
Part III — Quantum Computation

Theorems

Based on lectures by R. Jozsa
Notes taken by Dexter Chua

Michaelmas 2016

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Quantum mechanical processes can be exploited to provide new modes of information
processing that are beyond the capabilities of any classical computer. This leads to
remarkable new kinds of algorithms (so-called quantum algorithms) that can offer a
dramatically increased efficiency for the execution of some computational tasks. Notable
examples include integer factorisation (and consequent efficient breaking of commonly
used public key crypto systems) and database searching. In addition to such potential
practical benefits, the study of quantum computation has great theoretical interest,
combining concepts from computational complexity theory and quantum physics to
provide striking fundamental insights into the nature of both disciplines.

The course will cover the following topics:

Notion of qubits, quantum logic gates, circuit model of quantum computation. Basic
notions of quantum computational complexity, oracles, query complexity.

The quantum Fourier transform. Exposition of fundamental quantum algorithms
including the Deutsch-Jozsa algorithm, Shor’s factoring algorithm, Grovers searching
algorithm.

A selection from the following further topics (and possibly others):

(i) Quantum teleportation and the measurement-based model of quantum computa-
tion;

(ii) Lower bounds on quantum query complexity;

(iii) Phase estimation and applications in quantum algorithms;

(iv) Quantum simulation for local hamiltonians.

Pre-requisites

It is desirable to have familiarity with the basic formalism of quantum mechanics

especially in the simple context of finite dimensional state spaces (state vectors, Dirac

notation, composite systems, unitary matrices, Born rule for quantum measurements).

Prerequisite notes will be provided on the course webpage giving an account of the
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necessary material including exercises on the use of notations and relevant calculational

techniques of linear algebra. It would be desirable for you to look through this material

at (or slightly before) the start of the course. Any encounter with basic ideas of classical

theoretical computer science (complexity theory) would be helpful but is not essential.
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2 Quantum computation

Lemma. For any boolean function f : Bm → Bn, the function

f̃ : Bm+n → Bm+n

(x, y) 7→ (x, y ⊕ f(x)),

is invertible, and in fact an involution, i.e. is its own inverse.

Lemma. Let g : Bk → Bk be a reversible permutation of k-bit strings. Then
the linear map on Ck defined by

A : |x〉 7→ |g(x)〉

on k qubits is unitary.
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3 Some quantum algorithms

3.1 Balanced vs constant problem

3.2 Quantum Fourier transform and periodicities

Proposition. QFT is unitary.

3.3 Shor’s algorithm

Lemma. For a1, a2, · · · , a` any positive reals, we set

p0 = 0 q0 = 1

p1 = 1 q1 = a1

We then define

pk = akpk−1 + pk−2

qk = akqk−1 + qk−2

Then we have

(i) We have

[a1, · · · , ak] =
pk
qk
.

(ii) We also have
qkpk−1 − pkqk−1 = (−1)k.

In particular, pk and qk are coprime.

3.4 Search problems and Grover’s algorithm

Theorem. Let A be any quantum algorithm that solves the unique search
problem with probability 1− ε (for any constant ε), with T queries. Then T is
at least O(

√
N). In fact, we have

T ≥ π

4
(1− ε)

√
N.

3.5 Amplitude amplification

Theorem (Amplitude amplification thoerem). In the 2-dimensional subspace
spanned by |ψg〉 and |ψ〉 (or equivalently by |ψg〉 and |ψb〉), where

|ψ〉 = sin θ |ψg〉+ cos θ |ψb〉 ,

we have that Q is rotation by 2θ.
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4 Measurement-based quantum computing

Theorem. Let C be any quantum circuit on n qubits with a sequence of
gates U1, · · · , UK (in order). We have an input state |ψin〉, and we perform
Z-measurements on the output states on specified qubits j = i1, · · · , ik to obtain
a k-bit string.

We can always simulate the process as follows:

(i) The starting resource is a graph state |ψG〉, where G is chosen depending
on the connectivity structure of C.

(ii) The computational steps are 1-qubit measurements of the form Mi(α), i.e.
measurement in the basis B(α). This is adaptive — α may depend on the
(random) outcomes s1, s2, · · · of previous measurements.

(iii) The computational process is a prescribed (adaptive) sequence Mi1(α1),
Mi2(α2), · · · , MiN (αN ), where the qubit labels i1, i2, · · · , iN all distinct.

(iv) To obtain the output of the process, we perform further measurements
M(Z) on k specified qubits not previously measured, and we get results
si1 , · · · , sik , and finally the output is obtained by further (simple) classical
computations on si1 , · · · , sik as well as the previous Mi(α) outcomes.

Lemma (J-lemma). Given any 1-qubit state |ψ〉, consider the state

E12(|ψ〉1 |+〉2).

Suppose we now measure M1(α), and suppose the outcome is s1 ∈ {0, 1}. Then
after measurement, the state of 2 is

Xs1J(α) |ψ〉 .

Also, two outcomes s = 0, 1 always occurs with probability 1
2 , regardless of the

values of |ψ〉 b, α.

Lemma. Suppose we start with a state

|ψ〉1S = |0〉1 |a〉S + |1〉1 |b〉S .

We then apply the J-lemma process by adding a new qubit |+〉 for 2 6∈ S, and
then query 1. Then the resulting state is

Xs12 J2(α) |ψ〉2S .

Lemma (Concatenation lemma). If we concatenate the process of J-lemma on a
row of qubits 1, 2, 3, · · · to apply a sequence of J(α) gates, then all the entangling
operators E12,E23, · · · can be done first before any measurements are applied.
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5 Phase estimation algorithm

Theorem. If the measurements in the above algorithm give y0, y1, · · · , yn and
we output

θ = 0.y0y1 · · · yn−1,

then

(i) The probability that θ is ϕ to n digits is at least 4
π2 .

(ii) The probability that |θ − ϕ| ≥ ε is at most O(1/(2nε)).
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6 Hamiltonian simulation

Proposition.

‖A+B‖ ≤ ‖A‖+ ‖B‖
‖AB‖ ≤ ‖A‖ ‖B‖ .

Theorem (Solovay-Kitaev theorem). Let U be a unitary operator on k qubits
and S any universal set of quantum gates. Then U can be approximated to
within ε using O(logc 1

ε ) from S, where c < 4.

Lemma. Let {Ui} and {Vi} be sets of unitary operators with

‖Ui − Vi‖ ≤ ε.

Then
‖Um · · ·U1 − Vm · · ·V1‖ ≤ mε.

Proposition. Let

H =

m∑
j=1

Hj

be any k-local Hamiltonian with commuting terms.
Then for any t, e−iHt can be approximated to within ε by a circuit of

O
(
m poly

(
log
(m
ε

)))
gates from any given universal set.

Lemma (Lie-Trotter product formula). Let A,B be matrices with ‖A‖, ‖B‖ ≤
K < 1. Then we have

e−iAe−iB = e−i(A+B) +O(K2).
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