topology of C(K) IT Linear Analysis (Theorems with proof)

Then we can find Ci’C%’Ui’U% such that
CoCULCC:1CULCC1CUs CCs CU.
4 4 2 2 4 4

Iterating this, we get that for all dyadic rationals ¢ = 5%, a,n € N,0 < a < 27",

there are some U, open, Cy closed such that U, C C,, with C, C Uy if ¢ < ¢'.
We now define f by
f(z) = inf {q € (0, 1] dyadic rational : z € U},
with the understanding that inf ) = 1. We now check the properties desired.
— By definition, we have 0 < f(z) < 1.

0.

If z € Cy, then z € U, for all ¢. So f(x)

1.

— If x € Cq, then & € U, for all ¢. So f(x)

— To show f is continuous, it suffices to check that {x : f(x) > a} and
{z: f(x) < a} are open for all a € R, as this shows that the pre-images of
all open intervals in R are open. We know that

f(z) < o< inf{q € (0,1) dyadic rational : x € U} < a
< (J¢) g <aand z € Uy
ST e U U,.

g<a

Hence we have

{z: f(z) <a}= U U,.

g<a

which is open, since each U, is open for all ¢. Similarly we know that

f(x)>a<einf{g:zeU,} >«
& (Jg>a)z g,

S x e UX\C’q.

q>a
Since this is a union of complement of closed sets, this is open. O

Theorem (Tietze-Urysohn extension theorem). Let X be a normal topological
space, and C' C X be a closed subset. Suppose f : C — R is a continuous
function. Then there exists an extension f : X — R which is continuous and

satisfies f\c = f and ||f||c(x) = fllece)-

Proof. The idea is to repeatedly use Urysohn’s lemma to get better and better
approximations. We can assume wlog that 0 < f(z) <1 for all z € C. Otherwise,
we just translate and rescale our function. Moreover, we can assume that the

sup f(z) = 1. It suffices to find f : X — R with f|c = f with 0 < f(z) < 1 for
zeC
all x € X.

We define the sequences of continuous functions f; : C — R and g; : X — R
for i € N. We want to think of the sum Z?:o g; to be the approximations, and
fn+t1 the error on C.
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3 The topology of C(K) IT Linear Analysis (Theorems with proof)

Let fo = f. This is the error we have when we approximate with the zero
function.
We first define gg on a subset of X by

We can then extend this to the whole of X with 0 < go(z) < % for all z by
Urysohn’s lemma.
1 ,,,,,,,,,,,,,,,,,,,,,,
We define
fi=fo—golc.
By construction, we know that 0 < f; < % This is our first approximation.

Note that we have now lowered our maximum error from 1 to % We now repeat
this. .
Given f; : C - Rwith0 < f; < (%)l, we define g; by requiring

s

and then extending to the whole of X with 0 < g; < % (%)Z and g; continuous.

Again, this exists by Urysohn’s lemma. We then define f;11 = f; — gilc-
We then have

0 ze f7 (o,

0
=) ser (e

1
3
)’L

Zgz— (fo=f)+(fi = fo) + 4 (fa = fas1) = F = fas1-

9\ i+1
0< fir1 < (3> -

We also know that

We conclude by letting

This exists because we have the bounds

1/2\°
O<gl_3<3)a

and hence Z?:o g; is Cauchy. So the limit exists and is continuous by the
completeness of C(X).
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3 The topology of C(K) IT Linear Analysis (Theorems with proof)

Now we check that .
Zgz‘\c —f=—fns1.

=0

Since we know that || fn11/|.(c) — 0. Therefore, we know that

= fle = f.

Finally, we check the bounds. We need to show that 0 < f (x) < 1. This is true
since g; > 0 for all 4, and also

F@) <Y gile) < Z% @ .
1=0 i=0
So done. -

3.3 Arzela-Ascoli theorem

Theorem (Arzela-Ascoli theoren_l). Let K be a compact topological space. Then
F C C(K) is pre-compact, i.e. F is compact, if and only if F is bounded and
equicontinuous.

Proposition. Let X be a complete metric space. Then E C X is totally
bounded if and only if for every sequence {y;}32; C E, there is a subsequence
which is Cauchy.

Corollary. Let X be a complete metric space. Then E' C X is totally bounded
if and only if E' is compact.

Theorem (Arzela-Ascoli theorerr_l). Let K be a compact topological space. Then
F C C(K) is pre-compact, i.e. F is compact, if and only if F is bounded and
equicontinuous.

Proof. By the previous corollary, it suffices to prove that F' is totally bounded if

and only if F' is bounded and equicontinuous. We first do the boring direction.
(=) Suppose F is totally bounded. First notice that F' is obviously bounded,

since F' can be written as the finite union of e-balls, which must be bounded.
Now we show F' is equicontinuous. Let € > 0. Since F' is totally bounded,

there exists a finite e-net for F, i.e. there is some {f1, -, fn} C F such that
for every f € F, there exists an i € {1,---,n} such that ||f — fillcx) <e.
Consider a point « € K. Since {f1, -, fn} are continuous, for each i, there

exists a neighbourhood U; of z such that |f;(y) — fi(z)| < e for all y € U;.
Let

Since this is a finite intersection, U is open. Then for any f € F', y € U, we can
find some 7 such that [|f — fillc(x) < €. So

[f(y) = F@)| < 1f () = fi)| + | fily) = fi(@)] + | fi(2) = f(2)] < 3e.
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3 The topology of C(K) IT Linear Analysis (Theorems with proof)

So F' is equicontinuous at x. Since x was arbitrary, F' is equicontinuous.

(<) Suppose F is bounded and equicontinuous. Let e > 0. By equicontinuity,
for every x € K, there is some neighbourhood U, of x such that |f(y) — f(z)| < e
for all y € U, f € F. Obviously, we have

U uv. =k

rzeK

By the compactness of K, there are some {z1,--- ,z,} such that
n
Uu.. 2K
i=1

Consider the restriction of functions in F' to these points. This can be viewed
as a bounded subset of {7, the n-dimensional normed vector space with the
supremum norm. Since this is finite-dimensional, boundedness implies total
boundedness (due to, say, the compactness of the closed unit ball). In other
words, there is a finite e-net {f1,---, fn} such that for every f € F, there is a
j€{l,---,m} such that

mas () — fy ()] < e

Then for every f € F, pick an f; such that the above holds. Then
1f = Fillew) = Sl;plf(y) — i)l

Since {U,,} covers K, we can write this as

=max sup |f(y) — f;(y)]

v oyeUy;
< max sup (IF () = fl@)| + |f (z) = fi(@a)l + [ fi(z:) = f;()])

<e+e+e=3e
So done. O

Proposition. Let X be a (complete) metric space. Then E C X is totally
bounded if and only if for every sequence {y;}$2, C E, there is a subsequence
which is Cauchy.

Proof. (=) Let E C X be totally bounded, {y;} € E. For every j € N, there
exists a finite L-net, call it N;.

Now since N; is finite, there is some z7 such that there are infinitely many
yi’s in B(x1,1). Pick the first y; in B(z1,1) and call it y;,.

Now there is some x3 € Ny such that there are infinitely many y;’s in
B(z1,1) N B(zs, ). Pick the one with smallest value of i > i1, and call this y,.
Continue till infinity.

This procedure gives a sequence x; € N; and a subsequence {y;, }, and also

i 1
j=1 J
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It is easy to see that {y;,} is Cauchy since if m > n, then d(y;,,, i) < 2.

(<) Suppose E is not totally bounded. So there is no finite e-net. Pick any
y1. Pick yo such that d(y1,y2) > e. This exists because there is no finite e-net.
Now given y1,--- , ¥y, such that d(y;,y;) > e forall 4,7 = 1,--- ,n, i # j,
we pick yn41 such that d(y,41,y;) > € for all j = 1,--- ,n. Again, this exists
because there is no finite e-net. Then clearly any subsequence of {y,} is not
Cauchy. O

Theorem (Peano*). Given f continuous, then there is some ¢ > 0 such that
2’ = f(x) with boundary condition x(0) = z¢ € R has a solution in (—¢,¢).

Proof. (sketch) We approximate f by a sequence of continuously differentiable
functions f, such that [|f — fullc(x) — O for some K C R. We use Picard-
Lindeldf to get a solution for all n. Then we use the ODE to get estimates for
the solution. Finally, we can use Arzela-Ascoli to extract a limit as n — co. We
can then show it is indeed a solution. O

3.4 Stone—Welerstrass theorem

Theorem (Weierstrass approximation theorem). The set of polynomials are
dense in C([0, 1]).

Theorem (Stone-Weierstrass theorem). Let K be compact, and A C Cr(K)
be a subalgebra (i.e. it is a subset that is closed under the operations) with the
property that it separates points, i.e. for every z,y € K distinct, there exists

some f € A such that f(z) # f(y). Then either A = Cgr(K) or there is some
zg € K such that

A={fe Cr(k) : f(w0) = 0}.

Lemma. Let K compact, £ C Cr(K) be a subset which is closed under taking
maximum and minimum, i.e. if f,g € £, then max{f, g} € £ and min{f,g} € £
(with max{f, g} defined as max{f, g}(z) = max{f(x), g(x)}, and similarly for
minimum).

Given g € Cr(K), assume further that for any ¢ > 0 and z,y € K, there
exists fz,, € £ such that

|fay(@) —g(2)] <&, |fay(y) —9(y)| <e.
Then there exists some f € £ such that
1f = gllcax) <e,
ie. ge L.

Proof. Let g € Cr(K) and € > 0 be given. So for every z,y € K, there is some
fa,y € L such that

|foy(@) —g(@)] <&, |fey(y) —g(y)| <e.

Claim. For each x € K, there exists f, € L such that |f,(z) — g(z)| < € and
fo(2) < g(z) + e forall z € K.
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Since fy,y is continuous, there is some U, , containing y open such that

[fou(2) —9(2)| <e

for all z € Uy . Since

U Uy 2 K,
yeK

by compactness of K, there exists a some yi,- - ,y, such that

We then let
fe(2) = min{fz,m (2),-- s J2,yn (2)}

for every z € K. We then see that this works. Indeed, by assumption, f, € L.
If z € K is some arbitrary point, then z € U, 4, for some ¢. Then

fayi(2) < g(z) + e

Hence, since f, is the minimum of all such f, ,,, for any z, we have

fa(2) < g(z) +e.
The property at x is also clear.
Claim. There exists f € £ such that |f(z) — g(z)| < e for all z € K.
We are going to play the same game with this. By continuity of f,., there is

V. containing = open such that

|fo(w) — g(w)| <&

for all w € V. Since

Uwoxk,
zeK

by compactness of K, there is some {z1,- -+ ,z,,} such that

Ve,

J

O K.

-

Jj=1
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Define
f(Z) = max{f:rl (Z)7 e 7f:rm (Z)}

Again, by assumption, f € £. Then we know that
f(2) > g(z) -

We still have our first bound

f(z) <g(2) +e.

Therefore we have
1f = gllcax) <e. O

Lemma. Let A C Cgr(K) be a subalgebra that is a closed subset in the topology
of Cr(K). Then A is closed under taking maximum and minimum.

Proof. First note that

max{f (), g(x)} = 3 (F(x) +g(x)) + 517 (x) ~ 9(a)],
min{f (), g(x)} = 3 (F() + g(x)) — 514(x) ~ g(a)].

Since A is an algebra, it suffices to show that f € A implies |f| € A for every f
such that || f||c, (k) < 1.

The key observation is the following: consider the function h(z) = V& + 2.

Then h(z?) approximates |z|. This has the property that the Taylor expansion

of h(z) centered at x = % is uniformly convergent for € [0, 1]. Therefore there

exists a polynomial S(x) such that

[S(z) — Vo +e?| <e.

Now note that S(z) — S(0) is a polynomial with no constant term. Therefore,
since A is an algebra, if f € A, then S(f?) — S(0) € A by closure.
Now look at

1F1=(S(F2) = SO eacry < M=V F2+ 2+ 1V 12+ 2= S(F2)| + 1S 0)]-

We will make each individual term small. For the first term, note that

sup |x — Va2 +¢e2| = sup
1601]‘ 2€[0,1] |x+\/x2—|—52|

So the first term is at most €. The second term is also easy, since S is chosen
such that |S(z) — vz +€2| < 1 for z € [0,1], and |f(z)?| < 1 for all z € [0,1].
So it is again bounded by e.

By the same formula, |S(0) — 0 + €2| < . So |S(0)] < 2¢. So

£ = (S(f*) = SOl xy < 4e.

Since e > 0 and A is closed in the topology of Cr(K), f € A and ||f||cy(x) <1
implies that |f| € A. O

2
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Theorem (Stone-Weierstrass theorem). Let K be compact, and A C Cr(K)
be a subalgebra (i.e. it is a subset that is closed under the operations) with the
property that it separates points, i.e. for every z,y € K distinct, there exists
some f € A such that f(z) # f(y). Then either A = Cg(K) or there is some
xg € K such that

A={f €Cr) : flao) = 0}.

Proof. Note that there are two possible outcomes. We will first look at the first
possibility.

Consider the case where for all z € K, there is some f € A such that f(x) # 0.
Let g € Cr(K) be given. By our previous lemmas, to approximate g in A, we
just need to show that we can approximate g at two points. So given any € > 0,

z,y € K, we want to find f;, € A such that

[fen(x) —g(@)| <&, [fan(y) —g¥)| <e. (%)

For every =,y € K, x # y, we first show that there exists h, , € A such that
hgy(z) # 0, and hy (x) # by y(y). This is easy to see. By our assumptions, we
can find the following functions:

(i) There exists hg; such that h&li, + hg%(y)
(ii) There exists hf; such that hf; () # 0.
(iii) There exists hf{, such that h&"; (y) #0.

Then it is an easy exercise to show that some linear combination of hélg), and
h;(fz), and hg(vgz), works, say hg .

We will want to find our f,, that satisfies (x). But we will do better. We
will make it equal g on # and y. The idea is to take linear combinations of h; ,
and hiy. Instead of doing the messy algebra to show that we can find a working
linear combination, just notice that (hy (), hey(y)) and (hyy ()2, hay(y)?)
are linearly independent vectors in R?. Therefore there exists o, 5 € R such that

a(hm,y(m)y hm,y(y)) + /B(hw,y(x)zy hm,y(y)z) = (9(),9(y))-

So done.
In the other case, given A, suppose there is zg € K such that f(xz) = 0 for
all f € A. Consider the algebra

A=A+ ={f+A:feANER}
Since A separates points, and for any = € K, there is some f € A’ such that
f(z) #0 (e.g. f =1), by the previous part, we know that A" = Cgr(K).
Now note that

AC{f e Cr(K): f(xo) =0} = B.

So we suffices to show that we have equality, i.e. for any ¢ € B and € > 0, there
is some f € A such that

1 = gllca) <e
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Since A’ = Cr(K), given such g and ¢, there is some f € A and \g € R such
that

g — (f + A1) lcur) < €.

But g(xg) = f(x0) = 0, which implies that |A| < e. Therefore [|g — f|lcq(x) < 2¢.
So done. O

Theorem (Complex version of Stone-Weierstrass theorem). Let K be compact
and A C C¢(K) be a subalgebra over C which separates points and is closed
under complex conjugation (i.e. if f € A, then f = A). Then either A = C¢(K)
or these is an xg such that A = {f € Cc(K) : f(xo) = 0}.

Proof. It suffices to show that either A D Cr(K) or there exists a point zg
such that A D {f € Cr(K) : f(xo) = 0}, since we can always break a complex
function up into its real and imaginary parts.
Now consider
L F oz
A = u:fE.A U u:fEA .

2 24
Now note that by closure of A, we know that A’ is a subset of A and is
a subalgebra of Cr(K) over R, which separates points. Hence by the real
version of Stone-Weierstrass, either A’ = Cr(K) or there is some z such that

A’ ={f € Cr(K) : f(z0) = 0}. So done. O
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4 Hilbert spaces

4.1 Inner product spaces

Proposition. Let f € C(S!). Then
tin oo [ 170) = Sx(7)(a)? do =0,

Proposition (Cauchy-Schwarz inequality). Let (V,{-, -)) be an inner product
space. Then for all v,w € V|

(v, w)| < V{v,v)(w, W),
with equality iff there is some A € R or C such that v = Aw or w = Av.

Proof. wlog, we can assume w # 0. Otherwise, this is trivial. Moreover, assume
(v,w) € R. Otherwise, we can just multiply w by some e**.
By non-negativity, we know that for all ¢, we have
0 <(v+itw,v+iw)
= (v, V) + 2t(v, W) + t*(w, w).

Therefore, the discriminant of this quadratic polynomial in ¢ is non-positive, i.e.
4(<Vﬂ W>)2 - 4<Va V> <Wa W> <0,

from which the result follows.

Finally, note that if equality holds, then the discriminant is 0. So the
quadratic has exactly one root. So there exists ¢ such that v 4+ tw = 0, which of
course implies v = —tw. O

Proposition. Let (V, (-, -)) be an inner product space. Then
Vil = v {v,v)
defines a norm.

Proof. The first two axioms of the norm are easy to check, since it follows directly
from definition of the inner product that ||v|| > 0 with equality iff v = 0, and
AV = [A[[[v]].
The only non-trivial thing to check is the triangle inequality. We have
lv+w|?=(v+w,v+w)
= VI + [Iwll* + [{v, w)| + [(w, V)|
< IvIP + Wl + 2] vl [[w

= (vl + [lwl))?
Hence we know that ||v +w|| < ||v|| + ||w]]. O
Proposition. Let (E, | - ||) be a Euclidean space. Then there is a unique inner

product (-, -} such that ||v] = /(v, V).
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Proof. The real and complex cases are slightly different.
First suppose FE is a vector space over R, and suppose also that we have an

inner product (-, -) such that ||v| = \/(v,v). Then
(v+w,v+w) =[v]*+2(v,w) + |[wl]*.

So we get
1
(v, w) = S (v 4wl = [v]* = [[w]®). (%)
In particular, the inner product is completely determined by the norm. So this

must be unique.
Now suppose E is a vector space over C. We have

(v+w, vt w)=|v]*+ W]+ (v,w) + (w, v) (1)
(v—w,v—w) = |[v]* + [w]* = (v,w) = (w,v) (2)
(v+iw, v +iw) = [v]* + [w]? —i{v, w) +i(w, v) (3)
(v —iw, v —iw) = [v|* + [|w]* + ilv,w) —i(w, V) (4)

Now consider (1) — (2) 4+ i(3) —i(4). Then we obtain
v+ w2 = |lv = wl* +illv + iw[* — i v — iw|* = 4{v, w). (t)
So again (v, w) is again determined by the norm. O
Proposition (Parallelogram law). Let (E,|| - ||) be a Euclidean space. Then

for v,w € E, we have
v = wl* +[lv + w[? = 2|[v]|* + 2| w]*.
Proof. This is just simple algebraic manipulation. We have

||V*WH2+HV+W||2 (v—w,v—w)+{(v+w,v+w)
7V> - <V7W> - <W7V> + <W,W>

(v
+ (v,v) + (v,w) + (w,v) + (w,w)

=2(v,Vv) + 2(w,w). O
Proposition (Pythagoras theorem). Let (E, || - ||) be a Euclidean space, and
let v,w € E be orthogonal. Then
v+ wl* = [[v]* + [[wlf*.

Proof.

lv+w|?=(v+w,v+w)
= (v,v) + (v,w) +(w,v) + (w,w)
=(v,v)+04+0+ (w,w)
= [Iv]I* + [lwl]>. O

Proposition. Let (E, | - ||) be a Euclidean space. Then (-, -): E x E — C is
continuous.
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Proof. Let (v,w) € Ex E, and (v,w) € E x E. We have

Hence for v, w sufficiently closed to v, W, we can get ||(v, w) — (v, W)|| arbitrarily
small. So it is continuous. O

Proposition. Let (E, || - [|) denote a Euclidean space, and E its completion.
Then the inner product extends to an inner product on F, turning E into a
Hilbert space.

Proof. Recall we constructed the completion of a space as the equivalence classes
of Cauchy sequences (where two Cauchy sequences (x,,) and (2,) are equivalent
if |z, — 2| = 0). Let (x,,), (yn) be two Cauchy sequences in E, and let 7,7 € E
denote their equivalence classes. We define the inner product as

(x,¥) = lim (X, yn)- (%)

n—o0

We want to show this is well-defined. Firstly, we need to make sure the limit
exists. We can show this by showing that this is a Cauchy sequence. We have

||<XnaYn> - <Xm7Ym>|| = H<XnaYn> - <X7naYn> + <X7naYn> - <XmaYm>||
< xn, ¥n) — Fims Y I+ [[(Xims Yn) — (Xims Yl
< s X, yu) |+ [[{%m, yn — ym) |l
< % = Xmllynll + [x[lyn = ynl
So (X, yn) is a Cauchy sequence since (x,) and (y,) are.
We also need to show that (x) does not depend on the representatives for X
and y. This is left as an exercise for the reader

We also need to show that (-, -)5 define the norm of || - ||z, which is yet
another exercise. O

Proposition. Let E be a Euclidean space and S C E. Then S+ is a closed
subspace of E, and moreover

S+ = (span S)*.

Proof. We first show it is a subspace. Let u,v € S+ and A, u € C. We want to
show Au+ puv € S*+. Let w € S. Then

Au+ pv,w) = AMu,w) + p{v,w) = 0.

To show it is closed, let u,, € S+ be a sequence such that u, — u € E. Let
w € S. Then we know that
(un, w) = 0.

Hence, by the continuity of the inner product, we have

0= lim (u,,w) = (limu,,w) = (u,w).
n— oo

The remaining part is left as an exercise. O
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Theorem. Let (E, || - ||) be a Euclidean space, and F' C E a complete subspace.
Then F & F+ = E.

Hence, by definition of the direct sum, for x € E, we can write x = x; + Xa,
where x; € F and x5 € F-. Moreover, x; is uniquely characterized by

x1; — x|| = inf —x]||.
J = ]| = inf [ly x|

Proof. We already know that F @ F* is a direct sum. It thus suffices to show
that the sum is the whole of E.
Let y; € F' be a sequence with

Jimflys — x|} = inf fly —x|| = d.

We want to show that y is a Cauchy sequence. Let € > 0 be given. Let ng € N
such that for all i > ng, we have

lyi —x|I* < d* +e.

We now use the parallelogram law for v =x —y;, w = x — y; with 7,5 > nog.
Then the parallelogram law says:

v+ wl? + v = wll* = 2[]v* + 2[|w]]?,
or
ly; = yill* + 2% = yi — y;11* = 2lly: = x|* + 2[ly; — x|

Hence we know that

2
_Yityj
2

lyi — 5117 < 2lly: — x| + 2lly; — x| — 4 Hx

< 2(d? +¢) + 2(d? + ¢) — 4d?

< 4e.
So y; is a Cauchy sequence. Since F' is complete, y; — y € F for some F.
Moreover, by continuity, of || - ||, we know that
d=lim |y; — x| = [ly —x]|.
71— 00

Now let x; =y and x2 = x —y. The only thing left over is to show x5 € F+.
Suppose not. Then there is some y € F' such that

<5’7X2> 7& 0.

The idea is that we can perturbe y by a little bit to get a point even closer to x.
By multiplying y with a scalar, we can assume

<S’,X2> > 0.
Then for t > 0, we have
Iy +t9) —x|I> = (y +ty —x,y + 1y — x)
= <y—X,y—X>+<t}~’,y—X>+<y—X,t5’>+t2<}~’,}~7>
= d? = 2t{y,x2) + £|3]*.

Hence for sufficiently small ¢, the t? term is negligible, and we can make this
less that d?. This is a contradiction since y + ty € F. O
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Corollary. Let E be a Euclidean space and F' C E a complete subspace. Then
there exists a projection map P : E — FE defined by P(x) = x1, where x; € F is
as defined in the theorem above. Moreover, P satisfies the following properties:

(i) P(E) = F and P(F*) = {0}, and P2 = P. In other words, F'* < ker P.
(i) (1= P)(B) = F*, (I - P)(F) = {0}, (I - P’ = (I - P).
(iii) ||Pllg(e,py < 1and |[I—P|gE,r) < 1, with equality if and only if F # {0}
and F+ # {0} respectively.

4.2 Riesz representation theorem

Proposition (Riesz representation theorem). Let H be a Hilbert space. Then
¢ : H— H* defined by v — (-,v) is an isometric anti-isomorphism, i.e. it is
isometric, bijective and

AV + pw) = AB(V) + fip(v).
Proof. We first prove all the easy bits, namely everything but surjectivity.

— To show injectivity, if ¢y = ¢y, then (w,v) = (w,u) for all w by definition.
So (w,v—u) = 0 for all w. In particular, (v—w,v—w) =0. Sov—w = 0.

— To show that it is an anti-homomorphism, let v,w,y € H and A\, € F.
Then

Oavapw(¥) = (¥, AV + pw) = My, v) + ily, w) = Ay (¥) + fidw(y)-
— To show it is isometric, let v,w € H and |w| g = 1. Then

[ov(W)| = [{w, V)| <[lwlla|lv]a = (v

Hence, for all v, ||¢v| g+ < ||| g for all v € H. To show || ¢v| g~ is exactly
V]| m, it suffices to note that

v (V)| = (v, v) = [V

So llévllas = VI /IVIa = [Vl

Finally, we show surjectivity. Let £ € H*. If £ = 0, then £ = ¢g.

Otherwise, suppose ¢ # 0. The idea is that (ker £)* is one-dimensional, and
then the v we are looking for will be an element in this complement. So we
arbitrarily pick one, and then scale it appropriately.

We now write out the argument carefully. First, we note that since ¢ is
continuous, ker ¢ is closed, since it is the inverse image of the closed set {0}. So
ker ¢ is complete, and thus we have

H =ker¢ @ (ker &),

The next claim is that dim(ker ¢) = 1. This is an immediate consequence of the
first isomorphism theorem, whose proof is the usual one, but since we didn’t
prove that, we will run the argument manually.
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We pick any two elements v, vy € (ker £)+. Then we can always find some
A, o not both zero such that

AE(v1) + pg(ve) = 0.

So Avy + vy € ker . But they are also in (ker £)* by linearity. Since ker ¢ and
(ker £)* have trivial intersection, we deduce that Av; + uvy = 0. Thus, any two
vectors in (ker £)* are dependent. Since ¢ # 0, we know that ker ¢ has dimension
1.

Now pick any v € (ker &) such that £(v) # 0. By scaling it appropriately,
we can obtain a v such that

£(v) = (v,v).

Finally, we show that £ = ¢,. To prove this, let w € H. We decompose w using
the previous theorem to get
W = aV + Wy

for some wy € ker & and a € F. Note that by definition of (ker &)+, we know
that (wg,v) = 0. Hence we know that
§(w) = &(av +wo) = {(av) = ag(v)
= a(v,v) = (av,v) = {(av + wo, V) = (W, V).
Since w was arbitrary, we are done. O

Proposition. For f € C(S?), defined, for each k € Z,
n 1 " ikx
f(k) =5 [ € f(z)dz
2 J_,
The partial sums are then defined as

N

Sn(f)x)= > e f(k).

n=—N
Then we have L
tim_ o [ 17(0) = Sx(7)(a)? do =0,

Proof. Consider the following Hilbert space L?(S') defined as the completion of
Cc(S) under the inner product

(f.)= o [ s a

yg) = o | r)g\r) dzx,

Consider the closed subspace

Uy = span{e’™® : |n| < N}.
Then in fact Sy defined above by

N

Sn(f)@) = > e f(k)

n=—N
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is the projection operator onto Upy. This is since we have the orthonormal
condition
<einz767imw> _ i \/7r einT g —ima 1. 1 n=m
2r J_, 0 n#m

Hence it is easy to check that if f € Uy, say f = Zngzv a,e™®, then Sy f = f
since

N N N
Sw(f) =D flkje™™ = 37 (e e = N7 ane = f
n——N ne—N et
using the orthogonality relation. But if f € U ﬁv then
1 " —inwf( dz =0
% . € :L') T =

for all [n| < N. So Snx(f) = 0. So this is indeed a projection map.
In particular, we will use the fact that projection maps have norms < 1.
Hence for any P(z), we have

i'WWMﬂ@%ﬂMH@deci/ﬁﬂ@—H@PM

27 J_, 2 ),

Now consider the algebra A generated {e'"® : n € Z}. Notice that A separates
points and is closed under complex conjugation. Also, for every = € S!, there
exists f € A such that f(z) # 0 (using, say f(x) = e®). Hence, by Stone-
Weierstrass theorem, A = C¢(S'), i.e. for every f € Cc(S') and e > 0, there
exists a polynomial P of e’ and e~*® such that

1P —fll <e.

We are almost done. We now let N > deg P be a large number. Then in
particular, we have Sy(P) = P. Then

1

(s [y -rr dx>é < (5 [ 1svtn v ar)
i (217r /7; Sy (P) - PP dx>2
* (;T/_:|P—f|2 dm)é

<e+4+0+4¢
= 2e.

So done. O

4.3 Orthonormal systems and basis

Proposition. Let H be a Hilbert space. Let S be a maximal orthonormal
system. Then span S = H.
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Proof. Recall that S+ = (span S)*. Since H is a Hilbert space, we have

H =span S @ (span )t = span S @ S*.

Since S is maximal, S+ = {0}. So done.

O

Proposition. Let FE be Euclidean, and let S be an orthonormal system. If

span.S = FE, then S is maximal.

Proof.
S+ = (span S)* = E+ = {0}.

O

Proposition. Let {x;} ;, n € N be linearly independent. Then there exists

{e;}_; such that {e;}? ; is an orthonormal system and

span{xy,--- ,x;} = span{e,--- ,e;}
for all j < n.
Proof. Define e; by
X1
e = —.
11l

Assume we have defined {e;}/_, orthonormal such that
span{xi,--- ,x;} = span{e,--- ,€;}.

Then by linear independence, we know that

Xj+1 € span{xy,--- ,x;} = span{e,--- ,e;} = Fj.

We now define
Xj+1 = Xj41 — Pry(%541),
where Pp; is the projection onto Fj given by
J
Pp, = Z(x,ei>ei.
i=1

Since F} is a closed, finite subspace, we know that

Xj+1 — PF_7‘Xj+1 1 Fj.
Thus ~
Xj+1
1%l
is the right choice. We can also write this in full as

€j+1 =

Xj+1 = 2 (Xse)e

%511 — 21 (xje5)e]|

€j+1 =

So done.

O

Proposition. Let H be separable, i.e. there is an infinite set {y;};cn such that

span{y;} = H.

Then there exists a countable basis for span{y;}.

Proof. We find a subset {y;,} such that span{y;} = span{y;;} and {y;,} are
independent. This is easy to do since we can just throw away the useless

dependent stuff. At this point, we do Gram-Schmidt, and done.
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4.4 The isomorphism with /5

Lemma (Bessel’s inequality). Let E be Euclidean and {e;}}¥., with N € NU{oo}
an orthonormal system. For any x € F, define x; = (x,e;). Then for any j < N,

we have ,
J
S bl < )
i=1

Proof. Consider the case where j is finite first. Define
F; =span{ey,--- ,e;}.
This is a finite dimensional subspace of E. Hence an orthogonal projection P,
exists. Moreover, we have an explicit formula for this:
J
PFj = Z<X’ ei>ei.
i=1

Thus

i
Y lail® = 11Prx|? < x|
i=1

since we know that ||Pg,|| < 1. Taking the limit as j — oo proves the case for
infinite j. O

Proposition. Let H be a separable Hilbert space, with a countable basis
{e;}Y,, where N € NU {cc}. Let x,y € H and

€Tq = <X7 ei>a Yi = <y7ei>'
Then
N N
X = Zl’iez‘, Yy = zyieiv
i=1 i=1
and
N
<Xa y> = Z ngz
i=1
Moreover, the sum converges absolutely.

Proof. We only need to consider the case N = co. Otherwise, it is just finite-
dimensional linear algebra.

First, note that our expression is written as an infinite sum. So we need to
make sure it converges. We define the partial sums to be

n
Sy = E Ti€;.
i=1

We want to show s,, — x. By Bessel’s inequality, we know that

o0

D lwil® < Ilx)%.

=1

38



4 Hilbert spaces IT Linear Analysis (Theorems with proof)

In particular, the sum is bounded, and hence converges.
For any m < n, we have

n oo

As m — oo, the series must go to 0. Thus {s,} is Cauchy. Since H is Hilbert,

S, converges, say
[

Sy, — S = E ZT;€;.
i=1

Now we want to prove that this sum is indeed x itself. Note that so far in the
proof, we have not used the fact that {e;} is a basis. We just used the fact that
it is orthogonal. Hence we should use this now. We notice that

n

(s.e;) = lim (s, e;) = lim_ zxj<ej7ei> = ;.
j=
Hence we know that
(x —s,e;) = 0.

for all . So x — s is perpendicular to all e;. Since {e;} is a basis, we must have
x—s=0,1ie x=s.
To show our formula for the inner product, we can compute

n n
lim E T;€;, E y;€;
n—roo

i=1 j=1

n
= lim xi§j<ei,ej>

n—00 4
1,7=1

n
= lim E xigjéij
n—o0
4,j=1

n
n— oo
=1
oo
= E TiYi-
=1

Note that we know the limit exists, since the continuity of the inner product
ensures the first line is always valid.
Finally, to show absolute convergence, note that for all finite j, we have

(x,y)

J n n
S ] < (D lwl? D vl < Iyl
=1 =1 =1

Since this is a uniform bound for any j, the sum converges absolutely. O
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Proposition. Let H be a separable Hilbert space with orthonormal basis
{e;}ien. Let {a;}ieny € €2(C). Then there exists an x € H with (x,e;) = a;.
Moreover, this x is exactly
[ee]
X = Z xT;€e;.
i=1

Proof. The only thing we need to show is that this sum converges. For any
n € N, define

n
Sn = E a;e; € H.
i=1

For m < n, we have

n
Isn = smll* = las* =0
m—+1

as m — oo because {a;} € ¢?. Hence s, is Cauchy and as such converges to x.
Obviously, we have

n

(x,ei) = nlijgozaj (ej, €;) = a;.
j=1

So done. O

4.5 Operators

Theorem. Let X be a Banach space, T € B(X). Then o(T) is a non-empty,
closed subset of
AeC: A< T s}

Lemma. Let X be a Banach space, T' € B(X) and ||T||px) < 1. Then I — T

is invertible.

Proof. To prove it is invertible, we construct an explicit inverse. We want to
show

(I-7)'=>y 1"
i=0
First, we check the right hand side is absolutely convergent. This is since
i 1T |5x) < i 1T < <
= = 1= Tscx)

Since X is Banach, and hence B(X) is Banach, the limit is well-defined. Now it
is easy to check that

(J—T)iiﬂ:(I—T)(I+T+T2+-~-)

=I4+(T-T)+(T*>-T?*)+---
=1.

Similarly, we have

<§:T> (I-T)=1 O
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Lemma. Let X be a Banach space, S; € B(X) be invertible. Then for all
S2 € B(X) such that

157 MBS = Sallsx) < 1,
S5 is invertible.

Proof. We can write
Sy = S1(I — S;H(S1 — S2)).

Since
1571 (S1 = S2)llsx) < 181 s 1S1 — Sellsx) < 1

by assumption, by the previous lemma, (I — S;*(S; — So)) ™! exists. Therefore
the inverse of S5 is

Syt =(I—S74(S —S) 'Syt O

Theorem. Let X be a Banach space, T' € B(X). Then o(T) is a non-empty,
closed subset of
AeC: A < |Tlx)}-

Proof. We first prove the closedness of the spectrum. It suffices to prove that
the resolvent set p(T') = C\ o(T') is open, by the definition of closedness.
Let A € p(T). By definition, S; = T — Al is invertible. Define S; =T — pul.
Then
151 = Sallpx) = (T = AL) = (T — pI)|[s(x) = A = pl-

Hence if |A — | is sufficiently small, then T'— u1 is invertible by the above lemma.
Hence p € p(T). So p(T) is open.
To show o(T) C {A € C: |A] < ||T[|g(x)} is equivalent to showing

{AeC: A > Tlsx)} €S C\o(T) = p(T).
Suppose |A| > || T||. Then I — A~1T is invertible since
AT Ty = AT llsx) < 1.
Therefore, (I — A~!7T)~! exists, and hence
N -T)" =X - 1)

is well-defined. Therefore AI — T, and hence T' — AI is invertible. So A € p(T).

Finally, we need to show it is non-empty. How did we prove it in the case
of finite-dimensional vector spaces? In that case, it ultimately boiled down to
the fundamental theorem of algebra. And how did we prove the fundamental
theorem of algebra? We said that if p(z) is a polynomial with no roots, then

ﬁ is bounded and entire, hence constant.

We are going to do the same proof. We look at ﬁ as a function of A. If
o(T) = 0, then this is an everywhere well-defined function. We show that this is
entire and bounded, and hence by “Liouville’s theorem”, it must be constant,
which is impossible (in the finite-dimensional case, we would have inserted a det

there).
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So suppose o(T) = (), and consider the function R : C — B(X), given by
R(\) = (T - \I)~L.

We first show this is entire. This, by definition, means R is given by a power
series near any point A\g € C. Fix such a point. Then as before, we can expand

T — M = (T — M\oI) [I — (T = XoI)7! ((T —Xol) — (T — AI))}
— (T — X [1 — (A= AT — AOI)*} .

Then for (A — X\g) small, we have

(T - M)t = ( 3 (A=) (T — )\OI)_Z> (T — XoI)™*

0

i

I

I
=

(A= X0)Y(T — X)L,

K2

So this is indeed given by an absolutely convergent power series near \g.
Next, we show R is bounded, i.e.

sup | R(A)|5(x) < o0
AeC

It suffices to prove this for A large. Note that we have
(T =AD" =2 AT T =) = ATy AT
i=0
Hence we get

(oo}
I = T) sy < ST I IT s
=0

<SS (N HIT )
1=0
1

<=
A= 11Tl8(x)

which tends to 0 as |A| — co. So it is bounded.
By “Liouville’s theorem”, R(A) is constant, which is clearly a contradiction

since R(A) # R(p) for A # p. O

Proposition (Liouville’s theorem for Banach space-valued analytic function).
Let X be a Banach space, and F : C — X be entire (in the sense that F' is given
by an absolutely convergent power series in some neighbourhood of any point)
and norm bounded, i.e.

sup || F(2)||x < oo.
zeC

Then F' is constant.
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Proof. Let f € X*. Then we show fo F :C — C is bounded and entire. To see
it is bounded, just note that f is a bounded linear map. So

sup|f o ()] < sup | fLx-[F(2)]Lx < oc.
zE

zeC

Analyticity can be shown in a similar fashion, exploiting the fact that f* is
linear.

Hence Liouville’s theorem implies fo F'is constant, i.e. (foF')(z) = (foF)(0).
In particular, this implies f(F(z) — F(0)) = 0. Moreover, this is true for all
f € X*. Hence by (corollary of ) Hahn-Banach theorem, we know F'(z)—F(0) = 0
for all z € C. Therefore F' is constant. O

Theorem. We have
Oap(T) 2 0o(T),
where 9o (T) is the boundary of ¢(T) in the topology of C. In particular,
oap(T) # 0.
Proof. Let A € 0o(T'). Pick sequence {\,}52, C p(T) = C\ o(T) such that
An — A. We claim that R(\,) = (T — A\, I)~! satisfies
[R(An)llBx) — oo

If this were the case, then we can pick y, € X such that |y,|| — 0 and
[R(An)(yn)|l = 1. Setting x,, = R(An)(yn), we have
(T = ADxn || < (T = And)Xnllx + [[(A = An)xallx
= (T = X D)(T = M) " ynllx + 1 = An)xall
= [lynllx + A = A
— 0.
So A € 04y (T).
Thus, it remains to prove that ||R(A,)|/gx) — oo. Recall from last time if
Sy is invertible, and
1T o151 = Sllsx) < 1, (%)
then Sy is invertible. Thus, for any p € o(T'), we have

IR 80 1t = Anl = [[RA) [8x) (T = And) = (T = pd) || px) = 1.

Thus, it follows that

1
R(X\, > e
IR lBx) = inf{|p — M| 1 pp € a(T)} >

So we are done. O

Proposition. Let X,Y be Banach spaces. Then T' € L(X,Y) is compact if and

only if T(B(1)) is totally bounded if and only if T'(B(1)) is compact.

Proposition. Let X be a Banach space. Then By(X) is a closed subspace of
B(X). Moreover, if T € By(X) and S € B(X), then T'S, ST € By(X).

In a more algebraic language, this means By(X) is a closed ideal of the
algebra B(X).
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Proof. There are three things to prove. First, it is obvious that By(X) is a
subspace. To check it is closed, suppose {7, }7; € Bo(X) and ||T,,—T||3(x) — 0.
We need to show T € By(X), i.e. T(B(1)) is totally bounded.

Let € > 0. Then there exists IV such that

|17 —Thllax)y <e

whenever n > N. Take such an n. Then T, (B(1)) is totally bounded. So there
exists X1, -+ , X € B(1) such that {T,,x;}¥_, is an e-net for T,(B(1)). We now
claim that {Tx;}¥_, is an 3e-net for T(B(1)).

This is easy to show. Let x € X be such that ||x|| < 1. Then by the triangle
inequality,

ITx = Txillx < ITx = Tox + [ Tx — Tuxall + | Toox — Tl
<e+||Tnx—Thxi|lx +¢
= 2e 4+ ||Tnx — Tnxillx

Now since {T,x;} is an e-net for T, (B(1)), there is some 4 such that ||T,,x —
Tox;|| < e. So this gives
ITx — Tx;||x < 3e.

Finally, let T' € Byo(X) and S € B(X). Let {x,,} C X such that ||x,|x < 1. Since

T is compact, i.e. T(B(1)) is compact, there exists a convergence subsequence
of {TXZ}

Since S is bounded, it maps a convergent sequence to a convergent sequence.
So {STx,} also has a convergent subsequence. So ST(B(1)) is compact. So ST
is compact.

We also have to show that T'S(B(1)) is totally bounded. Since S is bounded,
S(B(1)) is bounded. Since T sends a bounded set to a totally bounded set, it
follows that T'S(B(1)) is totally bounded. So T'S is compact. O

Theorem. Let X be an infinite-dimensional Banach space, and T € B(X) be a
compact operator. Then o,(T) = {\;} is at most countable. If o, (T") is infinite,
then \; — 0.

The spectrum is given by o(T') = 0,(T") U {0}. Moreover, for every non-zero
i € 0,(T), the eigenspace has finite dimensions.

Proposition. Let H be a Hilbert space, and T € By(H) a compact operator.
Let a > 0. Then there are only finitely many linearly independent eigenvectors
whose eigenvalue have magnitude > a.

Proof. Suppose not. There there are infinitely many independent x1, X2, X3, - - -
such that Tx; = A\;x; with |A;| > a.

Define X,, = span{xy,---,X,}. Since the x;’s are linearly independent, there
exists y,, € X,, N X;- , with [|y.||lz = 1.
Now let
-7
Note that .
120l < —.
a
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Since X, is spanned by the eigenvectors, we know that T" maps X,, into itself.
So we have
Tz, € X,.

Moreover, we claim that Tz, —y, € X,,—1. We can check this directly. Let

n

Yn = Z CpX[-

k=1

Then we have

1
—1
A
= Ck (k — 1) Xr € Xp_1-
1

We next claim that ||Tz,, — TZ,| g > 1 whenever n > m. If this holds, then T
is not compact, since T'z,, does not have a convergent subsequence.
To show this, wlog, assume n > m. We have

1 T20 — Tz} = (T2 — y0) — (T2m — yo)ll

Note that Tz, — y, € X,_1, and since m < n, we also have Tz,, € X,,_1. By
construction, y, 1L X,,_1. So by Pythagorean theorem, we have

= T2n =y — Tamlli + lyalE

> ||ynH2
=1

So done. O

Lemma. Let H be a Hilbert space, and T' € B(H) compact. Then im( — T) is
closed.

Proof. We let S be the orthogonal complement of ker(I — T'), which is a closed
subspace, hence a Hilbert space. We shall consider the restriction (I —T)|s,
which has the same image as I — T

To show that im(I —T') is closed, it suffices to show that (I —T)|s is bounded
below, i.e. there is some C > 0 such that

%[l < CI(I = T)x[|u
for all x € S. If this were the case, then if (I — T)x,, — y in H, then
%0 = xm|| < Ol = T)(xn = xm)|| =0,
and so {x,, } is a Cauchy sequence. Write x,, — x. Then by continuity, (/—T)x =

y,and soy € im(I —T).
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Thus, suppose (I — T') is not bounded below. Pick x,, such that ||x,| g = 1,
but (I — T)x, — 0. Since T is compact, we know T'x,, has a convergent
subsequence. We may wlog Tx,, — y. Then since ||Tx,, — x,||g — 0, it follows
that we also have x,, — y. In particular, ||y|| =1#0, and y € S.

But x,, — y also implies T'x,, — Ty. So this means we must have Ty =y.
But this is a contradiction, since y does not lie in ker(I — 7). O

Proposition. Let H be a Hilbert space, T' € B(H) compact. If A\ # 0 and
A€ o(T), then A € o,(T).

Proof. We will prove if A # 0 and A & 0,(T'), then A € ¢(T). In other words,
let A # 0 and ker(T — M) = {0}. We will show that T'— Al is surjective, i.e.
im(T — \I) = H.

Suppose this is not the case. Denote Hy = H and H; = im(T — AI). We
know that H; is closed and is hence a Hilbert space. Moreover, H; C Hy by
assumption.

We now define the sequence {H,} recursively by

H, = (T — AXI)H,_,.

We claim that H,, C H,_1. This must be the case, because the map (T'— A\I)™ :

n =

Hy — H, is an isomorphism (it is injective and surjective). So the inclusion
H, C H,_; is isomorphic to the inclusion H; C Hj, which is strict.
Thus we have a strictly decreasing sequence

Hy2 Hy D Hy2D---

Let y, be such that y, € H,, yn L Hp41 and ||y,|lg = 1. We now claim
ITyn — Tyml| > |A| if n # m. This then contradicts the compactness of T'. To
show this, again wlog we can assume that n > m. Then we have

ITYn = TYmllzr = 1(Tyn = Ayn) = (TYm — Aym) — AYm + Aynl?
= ”(T - )‘I)Yn - (T - )‘I)Ym —A¥m + )\YnH%{
Now note that (T — M)y, € Hy+1 C Hypi1, while (T'— A1)y, and \y,, are both

in Hpt1. So Ay, is perpendicular to all of them, and Pythagorean theorem
tells

= AP {lymll® + (T = ADym — (T = XDy m — Ayml®
> APllyml?
= A~

This contradicts the compactness of T'. Therefore im(T — AI) = H. O

Theorem. Let H be an infinite-dimensional Hilbert space, and T € B(H) be a
compact operator. Then o,(T) = {\;} is at most countable. If o, (7T') is infinite,
then \; — 0.

The spectrum is given by ¢(T") = 0,(T") U0. Moreover, for every non-zero
Ai € 0p(T'), the eigenspace has finite dimensions.
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Proof. As mentioned, it remains to show that o(T") = 0,(T") U {0}. The previous
proposition tells us o(7)\ {0} C 0,(T). So it only remains to show that 0 € o(T).
There are two possible cases. The first is if {\;} is infinite. We have already
shown that A; — 0. So 0 € o(T') by the closedness of the spectrum.
Otherwise, if {\;} is finite, let Ey,,--- , Ey, be the eigenspaces. Define

H' =span{Ey,,---, Ey, }*.

This is non-empty, since each E), is finite-dimensional, but H is infinite dimen-
sional. Then T restricts to T'|g : H' — H'.

Now T'|g+ has no non-zero eigenvalues. By the previous discussion, we know
o(T|g) C {0}. By non-emptiness of o(T'|g), we know 0 € o(T|g/) C o(T).

So done.

4.6 Self-adjoint operators

Theorem (Spectral theorem). Let H be an infinite dimensional Hilbert space
and T : H — H a compact self-adjoint operator.

(i) o,(T) = {N}Y, is at most countable.
(ii) op(T) CR.
(ii)) o(T) = {0} Uary(T).
(iv) If E), are the eigenspaces, then dim E}, is finite if A; # 0.
(v) Ex, L By, if \j # ;.
(vi) If {\;} is infinite, then \; — 0.
)

(vii
N
T = Z \iPg, .
=1

Proposition. Let H be a Hilbert space and T' € B(H) self-adjoint. Then
op(T) CR.

Proof. Let A € 0p(T) and v € ker(T'— AI) \ {0}. Then by definition of v, we

have T T
N v,ZV> _ 2V> _s
IvIiZ V7

So A eR. O

Proposition. Let H be a Hilbert space and T' € B(H) self-adjoint. If A\, €
op(T) and A # p, then E\ L E,,.

Proof. Let v € ker(T — AI) \ {0} and w € ker(T — pI) \ {0}. Then
Mv,w) = (Tv,w) = (v, Tw) = i(v,w) = pu({v, w),
using the fact that eigenvalues are real. Since \ # p by assumption, we must

have (v, w) = 0. O
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Proposition. Let H be a Hilbert space and T € B(H) a compact self-adjoint
operator. If T'#£ 0, then T has a non-zero eigenvalue.

Lemma. Let H be a Hilbert space, and T' € B(H) a compact self-adjoint
operator. Then

1Tl 5y = sup [(x,Tx)]

[l =1

Proof. Write
A= sup [(x,Tx)|.

lI<ll =1
Note that one direction is easy, since for all x, Cauchy-Schwarz gives
(%, Tx)| < | Txl x|z = 1Tl %17

So it suffices to show the inequality in the other direction. We now claim that

1T 5y = sup (Tx, ).
Ixllz=Lllyllz=1

To show this, recall that ¢ : H — H* defined by v — (-, v) is an isometry. By
definition, we have

1Ty = sup [[Tx|g = sup [|¢(Tx)||a- = sup sup [(y,Tx)|.

llx|| =1 lIx|l =1 lIxllz=1 llyllz=1
Hence, it suffices to show that

sup — [(Tx,y)[ <A

Ixlla=1llyllz=1

Take x,y € H such that ||x||g = ||y||g = 1. We first perform a trick similar to
the polarization identity. First, by multiplying y by an appropriate scalar, we
can wlog assume (T'x,y) is real. Then we have

(T(x+y),x+y) —(T(x-y),x—y)|=2(I'xy) + (Ty,x)|
= 4(Tx,y)|.

Hence we have
1
[(Tx,y)l = (T (x +y),x +y) = (T(x —y),x ~y)]
1
< O+ y I3+ Alx - yI3)

A
= 22l + 2l 1)
= A’
where we used the parallelogram law. So we have ||T'[|gm) < A. O

Proposition. Let H be a Hilbert space and T € B(H) a compact self-adjoint
operator. If T' # 0, then T" has a non-zero eigenvalue.
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Proof. Since T # 0, then ||T'||gay # 0. Let ||T||py = A. We now claim that
either A or — ) is an eigenvalue of T'.

By the previous lemma, there exists a sequence {x,}52; C H such that
%]l =1 and (x,,, Tx,) = £A.

We consider the two cases separately. Suppose (x,,,Tx,) — A. Consider
Tx,, — Ax,,. Since T is compact, there exists a subsequence such that T'x,,, =y
for some y € H. For simplicity of notation, we assume Tx,, — y itself. We have

0 <|Txn — )‘XnH%{
= (Txp — XX, TX;, — AXp,)
= ||Txn||%1 = 2XMTxp, %) + >‘2||Xn||2
— A2 —2)2 4 )2
=0

as n — oo. Note that we implicitly used the fact that (T'x,,x,) = (X, Tx,)
since (T'X,,X,) is real. So we must have

ITx, — )\XHH%{ — 0.

In other words,
1
INA

Finally, we show y is an eigenvector. This is easy, since

Xpn —

Ty = lim T(A\x,) = Ay.

n—oo

The case where x,, — — A\ is entirely analogous. In this case, —\ is an eigenvalue.
The proof is exactly the same, apart form some switching of signs. O

Proposition. Let H be an infinite dimensional Hilbert space and T': H - H
a compact self-adjoint operator. Then

N
T=> A\Pg, .
i=1

Proof. Let
U =span{E\,, E\,, - }.

Firstly, we clearly have

N
Tly =Y AiPg, .

i=1

This is since for any x € U can be written as

n
X = E Pg, x.
k2
i=1

Less trivially, this is also true for U, i.e.

N
T‘U = Z)‘iPEA“

i=1
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but this is also clear from definition once we stare at it hard enough.
We also know that

H=UqU".
It thus suffices to show that
T|yr =0.

But since T'|y1 has no non-zero eigenvalues, this follows from our previous
proposition. So done. O
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