
Part II — Linear Analysis

Definitions

Based on lectures by J. W. Luk
Notes taken by Dexter Chua

Michaelmas 2015

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Part IB Linear Algebra, Analysis II and Metric and Topological Spaces are essential

Normed and Banach spaces. Linear mappings, continuity, boundedness, and norms.
Finite-dimensional normed spaces. [4]

The Baire category theorem. The principle of uniform boundedness, the closed graph
theorem and the inversion theorem; other applications. [5]

The normality of compact Hausdorff spaces. Urysohn’s lemma and Tiezte’s exten-
sion theorem. Spaces of continuous functions. The Stone-Weierstrass theorem and
applications. Equicontinuity: the Ascoli-Arzelà theorem. [5]

Inner product spaces and Hilbert spaces; examples and elementary properties. Or-
thonormal systems, and the orthogonalization process. Bessel’s inequality, the Parseval
equation, and the Riesz-Fischer theorem. Duality; the self duality of Hilbert space. [5]

Bounded linear operations, invariant subspaces, eigenvectors; the spectrum and resolvent

set. Compact operators on Hilbert space; discreteness of spectrum. Spectral theorem

for compact Hermitian operators. [5]
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1 Normed vector spaces

Definition (Normed vector space). A normed vector space is a pair (V, ‖ · ‖),
where V is a vector space over a field F and ‖ · ‖ is a function ‖ · ‖ : V 7→ R,
known as the norm, satisfying

(i) ‖v‖ ≥ 0 for all v ∈ V , with equality iff v = 0.

(ii) ‖λv‖ = |λ|‖v‖ for all λ ∈ F,v ∈ V .

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v,w ∈ V .

Definition (Topological vector space). A topological vector space (V,U) is
a vector space V together with a topology U such that addition and scalar
multiplication are continuous maps, and moreover singleton points {v} are
closed sets.

Definition (Absolute convexity). Let V be a vector space. Then C ⊆ V is
absolutely convex (or balanced convex ) if for any λ, µ ∈ F such that |λ|+ |µ| ≤ 1,
we have λC + µC ⊆ C. In other words, if c1, c2 ∈ C, we have λc1 + µc2 ∈ C.

Definition (Bounded subset). Let V be a topological vector space. Then B ⊆ V
is bounded if for every open neighbourhood U ⊆ V of 0, there is some s > 0 such
that B ⊆ tU for all t > s.

Definition (Banach spaces). A normed vector space is a Banach space if it is
complete as a metric space, i.e. every Cauchy sequence converges.

1.1 Bounded linear maps

Definition (Bounded linear map). T : X → Y is a bounded linear map if there
is a constant C > 0 such that ‖Tx‖Y ≤ C‖x‖X for all x ∈ X. We write B(X,Y )
for the set of bounded linear maps from X to Y .

Definition (Norm on B(X,Y )). Let T : X → Y be a bounded linear map.
Define ‖T‖B(X,Y ) by

‖T‖B(X,Y ) = sup
‖x‖≤1

‖Tx‖Y .

1.2 Dual spaces

Definition (Dual space). Let V be a normed vector space. The dual space is

V ∗ = B(V,F).

We call the elements of V ∗ functionals. The algebraic dual of V is

V ′ = L(V,F),

where we do not require boundedness.
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1.3 Adjoint

Definition (Adjoint). Let X,Y be normal vector spaces. Given T ∈ B(X,Y ),
we define the adjoint of T , denoted T ∗, as a map T ∗ ∈ B(Y ∗, X∗) given by

T ∗(g)(x) = g(T (x))

for x ∈ X, y ∈ Y ∗. Alternatively, we can write

T ∗(g) = g ◦ T.

1.4 The double dual

Definition (Double dual). Let V be a normed vector space. Define V ∗∗ = (V ∗)∗.

1.5 Isomorphism

Definition (Isomorphism). Let X,Y be normed vector spaces. Then T : X → Y
is an isomorphism if it is a bounded linear map with a bounded linear inverse
(i.e. it is a homeomorphism).

We say X and Y are isomorphic if there is an isomorphism T : X → Y .
We say that T : X → Y is an isometric isomorphism if T is an isomorphism

and ‖Tx‖Y = ‖x‖X for all x ∈ X.
X and Y are isometrically isomorphic if there is an isometric isomorphism

between them.

1.6 Finite-dimensional normed vector spaces

Definition (Equivalent norms). Let V be a vector space, and ‖ · ‖1, ‖ · ‖2 be
norms on V . We say that these are equivalent if there exists a constant C > 0
such that for any v ∈ V , we have

C−1‖v‖2 ≤ ‖v‖1 ≤ C‖v‖2.

1.7 Hahn–Banach Theorem

Definition (Partial order). A relation ≤ on a set X is a partial order if it
satisfies

(i) x ≤ x (reflexivity)

(ii) x ≤ y and y ≤ x implies x = y (antisymmetry)

(iii) x ≤ y and y ≤ z implies x ≤ z (transitivity)

Definition (Total order). Let (S,≤) be a partial order. T ⊆ S is totally ordered
if for all x, y ∈ T , either x ≤ y or y ≤ x, i.e. every two things are related.

Definition (Upper bound). Let (S,≤) be a partial order. S′ ⊆ S subset. We
say b ∈ S is an upper bound of this subset if x ≤ b for all x ∈ S′.

Definition (Maximal element). Let (S,≤) be a partial order. Then m ∈ S is a
maximal element if x ≥ m implies x = m.

Definition (Reflexive). We say V is reflexive if φ(V ) = V ∗∗.
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2 Baire category theorem

2.1 The Baire category theorem

Definition (Nowhere dense set). Let X be a topological space. A subset E ⊆ X
is nowhere dense if Ē has empty interior.

Definition (First/second category, meagre and residual). Let X be a topological
space. We say that Z ⊆ X is of first category or meagre if it is a countable union
of nowhere dense sets.

A subset is of second category or non-meagre if it is not of first category.
A subset is residual if X \ Z is meagre.

2.2 Some applications
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3 The topology of C(K)

Definition (Hausdorff space). A topological space X is Hausdorff if for all
distinct p, q ∈ X, there are Up, Uq ⊆ X that are open subsets of X such that
p ∈ Up, q ∈ Uq and Up ∩ Uq = ∅.

Notation. C(K) is the set of continuous functions f : K → R with the norm

‖f‖C(K) = sup
x∈K
|f(x)|.

3.1 Normality of compact Hausdorff spaces

Definition (Normal space). A topological space X is normal if for every disjoint
pair of closed subsets C1, C2 of X, there exists U1, U2 ⊆ X disjoint open such
that C1 ⊆ U1, C2 ⊆ U2.

Definition (Ti space). A topological space X has the T1 property if for all
x, y ∈ X, where x 6= y, there exists U ⊆ X open such that x ∈ U and y 6∈ U .

A topological space X has the T2 property if X is Hausdorff.
A topological space X has the T3 property if for any x ∈ X, C ⊆ X closed

with x 6∈ C, then there are Ux, UC disjoint open such that x ∈ Ux, C ⊆ UC .
These spaces are called regular.

A topological space X has the T4 property if X is normal.

3.2 Tietze-Urysohn extension theorem

3.3 Arzelà-Ascoli theorem

Definition (Equicontinuous). Let K be a topological space, and F ⊆ C(K).
We say F is equicontinuous at x ∈ K if for every ε, there is some U which is an
open neighbourhood of x such that

(∀f ∈ F )(∀y ∈ U) |f(y)− f(x)| < ε.

We say F is equicontinuous if it is equicontinuous at x for all x ∈ K.

Definition (ε-net). Let X be a metric space, and let E ⊆ X. For ε > 0, we say
that N ⊆ X is an ε-net for E if and only if

⋃
x∈NB(x, ε) ⊇ E.

Definition (Totally bounded subset). Let X be a metric space, and E ⊆ X.
We say that E is totally bounded for every ε, there is a finite ε-net Nε for E.

3.4 Stone–Weierstrass theorem

Definition (Algebra). A vector space (V,+) is called an algebra if there is an
operation (called multiplication) · : V → V such that (V,+, · ) is a rng (i.e. ring
not necessarily with multiplicative identity). Also, λ(v ·w) = (λv) ·w = v · (λw)
for all λ ∈ F, v,w ∈ V .

If V is in addition a normed vector space and

‖v ·w‖V ≤ ‖v‖V · ‖w‖V

for all v,w ∈ V , then we say V is a normed algebra.
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If V complete normed algebra, we say V is a Banach algebra.
If V is an algebra that is commutative as a rng, then we say V is a commutative

algebra.
If V is an algebra with multiplicative identity, then V is a unital algebra.

8



4 Hilbert spaces II Linear Analysis (Definitions)

4 Hilbert spaces

4.1 Inner product spaces

Definition (Inner product). Let V be a vector space over R or C. We say
p : V × V → R or C is an inner product on V it satisfies

(i) p(v,w) = p(w,v) for all v,w ∈ V . (antisymmetry)

(ii) p(λ1v1 + λ2v2,u) = λ1p(v1,w) + λ2p(v2,w). (linearity in first argument)

(iii) p(v,v) ≥ 0 for all v ∈ V and equality holds iff v = 0. (non-negativity)

We will often denote an inner product by p(v,w) = 〈v,w〉. We call (V, 〈 · , · 〉)
an inner product space.

Definition (Orthogonality). In an inner product space, v and w are orthogonal
if 〈v,w〉 = 0.

Definition (Euclidean space). A normed vector space (V, ‖ · ‖) is a Euclidean
space if there exists an inner product 〈 · , · 〉 such that

‖v‖ =
√
〈v,v〉.

Definition (Hilbert space). A Euclidean space (E, ‖ · ‖) is a Hilbert space if it
is complete.

Definition (Orthogonal space). Let E be a Euclidean space and S ⊆ E an
arbitrary subset. Then the orthogonal space of S, denoted by S⊥ is given by

S⊥ = {v ∈ E : ∀w ∈ S, 〈v,w〉 = 0}.

4.2 Riesz representation theorem

4.3 Orthonormal systems and basis

Definition (Orthonormal system). Let E be a Euclidean space. A set of unit
vectors {eα}α∈A is called an orthonormal system if 〈eα, eβ〉 = 0 if α 6= β.

Definition (Maximal orthonormal system). Let E be a Euclidean space. An
orthonormal space is called maximal if it cannot be extended to a strictly larger
orthonormal system.

Definition (Hilbert space basis). Let H be a Hilbert space. A maximal or-
thonormal system is called a Hilbert space basis.

4.4 The isomorphism with `2

4.5 Operators

Definition (Spectrum and resolvent set). Let X be a Banach space and T ∈
B(X), we define the spectrum of T , denoted by σ(T ) by

σ(t) = {λ ∈ C : T − λI is not invertible}.

The resolvent set, denoted by ρ(T ), is

ρ(t) = C \ σ(T ).
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Definition (Resolvent). Let X be a Banach space. The resolvent is the map
R : ρ(T )→ B(X) given by

λ 7→ (T − λI)−1.

Definition (Eigenvalue). We say λ is an eigenvalue of T if ker(T − λI) 6= {0}.

Definition (Point spectrum). Let X be a Banach space. The point spectrum is

σp(T ) = {λ ∈ C : λ is an eigenvalue of T}.

Definition (Approximate point spectrum). Let X be a Banach space. The
approximate point spectrum is defined as

σap(X) = {λ ∈ C : ∃{xn} ⊆ X : ‖xn‖X = 1 and ‖(T − λI)xn‖X → 0}.

Definition (Compact operator). Let X,Y be Banach spaces. We say T ∈
L(X,Y ) is compact if for every bounded subset E of X, T (E) is totally bounded.

We write B0(X) for the set of all compact operators T ∈ B(X).

4.6 Self-adjoint operators

Definition (Self-adjoint operator). Let H be a Hilbert space, T ∈ B(H). Then
T is self-adjoint or Hermitian if for all x,y ∈ H, we have

〈Tx,y〉 = 〈x, Ty〉.
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