
QUANTUM COMPUTATION – EXERCISE SHEET 1
Richard Jozsa rj310@cam.ac.uk (October 2016)

(1) Let |ψ〉 be any state of n qubits and let 1 ≤ A 6= B ≤ n. Using the extended Born rule
show that the output distribution of a measurement of qubit A is unaffected by whether or not
qubit B is measured prior to the measurement of A.
Remark: this is part of the no-signalling principle in quantum mechanics viz. suppose that A
ad B are distantly separated in space. Then although a measurement of B immediately before
that of A instantaneously changes the state description at A (into a probabilistic mixture of
the post-measurement states of B’s measurement), A cannot notice this change by any local
measurement statistics (or indeed in any other way).

(2) (Principle of deferred measurements)
(a) Consider the quantum controlled operation W on m qubits (with qubit 1 as the control)
given by the following descriptrion:
if qubit 1 is |0〉 apply U to qubits 2, . . . ,m;
if qubit 1 is |1〉 apply V to qubits 2, . . . ,m.
Show howW may be implemented using only gates from the set U , V , controlled−U , controlled−V
and their inverses.
(b) The principle of deferred measurements states:
Any circuit with intermediate measurements can always be replaced by an equivalent circuit
having only unitary gates and all measurements only at the end of the circuit; if the interme-
diate measurement results are used at any stage in the original circuit for choice of later gates,
then these classically controlled operations can be replaced by quantum controlled operations
(or the kind in (a)). To see why this is true consider the following illustrative example of two
computational processes on three qubits initially in state |0〉1 |0〉2 |0〉3:
(COMP1): apply unitary gate A to the three qubits to obtain |α〉 = A |0〉1 |0〉2 |0〉3. Then
measure qubit 1. If the result is 0 (resp. 1) then apply unitary U (resp. V ) to qubits 2 and 3.
Finally measure qubit 2 to obtain the output.
(COMP2): apply unitary gate A to the three qubits to obtain |α〉 = A |0〉1 |0〉2 |0〉3. Introduce
an extra ‘ancilla’ qubit |0〉0 and apply CX10 (so qubit 1 is the control and the ancilla is the
target). Apply the controlled quantum operation W of (a) (with m = 3 there) to qubits 1,2,3.
Finally measure qubit 2 to obtain the output.
Show that the output distributions of (COMP1) and (COMP2) are identical.
Remarks: Note that the intermediate measurement and classically controlled further gates in
(COMP1) have been replaced in (COMP2) by a fully unitary circuit. In the same way, any
intermediate measurements in any quantum circuit can be simulated by a circuit of only unitary
gates (with no intermediate measurements) at the expense of introducing a further ancillary
qubit for each intermediate measurement, and use of appropriate quantum controlled opera-
tions.
In view of question 1, we could have measured qubit 0 at the end too without affecting the out-
put distribution at qubit 2 i.e. instead of eliminating the intermediate measurement altogether
we can think of this as moving it to the end.

(3) (Bernstein-Vazirani problem)
For n-bit strings x = x1 . . . xn and a = a1 . . . an in Bn we have the sum x⊕ a which is an n-bit
string, and now introduce the 1-bit “dot product” x · a = x1a1 ⊕ x2a2 ⊕ . . .⊕ xnan.
For any fixed n-bit string a = a1 . . . an with a 6= 00 . . . 0, consider the function fa : Bn → B1

given by
fa(x1, . . . , xn) = x · a (1)

(a) Show that for any a 6= 00 . . . 0, fa is a balanced function i.e. fa has value 0 (respectively 1)
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on exactly half of its inputs x.
(b) Given a classical black box that computes fa describe a classical deterministic algorithm
that will identify the string a = a1 . . . an on which fa is based. Show that any such black box
classical algorithm must have query complexity at least n.

Now for any n let Hn = H⊗ . . .⊗H be the application of H to each qubit of a row of n qubits.
Show that (for x ∈ B1 and a ∈ Bn)

H |x〉 =
1√
2

1∑
y=0

(−1)xy |y〉 Hn |a〉 =
1√
2n

∑
y∈Bn

(−1)a·y |y〉

(c) (the Bernstein–Vazirani problem)
For each a consider the function fa which is a balanced function if a 6= 00 . . . 0 (as shown above).
Show that the DJ algorithm will perfectly distinguish and identify the 2n−1 balanced functions
fa (for a 6= 00 . . . 0) with only one query to the function – in fact show that the n bit output of
the algorithm gives the string a with certainty for these special balanced functions.

(4) (Classical complexity – integer exponentiation mod N)
In Shor’s algorithm we need to compute the exponentiation of integers mod N and it is impor-
tant to know that this can be done efficiently. To compute say 3k modN (for 0 ≤ k ≤ N − 1)
we could multiply 3 together k times. Show that this is not a polynomial time computation
(i.e. not poly time in n = logN , the largest possible input size for k).
Devise an algorithm that does run in poly(n) time. (Hint: consider repeated squaring).
You may assume that multiplication mod N of a pair of integers with n digits may be done in
O(n2) time.
Generalise to a poly time computation of kk21 mod N for 0 ≤ k1, k2 ≤ N − 1 showing that it
may be computed in O(n3) time.

(5) (Simon’s algorithm)
Simon’s decision problem is the following:
Input: an oracle for a function f : Bn → Bn,
Promise: f is either (a) a one-to-one function or (b) a two-to-one function of the following
special form – there is an ξ ∈ Bn such that f(x) = f(y) iff y = x⊕ ξ (i.e. ξ is the period of f
when its domain is viewed as being the group (Z2)

n).
Problem: determine which of (a) or (b) applies (with bounded error probability 1 − ε for any
ε > 0).

It can be argued (cf lecture notes) that the classical randomised query complexity of this
problem is O(2n/4). In this question we will develop a quantum algorithm that that solves the
problem with quantum query complexity only O(n). Even more, the algorithm will determine
the period ξ if (b) holds. Thus (unlike the balanced vs. constant problem) we’ll have a provable
exponential separation between classical and quantum query complexities, even in the presence
of bounded error.

To begin, consider 2n qubits with the first (resp. last) n comprising the input (resp. output)
register for a quantum oracle Uf computing f i.e. Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for n-bit strings x
and y.
(a) With all qubits starting in state |0〉 apply H to each qubit of the input register, query Uf

and then measure the output register. Write down the generic form of the n-qubit state |α〉 of
the input register, obtained after the measurement. Suppose we were to measure |α〉. Would
the result provide any information about the period ξ?
(b) Having obtained |α〉 as in (a), apply H to each qubit to obtain a state denoted |β〉. Show
that if we measure |β〉 then the n-bit outcome is a uniformly random n-bit string y satisfying
ξ · y = 0 (so any such y is obtained with probability 1/2n−1).
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Now we can run this algorithm repeatedly, each time independently obtaining another string y
satisfying ξ · y = 0. Recall that Bn = (Z2)

n is a vector space over the field Z2. If y1, . . . , ys are
s linearly independent vectors (bitstrings) then their span contains 2s of the 2n vectors in Bn.
Furthermore to solve systems of linear equations over Bn we can use, for example, the standard
Gaussian elimination method (calculating with the algebra of the field Z2).

(c)∗ Show that if (n−1) bitstrings y are chosen uniformly randomly and independently satisfying
y · ξ = 0 then they will be linearly independent with probability at least 1/4.
(d) Let 0 < p < 1 be any chosen constant probability. Show that K = O(n) runs of the
algorithm in (a) and (b) will suffice to determine ξ with probability at least p. Writing K = kn
give an expression for k as a function of p.
(e) The above gives a bounded error algorithm for finding the period ξ assuming that the given
function was in fact periodic. Show how this may be used to solve Simon’s problem with O(n)
query complexity (and with bounded error).

(6) (Entanglement necessary in quantum computation)
Consider a quantum computation, given as a polynomial-sized circuit family {C1, C2, . . . , Cn, . . .}
where each Cn comprises gates from the universal set {H,S,CX} (where S denotes the π/8
phase gate) and suppose that this computation solves a decision problem A in BQP.
Suppose further that for any input x ∈ Bn to Cn (for any n), at every stage of the process, the
quantum state is unentangled i.e. it is a product state of all the qubits involved.
Show that then the problem A is also in BPP i.e. if no entanglement is ever present in a quan-
tum computation, then it cannot provide any computational benefit over classical computation
(up to a poly overhead in time).

(7) (Making 2-qubit states)
(a) Let {|α0〉 , |α1〉} be any orthonormal basis for a qubit. Show that there is a 1-qubit unitary
gate U with U |0〉 = |α0〉 and U |1〉 = |α1〉.

(b) Let |ψ〉 be any 2-qubit state. Is it possible to manufacture |ψ〉 from |0〉 |0〉 by the application
of a circuit comprising only 1-qubit gates (which are otherwise unrestricted)? Give a reason for
your answer.

(c) The Schmidt decomposition theorem for 2-qubit states is the following:
Theorem: if |ψ〉 is any 2-qubit state then there are orthonormal bases {|α0〉 , |α1〉} and {|β0〉 , |β1〉}
and non-negative real numbers λ and µ such that |ψ〉 = λ |α0〉 |β0〉+ µ |α1〉 |β1〉. �
(For a simple proof, let |ψ〉 =

∑
ij aij |ij〉 be any state and just replace the matrix [aij ] by its

singular value decomposition).
Assuming this theorem is true, prove that any 2-qubit state can be manufactured from |0〉 |0〉
by application of a circuit comprising only 1-qubit gates and a single use of the 2-qubit CX
gate.

(8) (Making controlled quantum oracles)
Suppose we have a quantum gate, given as a black box or oracle, that implements a unitary
operation U on n qubits. Using this black box we wish to implement the controlled−U operation
CU on 1 + n qubits (defined by CU |b〉 |ξ〉 = |b〉U b |ξ〉 for b = 0, 1 and any n qubit state |ξ〉).
Suppose we also have an n qubit state |A〉 with U |A〉 = |A〉.
Introduce the n qubit controlled swap operation CSWAP acting on 1 + n+ n qubits, defined
by

CSWAP |b〉 |α〉 |β〉 =

{
|b〉 |α〉 |β〉 if b = 0
|b〉 |β〉 |α〉 if b = 1

(a) Show that CSWAP is unitary.
(b) By considering a suitable circuit of CSWAP and U gates show how CU may be implemented
on 1 + n qubit lines. [Hint: consider also using an extra ancillary n qubit register containing
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|A〉.] Your construction must correctly apply CU to all superposed inputs of the 1 + n qubit
lines, not just those with |b〉 being |0〉 or |1〉.
(c) If U , now on n + m qubits, is the standard quantum oracle Uf for a Boolean function
f : Bn → Bm, show that one application of CUf may be implemented with one use of Uf .

(9)* (Hidden translation problem)
Suppose you are given two bijective functions f0 : Bn → Bn and f1 : Bn → Bn as quantum
oracles (in the usual way). It is promised that there is a nonzero string u ∈ Bn such that for
all x we have f0(x) = f1(x ⊕ u). Give a quantum algorithm that finds u with bounded error
probability and makes only O(n) queries to the oracles. [Hint: consider a suitable larger oracle
incorporating both f0 and f1, to which Simon’s algorithm may be applied, and then think
about how that oracle may be implemented using the given quantum oracles – here 8(c) may
be useful.]

(10) (Period finding algorithm)
Suppose we want to factor N = 39 and we have chosen a = 5 so f(x) = 5x mod 39.
(a) What is the number m of qubits used in the x-register in Shor’s quantum factoring algo-
rithm?
(b) Determine the period r of f , showing that in this case, f is exactly periodic on the full
finite domain used.
(c) Suppose we construct the equal superposition state |f〉 over the domain of 0 ≤ x < 2m,
measure the second register, perform the quantum Fourier transform mod 2m and finally mea-
sure the resulting state. What is the probability for each possible outcome 0 ≤ c < 2m? (Note:
this should require very little calculation!) What is the probability that we successfully deter-
mine r from this measurement result, using the standard process of the quantum period finding
algorithm?
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QUANTUM COMPUTATION – EXERCISE SHEET 2
Richard Jozsa rj310@cam.ac.uk (October 2016)

(1) (Shor’s algorithm)
Suppose we wish to factor N = 85 and we have chosen a = 3. Show that a and N are coprime
and compute the period r of f(x) = ax modN . Using r carry out the (classical) steps of the
quantum factoring algorithm that lead to a factor of N = 85.

(2) (Shor’s algorithm, continued fractions)
Suppose wish to factor N = 21 using Shor’s algorithm and we have chosen a = 2 so we aim to
determine the period of f(x) = 2x mod 21. We proceed through the quantum algorithm and
finally measure the x register. Suppose we obtain measurement result c = 427.
(a) What is the number m of qubits that is used for the x register?
(b) Use the continued fraction method to find a fraction j/r with denominator less than 21,
that is within 1/2m+1 of the ratio c/2m.
(c) We hope that the denominator of j/r (when the fraction is cancelled down to lowest terms)
is the period of f(x). Check to see that it is indeed the period in this example.
(d) Use your value of r to find factors of 21.

(3) (Rotation in Grover’s algorithm)
For the plane P(x0) spanned by |x0〉 and |ψ0〉 = 1√

N

∑
allx |x〉 set up an orthonormal basis in

the plane. Then using the basis, show algebraically (rather than geometrically as in lectures)
that the Grover iteration operator Q is a rotation in the plane and derive the angle of rotation.

(4) (Grover’s algorithm with an arbitrary starting state)
Consider Grover’s algorithm in the case of a unique good item x0 in a search space of size
N . Suppose that instead of the usual uniform superposition state |ψ0〉 we start with some
other arbitrary state |η0〉 of n qubits and conduct the algorithm just as before i.e. apply π

4

√
N

iterations of Q and measure.
With |η0〉 = |ψ0〉 the final measurement gives x0 with probability very close to 1. If we instead
begin with some other starting state |η0〉, give an expression for the probability of obtaining x0
in the final measurement. Show that this may be improved by changing the number of Grover
iterations. Describe geometrically how |η0〉 evolves in the course of the computation.

(5) (An algebraic interpretation of Grover’s algorithm)
(a) Consider the operator −I|ψ0〉 = 2 |ψ0〉 〈ψ0| − I with |ψ0〉 as in question (1) and N = 2n.
Show that

−I|ψ0〉 =
2

N

∑
all x,y

|x〉 〈y| − I.

(b) Let |α〉 =
∑

x ax |x〉 be any n-qubit state. The average amplitude a is defined to be
a = (

∑
x ax)/N . The operation R of “inversion in the average” is defined as follows: R |α〉 =∑

x a
′
x |x〉 where a′x = ax − 2(ax − a) i.e. the value of each amplitude is inverted about the

average. Pictorially:

-rr r- -� �

a′x axa

ax − a ax − a

Using the formula in (a) show that −I|ψ0〉 |α〉 = R |α〉 .
(c) Hence Grover’s algorithm may be described as follows: start with state |ψ0〉; then flip the
sign of the x0 amplitude; then do R, an inversion of all amplitudes in the average; then iterate
the last two steps alternately. We can represent states (with real amplitudes) pictorially as
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a graph of the amplitudes: the x axis has the labels x and each amplitude is a (positive or
negative) vertical bar. In terms of this pictorial representation, starting with |ψ0〉, carry out
one or two iterations of the “flip x0 and then do R” operation to see how the initial amplitude
distribution, uniform over all x, begins to become concentrated at x0.
(d) Consider the definite case of N = 4 (so x ∈ {0, 1, 2, 3}) and take x0 = 3 say. (In lectures
we saw that for this case of “1 in 4”, one Grover iteration serves to find x0 with certainty i.e.
rotating |ψ0〉 exactly onto |x0〉). Draw the pictorial graph representation of |ψ0〉 and carry out
one Grover iteration as a flip followed by inversion in the average. Show that as a result, the
amplitude becomes exactly zero at x 6= x0 and 1 at x = x0.

(6) (Gate presision and approximate QFT)
Often quantum gates cannot be implemented precisely. Let us define the distance E(U, V )
between two unitaries U and V as the maximum value of ||(U − V ) |ψ〉 || where the maximum
is taken over all vectors |ψ〉 of length one i.e. 〈ψ|ψ〉 = 1.

(a) Show that this distance is sub-additive i.e. prove that E(U1U2, V1V2) ≤ E(U1, V1)+E(U2, V2)
for any four unitaries U1, U2, V1, V2.
(b) By looking at the circuit of QFT given in lecture notes (and the obvious generalisation to n
qubit lines) show how to construct a circuit that approximates QFT mod Z2n to within 1/p(n)
for any given polynomial p(n) using only O(n log n) gates (recalling that in the original exact
circuit we have O(n2) gates). Hint: most Rk are close to the identity.
(c) Argue that the appproximate circuit (for suitable p(n)) can be used in any BQP algorithm
that uses QFT to slightly reduce the time complexity. (Hint: recall from the lecture on lower
bounds on quantum search that if || |ψ1〉−|ψ2〉 || ≤ ε then for any measurement, the probability
distributions p1 and p2 obtained from |ψ1〉 and |ψ2〉 are related by

∑
x |p1(x)− p2(x)| ≤ 2ε.)

(7) (MQC J-lemma)
Prove the J-lemma of the measurement-based quantum computing formalism.

(8) (Circuit to MQC pattern)
Consider the following circuit on two qubits initially in state |+〉1 |+〉2: apply J1(α1) then
J2(α2) then CZ12 then J1(α3). Finally measure both qubits in the computational basis to
obtain output 2-bit string i1i2.
Express this computation as a measurement-based computation on an appropriate graph state.
What is the logical depth of the measurement pattern?

(9) (Clifford computations and MQC)
The 1-qubit Pauli group P1 comprises I,X,Z,XZ together with their multiples by ±1 and ±i.
The n-qubit Pauli group Pn is the n-fold tensor power P1 ⊗ . . .⊗ P1.

An n-qubit unitary operation C is called a Clifford operation if it has the following property:
for any P1 ⊗ . . .⊗ Pn ∈ Pn we have

C (P1 ⊗ . . .⊗ Pn)C† = (P ′
1 ⊗ . . .⊗ P ′

n)

for some P ′
1⊗ . . .⊗P ′

n ∈ Pn i.e. Pn is preserved under conjugation by C. Stated more formally,
the group of all n-qubit Clifford operations is the group-theoretic normaliser of Pn in U(2n).

(a) H, the phase gate P (π/2) and CZ are all Clifford operations. Check a few cases of choices
of Pi’s in the above and identify the corresponding P ′

j ’s. (In fact it is a theorem that C is a
Clifford operation on n qubits if and only if C can be expressed as a circuit of H, P (π/2) and
CZ gates).
(b) Show that any circuit of these three gates can be simulated by a measurement-based com-
putation with logical depth 1. (Hint: first express H and P (π/2) in terms of suitable J(α)’s and
then use the Clifford property to establish non-adaptive commutation relations for propagation
of X and Z errors.)
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(10) (Stabiliser formalism for graph states) (optional extra question, can be omitted)
Let |Cl〉 be the cluster state for an n × n grid D of qubits. Let V be the set of vertices of D,
and let |V | = n2 be the size of V .
(Everything in this question can be easily generalised to the graph state |ψG〉 for any graph G
but we’ll consider just |Cl〉 on D for clarity/definiteness.)
For any vertex a of D let nbd(a) denote the set of its neighbours i.e. b ∈ nbd(a) iff vertices a
and b are connected by an edge of D.
A state |ψ〉 is said to be stabilised by an operator S if S |ψ〉 = |ψ〉 i.e. |ψ〉 is a +1 eigenstate of
S.

(i) Suppose |ψ〉 is stabilised by S. Show that U |ψ〉 (for unitary U) is stabilised by USU †.

(ii) Let |P 〉 be the state of |V | qubits obtained by placing a qubit in state |+〉 at each vertex of
D. Show that |P 〉 is stabilised by X(a) for each a ∈ V . Here, for any 1-qubit operator W , W(a)

denotes the gate W applied to the qubit at a and the identity I at all other vertices.

(iii) Introduce the operator (for each a ∈ V ) Ka = X(a)

⊗
b∈nbd(a) Z(b) which acts non-trivially

only on qubits in nbd(a) ∪ {a}. Show that the eigenvalues of Ka are ±1 only. Show that |Cl〉
is stabilised by Ka for each a ∈ V .
(Hint: consider how |Cl〉 is obtained from |P 〉 and then use (i) together with the commutation
relations, for all a, b, c ∈ V , of X(c) and Z(c) with E(ab) = CZ(ab) that we had in lectures.)

We now aim to show that |Cl〉 is the unique quantum state (i.e. unit vector up to overall phase)
that is stabilised by all the 2|V | operators Ka.

(iv) Let {kc} be any set of bit values 0,1 labelled by c ∈ V . Show that there exists a state∣∣ψ{kc}
〉

of |V | qubits satisfying (for all a ∈ V ):

Ka

∣∣ψ{kc}
〉

= (−1)ka
∣∣ψ{kc}

〉
.

Here ka is the element of the set {kc} for the vertex a. (Hint: we already have |Cl〉 for the kc’s
all being 0, and consider (i) yet again).

(v) Show that the states
∣∣ψ{kc}

〉
are orthogonal for different sets {kc}.

(Hint: recall that 〈α|U |β〉 is the inner product of |α〉 with U |β〉 and also of U † |α〉 with |β〉.)
Hence or otherwise deduce that |Cl〉 is the unique state (up to overall phase) satisfyingKa |Cl〉 =
|Cl〉 for all a ∈ V .

Remarks: All the above easily generalises to D being replaced by any graph G and |Cl〉 by
the graph state |ψG〉. In general a stabiliser description of a state |α〉 is a set of operators
{Si} such that |α〉 is stabilised by them all and also is the unique such state. Thus the set of
operators {Ka : a ∈ V } is a stabiliser description of |ψG〉. It is an efficient (i.e. poly(|V |)-sized)
description even though |ψG〉 involves exponentially many (i.e. 2|V | ) amplitudes. This makes
it very useful for some purposes – it can provide efficient classical simulations of some MQC
processes, and it can provide alternative (sometimes simpler/elegant) derivations of properties
of the graph state |ψG〉 and features of MQC processes.

(vi) (optional) Suppose that the qubit of |Cl〉 at vertex a of D is measured (in the computa-
tional basis) giving the result 0 (i.e. this qubit is collapsed to |0〉 after measurement). Let H
be the graph obtained from D by deleting the vertex a and all edges to it.
Using the stabiliser description (and recalling that (I + Z)/2 is the 1-qubit operation of pro-
jection onto |0〉), show that the post-measurement state of the qubits of H is the graph state
|ψH〉 on the graph H.
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QUANTUM COMPUTATION – EXERCISE SHEET 3
Richard Jozsa rj310@cam.ac.uk (October 2016)

(1) (Making Grover search and Ampl Ampl exact)
Grover search (and more generally the amplitude amplification process) does not usually return
a good item with certainty but only with some high probability. The issue is that the Grover
iteration operator’s rotation angle 2θ is not generally an exact integer fraction of the full angle
between the starting state and its good component. However Grover search (and AA) can be
modified to work with probability 1, as follows.

(a) Suppose we have the starting state for the AA process:

|ψ〉 = α |ψg〉+ β |ψb〉

where as usual, α and β are real and positive, and |ψg〉 and |ψb〉 are the good and bad projections
of |ψ〉 re-normalised to unit length. Suppose that the good and bad subspaces are spanned by
computational basis states and the indicator function f(x) = 0 resp. 1 for x good resp. bad,
can be computed. Suppose also that the value of α is known.
By adjoining an extra qubit (and suitably extending the notion of goodness/badness from x to
x0 and x1), show that if we are given |ψ〉 and any α′ < α, we can construct a state |φ〉 of the
extended system with

|φ〉 = α′ |φg〉+ β′ |φb〉 .

Here |φg〉 resp. |φb〉 are normalised superpositions of extended good resp. bad labels.

(b) Show that the AA process in (a) can be made exact - i.e. the final measurement will yield
a good x with certainty - by using at most one extra query to Q.

(2) (A nested Grover search)
Consider the unique collision problem UCP:
Input: an oracle for f : Bn → Bn;
Promise: f is one-to-one on all inputs except for a single pair x1, x2 with f(x1) = f(x2) i.e. f
has a unique “collision”;
Problem: determine x1 and x2.
Let Q be the query complexity of UCP and write N = 2n.

(a) Show that O(N) is an upper bound for Q. Show that O(
√
N) is a lower bound. [Hint:

display a reduction from unique Grover search to UCP.]
Thus O(

√
N) < Q < O(N). We’ll now develop an algorithm for UCP that uses O(N3/4)

queries.
Remark: using different methods (quantum walk algorithms, not treated in this course) it can
be shown that the optimal number of queries necessary and sufficient to solve UCP is O(N2/3)
cf. A. Ambainis arXix:quant-ph/0311001.
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(b) Divide the domain Bn into subsets Ak each of size
√
N . Define k to be “good” if Ak contains

both of x1 and x2. Describe an algorithm that will find a good k if it exists (and in that case
it also finds x1 and x2) and the algorithm makes O(N3/4) queries to f . [Hint: note that any k
may be tested for goodness using

√
N queries.]

(c) Alas, it is quite likely that x1 and x2 will be in different Ak’s so the algorithm in (b) will fail
to find a good k. In that case, continue as follows: we now define k to be “good” if Ak contains
one of x1 and x2 (so the other of these must be in Ak = Bn − Ak). Introduce the indicator
function g(k) which is 1 if k is good, and 0 if k is bad. Describe an algorithm that computes
g(k) for any given k, using O(

√
N) queries to f . [Hint: consider a suitable Grover search!]

(d) By considering a further Grover search (that suitably incorporates the algorithm of (c))
show that UCP can be solved with O(N3/4) queries.

(3) (Factoring via phase estimation)
Fix two coprime positive integers x and N such that x < N , and let Ux be the unitary operator
defined by Ux |y〉 = |xy modN〉. Let r be the order of x mod N (the minimal t such that
xt ≡ 1). For 0 ≤ s ≤ r − 1, define the states

|ψs〉 :=
1√
r

r−1∑
k=0

e−2πisk/r
∣∣∣xk modN

〉
.

(a) Verify that Ux is indeed unitary.

(b) Show that, for arbitrary integers n ≥ 0, U2n
x can be implemented in time poly (n) (not

poly (2n)!).

(c) Show that each state |ψs〉 is an eigenvector of Ux with eigenvalue e2πis/r.

(d) Show that

1√
r

r−1∑
s=0

|ψs〉 = |1〉 .

(e) Thus show that, if the phase estimation algorithm with n qubits is applied to Ux using
|1〉 in place of the input of a genuine eigenvector, then the algorithm outputs (with constant
probability) an estimate of s/r accurate up to n bits, for s ∈ {0, . . . , r− 1} picked uniformly at
random. (You may quote any appropriate theorems from the lectures).

(f) Argue that the above phase estimation algorithm can be used to factorise an integer N in
poly (logN) time (Kitaev’s quantum factoring algorithm).

(4) (More efficient quantum simulation)
(a) Let A and B be Hermitian operators with ‖A‖ ≤ K, ‖B‖ ≤ K for some K ≤ 1. Show that

e−iA/2e−iBe−iA/2 = e−i(A+B) +O(K3)

(this is the so-called Strang splitting). Use this to give a more efficient approximation of k-
local Hamiltonians by quantum circuits than the algorithm given in the notes, and calculate its
complexity.

(b) Let H be a Hamiltonian which can be written as H = UDU †, where U is a unitary matrix
that can be implemented by a quantum circuit running in time poly (n), andD =

∑
x d(x) |x〉 〈x|

is a diagonal matrix such that the map |x〉 7→ e−id(x)t |x〉 can be implemented in time poly (n)
for all x. Show that e−iHt can be implemented in time poly (n).
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(5) (Quantum oracle interrogation) (an optional extra)
In this question we’ll prove the following result of Wim van Dam.
Theorem A: Given oracle access to the bits of an unknown n-bit string x, there is a quantum
algorithm that learns x completely with success probability at least 0.999 using n/2 + O(

√
n)

queries, for any x.

“Oracle access to the bits of x” means that we have a standard quantum oracle for the function
fx : {1, 2, . . . , n} → B1 with fx(k) = the kth bit of x.

The success probability 0.999 can in fact be taken to be any constant strictly less than 1. It
can be shown that classically we need a full n queries to learn x with any worst-case success
probability exceeding a half (Why?)

(a) Show that, for any x ∈ {0, 1}n, given the n qubit state |ψx〉 := 1
2n/2

∑
y∈{0,1}n(−1)x·y |y〉 ,

there is a quantum algorithm that determines x with certainty using no additional queries to
the bits of x. (Here x · y =

∑
i xiyi is the inner product of x and y modulo 2.)

(b) For any 0 ≤ r ≤ n, consider the state

|ψrx〉 :=
1√
R

∑
y∈{0,1}n,|y|≤r

(−1)x·y |y〉 ,

where R =
∑r

i=0

(
n
i

)
, and for any bit string y, |y| denotes its Hamming weight i.e. the

number of 1’s in y. Show that, for some r = n/2 + O(
√
n), |〈ψx|ψrx〉|2 ≥ 0.999. [Hint: look up

the Chernoff bound for sums of binomial coefficients.]

(c) Show that the state |ψrx〉 can be produced using r queries to bits of x.

(d) Use parts (a) (b) and (c) to prove theorem A.
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