
EXAMPLE SHEET 1: LINEAR ANALYSIS

(1) Prove the Hölder’s inequality, i.e., for every p ∈ [1,∞), 1
p + 1

q = 1 (using the convention that if p = 1,

then q =∞) and for every real-valued sequences a = (a1, ..., an, ...) and b = (b1, ..., bn, ...) which are
elements of `p and `q respectively, the following holds:

‖ab‖`1 ≤ ‖a‖`p‖b‖`q .

(You may find it helpful to first show that for every 0 ≤ t ≤ 1, a ≥ 0 and b ≥ 0, the following holds:
atb1−t ≤ ta+ (1− t)b.)

(2) Prove the Minkowski inequality, i.e., for every p ∈ [1,∞] and for every real-valued sequences a =
(a1, ..., an, ...) and b = (b1, ..., bn, ...) which are both elements of `p, the following holds:

‖a+ b‖p ≤ ‖a‖p + ‖b‖p.

(You may find Hölder’s inequality helpful here.) Using this, show that `p is indeed a normed vector
space.

(3) Show that `p is complete for every p ∈ [1,∞].

(4) Let p, q ∈ [1,∞]. Show that `p ⊂ `q if and only if p ≤ q.

(5) Show that for any p ∈ [1,∞), `∗p is isometrically isomorphic to `q, where 1
p + 1

q = 1 (using the

convention that if p = 1, then q =∞).

(6) Let c0 be the space of all real-valued sequences converging to 0, endowed with the `∞ norm. Show
that c∗0 is isometrically isomorphic to `1.

(7) Show that a normed vector space is complete if and only if all absolutely convergent series are con-

vergent, i.e., the following statement holds: if limN→∞
∑N
n=1 ‖xn‖ <∞, then

∑N
n=1 xn is convergent

as N →∞.

(8) Let X be a normed vector space, and T : X → X, S : X → X be bounded linear maps. Show that
the composition T ◦ S is bounded and the following holds:

‖T ◦ S‖ ≤ ‖T‖‖S‖.

Does equality always hold?

(9) Let X and Y be normed vector spaces. Find conditions on X and Y which guarantee that B(X,Y )
is also complete.

(10) Show that in a finite dimensional normed vector space, a subset is compact if and only if it is closed
and bounded. (This should be an easy consequence of what was proven in lectures.) In general, let
X be a Banach space. Prove that a subset S ⊂ X is compact if and only if it is closed and totally
bounded, i.e., for every ε > 0, there exists a finite collection of open balls of radius ε whose union
contains S.

(11) As an application of the previous problem, show that for every sequence of real numbers xn with
|xn| → 0, the following subset of c0:

{y ∈ c0 : |yn| ≤ |xn|}

is compact.
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2 EXAMPLE SHEET 1: LINEAR ANALYSIS

(12) We have shown in the lectures that all linear functionals on a finite dimensional normed space are
bounded. Prove that this also characterizes finite dimensional normed vector spaces, i.e., given an
infinite dimensional normed vector space X, show that there exists an unbounded linear functional.
(You may use the axiom of choice here. More precisely, it can be shown using the Zorn’s lemma that
X has a Hamel basis, i.e. a subset of X: {xγ ∈ X : γ ∈ Γ} such that every x ∈ X can be represented
uniquely as a finite linear combination of xγ .)



EXAMPLE SHEET 2: LINEAR ANALYSIS

(1) Let p ∈ [1,∞) and x ∈ `p. Show that there is an f ∈ `∗p such that f(x) = ‖x‖`p and ‖f‖`∗p ≤ 1.

(2) Let X be a normed vector space over F and f : X → F be a linear map. Prove that f is continuous
if and only if ker(f) is closed.

(3) Show that L̂p([0, 1]) := {f : [0, 1]→ R continuous} with the norm given by

‖f‖L̂p([0,1])
:= (

∫ 1

0

|f |pdx)
1
p

is not complete.

(4) Let V be the space of polynomials on R. Does there exists a norm ‖ · ‖ on V such that (V, ‖ · ‖) is
complete?

(5) Let {fn}∞n=1 be a sequence of continuous functions fn : [0, 1]→ R. If for every t ∈ [0, 1], supn |fn(t)|
is finite, show that there is an interval [a, b] with a < b such that supn supt∈[a,b] |fn(t)| <∞. (Osgood

Theorem)

(6) Let f : R → R be a continuous function such that for every x > 0, we have f(nx) → 0 as n → ∞.
Show that f(x)→ 0 as x→∞.

(7) Show that the set of all rational numbers Q is not a Gδ set, i.e., it is not a countable intersection of
open subsets of R.

(8) Does there exist a function f : [0, 1]→ R which is continuous at every rational number and discon-
tinuous at every irrational number? (Hint: You may find the previous problem useful.)

(9) In this problem, we study the Fourier series and its convergence. Define the operatorˆ: C(S1)→ c̃0
so that for every k ∈ Z,

f̂(k) :=
1

2π

∫ π

−π
f(t)e−iktdt.

Define also Sn : C(S1)→ C(S1) so that Sn(f) is the n-th partial sum of the Fourier series of f given
by the following formula:

Sn(f)(x) =

n∑
k=−n

f̂(k)eikx.

Here c̃0 is defined1 as c̃0 := {g : Z→ C : |g(n)| → 0 as n→ ±∞} endowed with the sup norm, i.e.,

‖g‖ := sup
n∈Z
|ĝ(n)|.

A basic question that we investigate here is whether Sn(f) converges as n→∞.

1Notice that this is slightly different from the usual c0!
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(a) Show that the image ofˆ indeed lies in c̃0. In other words, show that for every f ∈ C(S1), we

have |f̂(k)| → 0. (You can use that continuously differentiable functions are dense in C(S1).
This will be proven later in the course.)

(b) Prove the following formula:

Sn(f)(x) =
1

2π

∫ π

−π
f(t)Dn(x− t)dt,

where Dn is defined by

Dn(t) :=

n∑
k=−n

eikt =
sin((n+ 1

2 )t)

sin( t2 )
.

(c) Let φn ∈ C(S1)∗ be defined as φn(f) := Sn(f)(0). Show that for every n, ‖φn‖C(S1)∗ <∞, but
supn ‖φn‖C(S1)∗ =∞.

(d) Deduce that there exists a function f ∈ C(S1) whose Fourier series diverges at 0, i.e., Sn(f)(0)
does not have a finite limit as n→∞.

(10) This problem, which continues the discussions on Fourier series, is intended for students who have
learnt measure theory.

(a) Show that we can in fact defineˆ: L1(S1) → c̃0, i.e., for every f ∈ L1(S1), we have |f̂(k)| → 0
as k → ±∞. (Here, L1(S1) is defined to be the space of (equivalent classes2 of) Lebesgue
measurable functions with

∫ π
−π |f |(t)dt < ∞, with the norm ‖f‖L1(S1) :=

∫ π
−π |f |(t)dt. This

makes L1(S1) into a Banach space.)
(b) Show that the mapˆis bounded and injective.
(c) On the other hand, prove thatˆis not surjective. (Hint: Prove that Dn defined in the previous

problem has the property that ‖Dn‖L1 →∞ as n→∞ but ‖D̂n‖c̃0 = 1.)

(11) Let f : [0, 1] → R be a pointwise limit of a sequence of continuous functions. Show that f has a
point of continuity.

2where two functions are equivalent if they agree except on a measure 0 set.
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(1) Using the Tietze-Urysohn extension theorem for real-valued functions proved in the lectures, show
the following analogue for complex-valued functions: Let X be a normal space, C ⊂ X be a closed
subset and f : C → C be a continuous function. Then there exists a continuous extension f̃ : X → C
such that f̃ �C= f and ‖f̃‖CC(X) = ‖f‖CC(C).

(2) Let K be a compact Hausdorff space and f ∈ CR(K). Show that there exists φ ∈ (CR(K))∗ such
that φ(f) = ‖f‖CR(K) and ‖φ‖(CR(K))∗ = 1.

(3) Let K be a compact Hausdorff space. Show that CR(K) is finite dimensional if and only if K is
finite.

(4) Let X be a normal space and S be a subset of X. Show that there is a continuous function f : X → R
such that S = f−1({0}) if and only if S is a closed Gδ set, i.e., S is a closed set which is also a countable
intersection of open sets.

(5) Let g : R → R≥0 be a continuous non-negative function such that g(x) → 0 as x → ±∞. Let fn :
R→ R be a sequence of continuous functions which are equicontinuous and such that |fn(x)| ≤ g(x)
for every x ∈ R. Show that there exists a subsequence of fn which converges uniformly on R.

(6) Let X and Y be compact Hausdorff spaces. Let A be the algebra generated by functions of the form
f(x, y) = g(x)h(y), where g ∈ CR(X) and h ∈ CR(Y ). Show that A is dense in CR(X × Y ).

(7) Given f, g ∈ CR(T), define the convolution by f ? g : T→ R

(f ? g)(x) :=
1

2π

∫ π

−π
f(x− y)g(y) dy.

Show that this makes CR(T) with the usual ‖ · ‖CR(T) norm a Banach algebra. Is it commutative? Is
it unital?

(8) Prove the following statement that was used in the proof of the Stone-Weierstrass theorem: For

every ε > 0, the Taylor series of the function
√
ε2 + x about x = 1

2 converges uniformly for x ∈ [0, 1].

(9) Show that a normed space E is Euclidean if and only if the parallelogram law holds, i.e., if for every
v, w ∈ E,

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2.

(10) Let X be an inner product space and T : X → X be a linear map. Prove that < Tx, Ty >=< x, y >
for all x, y ∈ X if and only if ‖Tx‖ = ‖x‖ for all x ∈ X.

(11) Let X be a complex inner product space and T : X → X be a linear map. Prove that if < Tx, x >= 0
for every x ∈ X, then T = 0. Show by an example that the same statement does not hold if X is a
real inner product space.
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(12) Show that `p is a Hilbert space if and only if p = 2.

(13) Consider the complex-valued continuous functions CC([0, 1]) and define an inner product by

< f, g >:=

∫ 1

0

f(x)g(x) dx.

Show that this indeed defines an inner product and moreover that it does not make CC([0, 1]) into
a Hilbert space.

(14) Construct a Euclidean space E and a closed subspace F such that F + F⊥ 6= E.
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(1) Let L2(S1) be the Hilbert space which is defined to be the completion of C(S1) under the inner
product

< f, g >=
1

2π

∫ π

−π
f(x)ḡ(x) dx.

Show that {eikx}k∈Z is an orthonormal basis of L2(S1). Prove the Riemann-Lebesgue Lemma: Let
f ∈ L2(S1). Then

lim
k→∞

1

2π

∫ π

−π
f(x)e−ikx dx = 0.

(2) Let Y be a closed subspace of a Hilbert space H. Show that Y ⊥⊥ = Y . Deduce that if S is a subset

of H, then S⊥⊥ = span(S). Show that span(S) is dense in H if and only if S⊥ = {0}.

(3) Let X be a Banach space and T ∈ B(X). Define

σap(T ) := {λ ∈ C : there exists a sequence {xn}∞n=1 ⊂ X such that ‖xn‖X = 1

and lim
n→∞

‖(T − λI)xn‖X → 0}

and

σcom(T ) := {λ ∈ C : Im(T − λI) is not dense in X}.
Prove that

σ(T ) = σap(T ) ∪ σcom(T ).

(4) Let {an}∞n=1 ∈ `∞. Define T : `2 → `2 by T (x1, x2, ...) := (a1x1, a2x2, ...). Show that T ∈ B(H) and
‖T‖B(H) = ‖(a1, a2, ...)‖`∞ . Find σ(T ), σap(T ) and σp(T ). Show that T is compact if and only if
{an}∞n=1 ∈ c0, i.e., |an| → 0 as n→∞.

(5) Let K be a non-empty compact subset of C. Show that there is a Hilbert space H and a bounded
linear operator T such that K = σ(T ). (Hint: You may find the previous problem helpful.)

(6) Let X be a complex Banach space and T ∈ B(X). Let r be a complex rational function with no
poles in σ(T ). Show that σ(r(T )) = {r(λ) : λ ∈ σ(T )}.

(7) Let H be a Hilbert space and {ei}∞i=1 ⊂ H be an orthonormal basis. Let T ∈ B(H). Define the
Hilbert-Schmidt norm of T to be

‖T‖HS :=
( ∞∑
i=1

‖Tei‖2H
) 1

2

.

Show that if the Hilbert-Schmidt norm of T is finite, then T is compact.

(8) Let H be a Hilbert space. We say that an operator T ∈ B(H) is normal if TT ∗ = T ∗T . Prove
that if T is normal, then ‖Tx‖H = ‖T ∗x‖H for every x ∈ H. Conclude that ker(T ) = ker(T ∗) =
(im(T ))⊥ = (im(T ∗))⊥.
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(9) Show that if T is normal, then σ(T ) = σap(T ).

(10) Let H be a Hilbert space and {ei}i∈N be a countable orthonormal basis. Define T : H → H by

T (ei) =
1

i
ei+1.

Show that T is compact but has no eigenvalues.

(11) Construct a bounded self-adjoint operator T on a non-zero Hilbert space such that T has no eigen-
values.

(12) Prove the Lax-Milgrim Theorem: Let H be a real Hilbert space and B : H ×H → R be a bilinear
functional. Assume that there exists C > 0 such that the following two estimates hold for every
x ∈ H and y ∈ H:

|B(x, y)| ≤ C‖x‖H‖y‖H
and

|B(x, y)| ≥ C−1‖x‖H‖y‖H .
Then for every f ∈ H∗, there exists x ∈ H such that

f(y) = B(x, y) for every y ∈ H.
(Hint: Define a map A : H → H such that for every x ∈ H, B(x, y) =< y,Ax > for every y (why
does this map exist?). Show that this map is bijective. Then use the Riesz representation theorem.)

(13) Let H be a Hilbert space and T ∈ B(H) be a compact self-adjoint operator. Prove the Fredholm
alternative: Consider the equations (in x) for λ ∈ R \ {0} and x0 ∈ H:

Tx = λx (1)

and
Tx = λx+ x0. (2)

Then exactly one of the following holds:
(a) (1) has no non-zero solutions and (2) has a unique solution.
(b) (1) has a finite dimensional space Nλ of solutions, where dim(Nλ) ≥ 1 and (2) has a solution if

and only if x0 ⊥ Nλ. Moreover, the space of solutions to (2) has dimension = dim(Nλ).


