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Statistical Physics: Example Sheet 1

H. Reall, Lent 2017

1. Establish Stirling’s formula. Start with

N ! =

∫ ∞

0

e−xxNdx ≡
∫ ∞

0

e−F (x) dx.

Let the minimum of F be at x0. Approximate F (x) by F (x0)+F ′′(x0)(x−x0)
2/2 and,

using one further approximation, show that

N ! ≈
√
2πNNNe−N

We will mostly be interested in N ∼ 1023. But what is the accuracy of Stirling’s

formula for the paltry value of N = 5?

2i. Show that two coupled systems in the microcanonical ensemble maximize the total

entropy at equal temperature if the heat capacity of both systems is positive.

ii. In the canonical ensemble, show that the fluctuations in energy ∆E2 = 〈E2〉−〈E〉2
are proportional to the heat capacity.

iii. Show that in the canonical ensemble the Gibbs entropy can be written as

S = k
∂

∂T
(T logZ)

3. Consider a system consisting of N spin-1
2
particles, each of which can be in one of

two quantum states, ‘up’ and ‘down’. In a magnetic field B, the energy of a spin in the

up/down state is ±µB/2 where µ is the magnetic moment. Show that the partition

function is

Z = 2N coshN

(

βµB

2

)

Find the average energy E and entropy S. Check that your results for both quantities

make sense in at T = 0 and T → ∞.

Compute the magnetisation of the system, defined by M = N↑ − N↓ where N↑/↓ are

the number of up/down spins. The magnetic susceptibility is defined as χ ≡ ∂M/∂B.

Derive Curie’s Law which states that at high temperatures χ ∼ 1/T .
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4. Consider a system of N interacting spins. At low temperatures, the interactions en-

sure that all spins are either aligned or anti-aligned with the z axis, even in the absence

of an external field. At high temperatures, the interactions become less important and

spins can point in either ±ẑ direction. If the heat capacity takes the form,

CV = Cmax

(2T

T0

− 1
)

for
T0

2
< T < T0 and CV = 0 otherwise .

determine Cmax.

5. Compute the partition function of a quantum harmonic oscillator with frequency ω

and energy levels

En = ~ω

(

n+
1

2

)

n ∈ Z

Find the average energy E and entropy S as a function of temperature T .

Einstein constructed a simple model of a solid as N atoms, each of which vibrates with

the same frequency ω. Treating these vibrations as a harmonic oscillator, show that at

high temperatures, kT ≫ ~ω, the Einstein model correctly predicts the Dulong-Petit

law for the heat capacity of a solid,

CV = 3Nk

At low temperatures, the heat capacity of many solids is experimentally observed to

tend to zero as CV ∼ T 3. Was Einstein right about this?

6i. A quantum violin string can vibrate at frequencies ω, 2ω, 3ω and so on. Each

vibration mode can be treated as an independent harmonic oscillator. Ignore the zero

point energy, so that the mode with frequency pω has energy E = n~pω, n ∈ Z. Write

an expression for the average energy of the string at temperature T . Show that at large

temperatures the free energy is given by,

F = −π2

6

k2T 2

~ω

(Hint: You may need the value ζ(2) = π2/6)

ii∗. Show that the partition function of the quantum violin string can be written as

Z =
∑

N

p(N)e−βEN

where EN = N~ω and p(N) counts the number of partitions of N . It can be shown that

this formula also applies to a relativistic string if we use EN =
√
N~ω. Show that the

2
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relativistic string has a maximum temperature, known as the Hagedorn temperature,

kTmax =
√
6~ω/2π.

(Hint: Google the Hardy-Ramanujan formula).

7. The purpose of this question is to provide a universal way of looking at all the

ensembles, starting from the Gibbs entropy for a probability distribution p(n),

S = −k
∑

n

p(n) log p(n)

i. By implementing the constraint
∑

n p(n) = 1 through the use of a Lagrange multi-

plier show that, when restricted to states of fixed energy E, the entropy is maximised

by the microcanonical ensemble in which all such states are equally likely. Further

show that in this case the Gibbs entropy coincides with the Boltzmann entropy.

ii. Show that at fixed average energy 〈E〉 =
∑

n p(n)En, the entropy is maximised

by the canonical ensemble. Moreover, show that the Lagrange multiplier imposing the

constraint is proportional to β, the inverse temperature. Confirm that maximizing the

entropy is equivalent to minimizing the free energy.

iii. Show that at fixed average energy 〈E〉 and average particle number 〈N〉, the

entropy is maximised by the grand canonical ensemble. What is the interpretation of

the Lagrange multiplier in this case?

8. Let ZN be the canonical partition function for N particles. Show that the grand

partition function Z can be written as

Z(µ, V, T ) =
∞
∑

N=0

ξNZN(V, T )

where ξ = eµβ is called the fugacity. (It will be denoted z in the lecture notes but I

wanted to save you from having to write three different types of z). Show that

〈N〉 = ξ
∂

∂ξ
logZ , (∆N)2 =

(

ξ
∂

∂ξ

)2

logZ .

If ZN = ZN
1 /N ! show that Z(ξ, V, T ) = eξZ1(V,T ). For this case, show also that

∆N

〈N〉 =
1

〈N〉1/2
.

9. Make use of the fact that the free energy F (T, V,N) of a thermodynamic system

must be extensive, to explain why

F = V
∂F

∂V

∣

∣

∣

∣

T,N

+N
∂F

∂N

∣

∣

∣

∣

T,V

.

3
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The Gibbs free energy is defined as G = F + pV . Use the result above for F to show

that the Gibbs free energy can be expressed as G = µN . Explain why this result was

to be expected from the scaling behaviour of G.

10. A neutral gas consists of Ne electrons e
−, Np protons p

+ and NH Hydrogen atoms

H. An electron and proton can combine to form Hydrogen,

e− + p+ ↔ H

At fixed temperature and volume, the free energy of the system is F (T, V ;Ne, Np, NH).

We can define a chemical potential for each of the three species as

µi =
∂F

∂Ni

By minimizing the free energy, together with suitable constraints on the particle num-

bers, show that the condition for equilibrium is

µe + µp = µH

Such reactions usually take place at constant pressure, rather than constant volume.

What quantity should you consider instead of F in this case?

4
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Statistical Physics: Example Sheet 2

H. Reall, Lent 2017

1. A particle moving in one dimension has Hamiltonian

H =
p2

2m
+ λq4

Show that the heat capacity for a gas of N such particles is CV = 3Nk/4. Explain why

the heat capacity is the same regardless of whether the particles are distinguishable or

indistinguishable.

2. Derive the Sackur-Tetrode formula for the entropy of an ideal monatomic gas with

Z = ZN
1
/N !. Show that the entropy is not extensive if we fail to include the N ! factor.

3. Consider an ultra-relativistic gas ofN spinless particles obeying the energy-momentum

relation E = pc, where c is the speed of light. (Here ultra-relativistic means that

pc ≫ mc2 where m is the mass of the particle). Show that the canonical partition

function is given by

Z(V, T ) =
1

N !

[

V

π2

(

kT

~c

)3
]N

Hence show that an ultra-relativistic gas also obeys the familiar ideal gas law pV =

NkT .

4*. Consider a perfect classical gas of diatomic molecules for which each molecule has

a magnetic moment m aligned along its axis. Let there be a magnetic field B, so that

each molecule has a potential energy −mB cos θ (θ being the angle between the axis

of the molecule and the magnetic field). Show that the rotational part of the partition

function is Zrot = (zrot)
N where

zrot =
[ 2I

~2mBβ2

]

sinh(mβB) (1)

Evaluate the total magnetisation, M = −∂F/∂B and sketch its dependence upon

mβB. Show that, for large mβB, the average value of the potential energy is NkT −

NmB(1 + 2e−2mβB + . . .).

5. A classical gas in three dimensions is constrained by a wall to move in the x ≥ 0

region of space. A potential

V (x) =
1

2
αx2 x ≥ 0

1
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attracts the atoms to the wall. The atoms are free to move in an area A in the y and z

directions. If the gas is at uniform temperature T , show that the number of particles

varies as

N(x) = 2N

√

αβ

2π
e−αβx2/2

By considering a slab of gas between x and x+∆x, show that locally the gas continues

to obey the ideal gas law. Hence determine the pressure that the gas exerts on the

wall.

6. Consider the neutral gas of electrons, protons and Hydrogen discussed in Question

10 of Examples Sheet 1. You know from Quantum Mechanics that the Hydrogen atom

has binding energy E = −∆ (where ∆ = 13.6 eV ). Let the number of Hydrogen atoms

be NH = (1 − x)N and the number of electrons and protons be Ne = Np = xN with

x ∈ [0, 1]. By treating the system as three ideal gases in the grand canonical ensemble,

use the equilibrium condition µH = µe + µp to show that

x2

1− x
=

V

N

(

memp

2π~2mH

)3/2

(kT )3/2 e−∆/kT

7. Compute the equation of state, including the second virial coefficient, for a gas of

non-interacting hard discs of radius r0/2 in two dimensions.

8. Determine the density of states for non-relativistic particles in d = 2 and d = 1

dimensions. (You should find that the density is constant for particles on a plane and

decreases with energy for particles on a line)

9. In many experiments, particles are not trapped in a box, but instead in a quadratic

potential. In d-dimensions, the potential energy felt by a single particle is

V (~x) =
1

2

d
∑

i=1

ω2

i x
2

i

Compute the density of states g(E) in d = 3 and d = 2 dimensions assuming that E is

large enough that the spectrum may be treated as a continuum (i.e. E ≫ ~ωi).

(Hint: First determine G(E), the number of states with energy less than E)

10. Consider blackbody radiation at temperature T . Show that the average number

of photons grows as T 3. What is the mean photon energy? What is the most likely

energy of a photon?

2
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11. Recall from the lectures that a black body at temperature T absorbs all the

radiation that falls on it and emits radiation at the rate E = σT 4 per unit area, where

σ is Stefan’s constant. A black, perfectly conducting sphere orbits a star of radius

7 × 105 km at a distance of 1.5 × 108 km. The star radiates like a black body at

temperature 6000K. Can you make a gin and tonic on this sphere?

12. The purpose of this question is to explain why the microwave background radiation

still has a black body spectrum, even though it has not been in thermal equilibrium

with matter since very early in the universe’s history.

Consider a region of volume V in the cosmos containing black body radiation of

temperature T . Suppose the cosmos expands (slowly) by a scale factor α, so that

the wavevector ~k and angular frequency ω of each electromagnetic radiation mode are

rescaled by 1/α. Explain why you should expect the mean number of photons in each

mode not to change. Show that the Planck distribution is valid after the expansion

provided the temperature is also rescaled by 1/α.

Verify, from the formula for the entropy of black body radiation, that the entropy in

the expanded volume is the same as the original entropy, thus confirming the adiabatic

character of the expansion.

13. Suppose that you don’t know the value of Boltzmann’s constant. What experi-

ments could you do on a box of gas to determine how many atoms it contained?

3
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Statistical Physics: Example Sheet 3

H. Reall, Lent 2017

1. A Wigner crystal is a triangular lattice of electrons in a two dimensional plane.

The longitudinal vibration modes of this crystal are bosons with dispersion relation

ω = α
√
k. Show that, at low temperatures, these modes provide a contribution to the

heat capacity that scales as C ∼ T 4.

2. Use the fact that the density of states is constant in d = 2 dimensions to show that

Bose-Einstein condensation does not occur no matter how low the temperature.

3. Consider N non-interacting, non-relativistic bosons, each of mass m, in a cubic

box of side L. Show that the transition temperature scales as Tc ∼ N2/3/mL2 and

the 1-particle energy levels scale as En ∝ 1/mL2. Show that when T < Tc, the mean

occupancy of the first few excited 1-particle states is large, but not as large as O(N).

4. Consider an ideal gas of bosons whose density of states is given by g(E) = CEα−1

for some constants C and α > 1. Derive an expression for the critical temperature Tc,

below which the gas experiences Bose-Einstein condensation.

In BEC experiments, atoms are confined in magnetic traps which can be modelled

by a quadratic potential of the type discussed in Question 9 of Example Sheet 2.

Determine Tc for bosons in a three dimensional trap. Show that bosons in a two

dimensional trap will condense at suitably low temperatures. In each case, calculate

the number of particles in the condensate as a function of T < Tc,

5. A system has two energy levels with energies 0 and ǫ. These can be occupied by

(spinless) fermions from a particle and heat bath with temperature T and chemical

potential µ. The fermions are non-interacting. Show that there are four possible

microstates, and show that the grand partition function is

Z(µ, V, T ) = 1 + z + ze−βǫ + z2e−βǫ

where z = eβµ. Evaluate the average occupation number of the state of energy ǫ, and

show that this is compatible with the result of the calculation of the average energy of

the system using the Fermi-Dirac distribution. How could you take account of fermion

interactions?

1
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6. In an ideal Fermi gas the average occupation numbers of the single particle state

|r〉 is nr. Show that the entropy

S =
∂

∂T
(kT logZ)µ,V .

can be written as

S = −k
∑

r

[(1− nr) log(1− nr) + nr log nr]

Find the corresponding expression for an ideal Bose gas.

Show that (∆nr)
2 = nr (1 − nr) for the ideal Fermi gas. Comment on this result,

especially for very low T . What is the corresponding result for an ideal Bose gas? How

does ∆n0/n0 behave at low T for the Bose gas?

7. As a simple model of a semiconductor, suppose that there are N bound electron

states, each having energy −∆ < 0, which are filled at zero temperature. At non-zero

temperature some electrons are excited into the conduction band, which is a continuum

of positive energy states. The density of these states is given by g(E)dE = A
√
EdE

where A is a constant. Show that at temperature T the mean number n̄c of excited

electrons is determined by the pair of equations

nc =
N

e(µ+∆)/kT + 1
=

∫

∞

0

g(E) dE

e(E−µ)/kT + 1
.

Show also that, if nc ≪ N and kT ≪ ∆ and eµ/kT ≪ 1, then

2µ ≈ −∆+ kT log

[

2N

A
√

π(kT )3

]

.

8. Consider an almost degenerate Fermi gas of electrons with spin degeneracy gs = 2.

At high temperatures, show that the equation of state is given by

pV = NkT

(

1 +
λ3N

4
√
2gsV

+ . . .

)

At low temperatures, show that the chemical potential is

µ = EF

(

1− π2

12

(

kT

EF

)2

+ . . .

)

2
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and the average energy is

E =
3NEF

5

(

1 +
5π2

12

(

kT

EF

)2

+ . . .

)

9. Consider a gas of non-interacting ultra-relativistic electrons, whose mass may be

neglected. Find an integral for the grand potential Φ. Show that 3pV = E. Show that

at zero temperature pV 4/3 = const. Show that at high temperatures E = 3NkT and

the equation of state coincides with that of a classical ultra-relativistic gas.

10. A crude non-relativistic model of a white dwarf star consists of a sphere of radius

R of free electrons at zero temperature together with a sufficient number of protons

to make the star electrically neutral. Determine the energy Eel of all the electrons.

Assuming the gravitational energy of the star is given by Egrav = −γM2/R, where M

is the total mass of the star, show that if the state of equilibrium of the star is given

by minimising the total energy (Egrav + Eel) then R is proportional to M−
1

3 . What

justification can be given for neglecting the proton zero-point energy?

3
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Statistical Physics: Example Sheet 4

H. Reall, Lent 2017

1i. By examining variations in E, F , H and G, derive the four different Maxwell

relations for the partial derivatives of S, p, T and V .

ii. Obtain the partial derivative identity

∂S

∂T

∣

∣

∣

∣

p

=
∂S

∂T

∣

∣

∣

∣

V

+
∂S

∂V

∣

∣

∣

∣

T

∂V

∂T

∣

∣

∣

∣

p

iii. Obtain the partial derivative identity

∂p

∂T

∣

∣

∣

∣

V

∂T

∂V

∣

∣

∣

∣

p

∂V

∂p

∣

∣

∣

∣

T

= −1

2. Consider a gas with a fixed number of molecules. Two experimentally accessible

quantities are CV , the heat capacity at fixed volume and Cp, the heat capacity at fixed

pressure, defined as

CV = T
∂S

∂T

∣

∣

∣

∣

V

, Cp = T
∂S

∂T

∣

∣

∣

∣

p

Using the results of the previous question, show that:

i. Cp − CV = T
∂V

∂T

∣

∣

∣

∣

p

∂p

∂T

∣

∣

∣

∣

V

= −T
∂V

∂T

∣

∣

∣

∣

2

p

∂p

∂V

∣

∣

∣

∣

T

ii.
∂E

∂V

∣

∣

∣

∣

T

= T
∂p

∂T

∣

∣

∣

∣

V

− p

iii.
∂E

∂p

∣

∣

∣

∣

T

= −T
∂V

∂T

∣

∣

∣

∣

p

− p
∂V

∂p

∣

∣

∣

∣

T

iv.
∂CV

∂V

∣

∣

∣

∣

T

= T
∂2p

∂T 2

∣

∣

∣

∣

V

v.
∂Cp

∂p

∣

∣

∣

∣

T

= −T
∂2V

∂T 2

∣

∣

∣

∣

p

1
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3. Consider a classical ideal gas with equation of state pV = NkT and constant heat

capacity CV = Nk α for some α. Use the results above to show that Cp = Nk(α + 1),

and that the entropy is

S = Nk log

(

V

N

)

+ Nk α log T + const .

Deduce that, for a reversible adiabatic process (with dS = 0), V T α is constant and,

equivalently, pV γ is constant, where γ = Cp/CV .

4. This question describes the Joule-Thomson process (also known as the Joule-Kelvin

process). The figure shows a thermally insulated pipe which has a porous barrier

separating two halves of the pipe. A gas of volume V1, initially on the left-hand side

of the pipe, is forced by a piston to go through the porous barrier using a constant

pressure p1. Assume the process can be treated quasistatically. As a result the gas flows

to the right-hand side, resisted by another piston which applies a constant pressure p2
(p2 < p1). Eventually all of the gas occupies a volume V2 on the right-hand side.

i. Show that enthalpy, H = E + pV , is conserved.

ii. Find the Joule-Thomson coefficient µJT ≡ (∂T
∂p
)H in terms of T , V , the heat capacity

at constant pressure Cp, and the volume coefficient of expansion α ≡ 1

V
(∂V
∂T

)p. (Hint:

You will need to use a Maxwell relation).

iii. What is µJT for an ideal gas?

iv. If we wish to use the Joule-Thomson process to cool a real (non-ideal) gas, what

must the sign of µJT be?

v. Derive µJT for a gas obeying the van der Waals equation of state to leading order

in the density N/V . For what values of temperature T can the gas be cooled?

2
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5. A (non-ideal) gas has constant heat capacities CV and Cp. Using the results of

Question 2, show that its equation of state can be written as

(Cp − CV )T = (p+ a)(V + b)

where a and b are constants. Show also that E is of the form E = CV T + f(V ), find

f(V ) and calculate the entropy as a function of V and T .

6. In this question we will determine the critical exponent β for the van der Waals

equation of state. Starting from the law of corresponding states

p̄ =
8T̄

3v̄ − 1
− 3

v̄2

let T̄ = 1 + t and v̄ = 1 + φ where t and φ are small. Expand in φ to show that

p̄ = 1− 3

2
φ3 +O(φ4) + t

[

4− 6φ+O(φ2)
]

Now, at fixed small t, let φl(t) and φg(t) be the values of φ corresponding to the liquid

and gas phases respectively. The Maxwell construction gives

0 =

∫ g

l

v̄dp̄ =

∫ g

l

(1 + φ)dp̄ =

∫ g

l

φdp̄

where the integral is evaluated along an isotherm and we used p̄l(t) = p̄g(t) in the

final step. Now change integration variable from p̄ to φ and evaluate the integral to

leading order to show that either φl(t) = −φg(t) or φl(t)
2 + φg(t)

2 + 8t/3 = 0. Finally

use p̄l(t) = p̄g(t) to exclude the latter case, and in the former case to deduce that

φg(t) ∝ (−t)1/2 and hence

v̄g − v̄l ∝ (Tc − T )1/2

7. The Dieterici equation of state for a gas is

p =
kT

v − b
exp

(

− a

kTv

)

where v = V/N . Find the critical point and compute the ratio pcvc/kTc. Calculate the

critical exponents β, δ and γ.

3
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8. The q-state Potts model is a generalisation of the Ising model. At each lattice site

lives a variable σi ∈ {1, 2, . . . , q}. The Hamiltonian is given by the sum over nearest

neighbours

HPotts = −3J

2

∑

〈ij〉

δσi σj

How many ground states does the system have at T = 0?

Show that the 3-state Potts model is equivalent to the Hamiltonian

H = −J
∑

〈ij〉

~si · ~sj

where ~si take values in the set

~si ∈
{(

1

0

)

,

(

−1/2√
3/2

)

,

(

−1/2

−
√
3/2

)}

By developing a mean field theory for H determine the self-consistency requirement

for the magnetisation ~m = 〈~si〉. Compute the mean field free energy and show that

theory undergoes a first order phase transition even in the absence of an external field.

[Hint: This calculation will be simpler if you argue that you can focus on magneti-

sation vectors of the form ~m = (m, 0).]

9. Consider the free energy

F = a(T )m2 + b(T )m4 + c(T )m6

where b(T ) < 0 and, for stability, c(T ) > 0 for all T . Sketch the possible behaviours

of the free energy as a(T ) varies and, in each case, identify the ground state and

metastable states. Show that the system undergoes a first order phase transition at

some temperature Tc. Determine the value a(Tc) and the discontinuity in m at the

transition.
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