
Part III — Percolation and Random Walks on

Graphs

Theorems

Based on lectures by P. Sousi
Notes taken by Dexter Chua

Michaelmas 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

A phase transition means that a system undergoes a radical change when a continuous
parameter passes through a critical value. We encounter such a transition every day
when we boil water. The simplest mathematical model for phase transition is percolation.
Percolation has a reputation as a source of beautiful mathematical problems that are
simple to state but seem to require new techniques for a solution, and a number of
such problems remain very much alive. Amongst connections of topical importance
are the relationships to so-called Schramm–Loewner evolutions (SLE), and to other
models from statistical physics. The basic theory of percolation will be described in
this course with some emphasis on areas for future development.

Our other major topic includes random walks on graphs and their intimate connection
to electrical networks; the resulting discrete potential theory has strong connections
with classical potential theory. We will develop tools to determine transience and
recurrence of random walks on infinite graphs. Other topics include the study of
spanning trees of connected graphs. We will present two remarkable algorithms to
generate a uniform spanning tree (UST) in a finite graph G via random walks, one
due to Aldous-Broder and another due to Wilson. These algorithms can be used to
prove an important property of uniform spanning trees discovered by Kirchhoff in the
19th century: the probability that an edge is contained in the UST of G, equals the
effective resistance between the endpoints of that edge.

Pre-requisites

There are no essential pre-requisites beyond probability and analysis at undergraduate

levels, but a familiarity with the measure-theoretic basis of probability will be helpful.
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1 Percolation

1.1 The critical probability

Lemma. θ is an increasing function of p.

Proposition. pc(1) = 1.

Theorem. For all d ≥ 2, we have pc(d) ∈ (0, 1).

Lemma. For d ≥ 2, pc(d) > 0.

Lemma. We have σn+m ≤ σnσm.

Lemma (Fekete’s lemma). If (an) is a subadditive sequence of real numbers,
then

lim
n→∞

an
n

= inf
{ak
k

: k ≥ 1
}
∈ [−∞,∞).

In particular, the limit exists.

Theorem (Duminil-Copin, Smirnov, 2010). The hexagonal lattice has

κhex =

√
2 +
√

2.

Theorem (Hara and Slade, 1991). For d ≥ 5, there exists a constant A such
that

σn = Aκn(1 +O(n−ε))

for any ε < 1
2 .

Theorem (Hammersley and Welsh, 1962). For all d ≥ 2, we have

σn ≤ Cκn exp(c′
√
n)

for some constants C and c′.

Theorem (Hutchcroft, 2017). For d ≥ 2, we have

σn ≤ Cκn exp(o(
√
n)).

Lemma. pc(d) < 1 for all d ≥ 2.

Proposition. Let A∞ be the event that there is an infinite cluster.

(i) If θ(p) = 0, then Pp(A∞) = 0.

(ii) If θ(p) > 0, then Pp(A∞) = 1.

Theorem (Burton and Keane). If p > pc, then there exists a unique infinite
cluster with probability 1.
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1.2 Correlation inequalities

Theorem. If N is an increasing random variable and p1 ≤ p2, then

Ep1 [N ] ≤ Ep2 [N ],

and if an event A is increasing, then

Pp1(A) ≤ Pp2(A).

Theorem (Fortuin–Kasteleyn–Ginibre (FKG) inequality). Let X and Y be
increasing random variables with Ep[X2],Ep[Y 2] <∞. Then

Ep[XY ] ≥ Ep[X]Ep[Y ].

In particular, if A and B are increasing events, then

Pp(A ∩B) ≥ Pp(A)Pp(B).

Equivalently,
Pp(A | B) ≥ Pp(A).

Theorem (BK inequality). Let F be a finite set and Ω = {0, 1}F . Let A and
B be increasing events. Then

Pp(A ◦B) ≤ Pp(A)Pp(B).

Theorem (Reimer). For all events A,B depending on a finite set, we have
Pp(A ◦B) ≤ Pp(A)Pp(B).

Theorem. If χ(p) <∞, then there exists a positive constant c such that for all
n ≥ 1,

Pp(0↔ ∂B(n)) ≤ e−cn.

Theorem (Russo’s formula). Let A be an increasing event that depends on the
states of a finite number of edges. Then

d

dp
Pp(A) = Ep[N(A)],

where N(A) is the number of pivotal edges for A.

Corollary. Let A be an increasing event that depends on m edges. Let p ≤ q ∈
[0, 1]. Then Pq(A) ≤ Pp(A)

(
q
p

)m
.

Theorem. Let d ≥ 2 and Bn = [−n, n]d ∩ Zd.

(i) If p < pc, then there exists a positive constant c for all n ≥ 1, Pp(0 ↔
∂Bn) ≤ e−cn.

(ii) If p > pc, then

θ(p) = Pp(0↔∞) ≥ p− pc
p(1− pc)

.
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1.3 Two dimensions

Theorem. In Z2, we have θ
(

1
2

)
= 0 and pc = 1

2 .

Proposition. P 1
2
(LR(`)) ≥ 1

2 for all `.

Theorem (Russo–Symour–Welsh (RSW) theorem). If Pp(LR(`)) = α, then

Pp(O(`)) ≥
(
α
(
1−
√

1− α
)4)12

.

Lemma. If Pp(LR(`)) = α, then

Pp
(
LR

(
3
2`, `

))
≥ (1−

√
1− α)3.

Lemma (nth root trick). If A1, . . . , An are increasing events all having the same
probability, then

Pp(A1) ≥ 1−

(
1− Pp

(
n⋃
i=1

Ai

))1/n

.

Lemma.

Pp(LR(2`, `)) ≥ Pp(LR(`))

(
Pp
(
LR

(
3

2
`, `

)))2

Pp(LR(3`, `)) ≥ Pp(LR(`)) (Pp (LR (2`, `)))
2

Pp(O(`)) ≥ Pp(LR(3`, `))4

Theorem. There exists positive constants α1, α2, α3, α4, A1, A2, A4 such that

P 1
2
(0↔ ∂B(n)) ≤ A1n

−α1

P 1
2
(|C(0)| ≥ n) ≤ A2n

−α2

E(|C(0)|α3) ≤ ∞

Moreover, for p > pc = 1
2 , we have

θ(p) ≤ A4

(
p− 1

2

)α4

.

Theorem. When d = 2 and p > pc, there exists a positive constant c such that

Pp(0↔ ∂B(n), |C(0)| <∞) ≤ e−cn.

Theorem (Grimmett–Marstrand). Let F be an infinite-connected subset of Zd
with pc(F ) < 1. Then for all η > 0, there exists k ∈ N such that

pc(2kF +Bk) ≤ pc + η.

In particular, for all d ≥ 3, pslabc = pc.

Theorem. If d ≥ 3 and p > pc, then there exists c > 0 such that

Pp(0↔ ∂B(n), |C(0)| <∞) ≤ e−cn.

1.4 Conformal invariance and SLE in d = 2

Theorem (Smirnov, 2001). Suppose (Ω, a, b, c, d) and (Ω′, a′, b′, c′, d′) are con-
formally equivalent. Then

P(ac↔ bd in Ω) = P(a′c′ ↔ b′d′ in Ω′).
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2 Random walks

2.1 Random walks in finite graphs

Proposition. Let P be an irreducible matrix on Ω and B ⊆ Ω, f : B → R a
function. Then

h(x) = Ex[f(XτB )]

is the unique extension of f which is harmonic on Ω \B.

Proposition. Let θ be a flow from a to z satisfying the cycle law for any cycle.
Let I the current flow associated to a voltage W . If ‖θ‖ = ‖I‖, then θ = I.

Proposition. Take a weighted random walk on G. Then

Pa(τz < τ+
a ) =

1

c(a)Reff(a, z)
,

where τ+
a = min{t ≥ 1 : Xt = a}.

Corollary. For any reversible chain and all a, z, we have

Gτz (a, a) = c(a)Reff(a, z).

Theorem (Thomson’s principle). Let G be a finite connected graph with con-
ductances (c(e)). Then for any a, z, we have

Reff(a, z) = inf{E(θ) : θ is a unit flow from a to z}.

Moreover, the unit current flow from a to z is the unique minimizer.

Theorem (Rayleigh’s monotonicity principle). Let G be a finite connected
graph and (r(e))e and (r′(e))e two sets of resistances on the edges such that
r(e) ≤ r′(e) for all e. Then

Reff(a, z; r) ≤ Reff(a, z; r′).

for all a, z ∈ G.

Corollary. Suppose we add an edge to G which is not adjacent to a. This
increases the escape probability

Pa(τz < τ+
a ).

Theorem (Nash–Williams inequality). Let (Πk) be disjoint edge-cutsets sepa-
rating a from z. Then

Reff(a, z) ≥
∑
k

(∑
e∈Πk

c(e)

)−1

.

Corollary. Consider Bn = [1, n]2 ∩ Z2. Then

Reff(a, z) ≥ 1

2
log(n− 1).
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Proposition. Let X be an irreducible Markov chain on a finite state space. Let
τ be a stopping time such that Pa(Xτ = a) = 1 and Ea[τ ] < ∞ for some a in
the state space. Then

Gτ (a, x) = π(x)Ea[τ ].

Theorem (Commute time identity). Let X be a reversible Markov chain on a
finite state space. Then for all a, b, we have

Ea[τb] + Eb[τa] = c(G)Reff(a, b),

where
c(G) = 2

∑
e

c(e).

2.2 Infinite graphs

Theorem. Let G be an infinite connected graph with conductances (c(e))e.
Then

(i) Random walk on G is recurrent iff Reff(0,∞) =∞.

(ii) The random walk is transient iff there exists a unit flow i from 0 to ∞ of
finite energy

E(i) =
∑
e

(i(e))2r(e).

Corollary. Let G′ ⊆ G be connected graphs.

(i) If a random walk on G is recurrent, then so is random walk on G′.

(ii) If random walk on G′ is transient, so is random walk on G.

Theorem (Polya’s theorem). Random walk on Z2 is recurrent and transient on
Zd for d ≥ 3.
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3 Uniform spanning trees

3.1 Finite uniform spanning trees

Theorem (Foster’s theorem). Let G = (V,E) be a finite weighted graph on n
vertices. Then ∑

e∈E
Reff(e) = n− 1.

Theorem. Let e 6= f ∈ E. Then

P(e ∈ T | f ∈ T ) ≤ P(e ∈ T ).

Theorem (Kirchoff). Let T be a uniform spanning tree, e an edge. Then

P(e ∈ T ) = Reff(e)

Theorem. Define, for every edge e = (a, b),

i(a, b) =
N(s, a, b, t)−N(s, b, a, t)

N
.

Then i is a unit flow from s to t satisfying Kirchoff’s node law and the cycle law.

Theorem. Let e 6= f ∈ E. Then

P(e ∈ T | f ∈ T ) ≤ P(e ∈ T ).

Theorem (Wilson). The resulting tree is a uniform spanning tree.

Lemma. The order in which cycles are popped is irrelevant, in the sense that
either the popping will never stop, or the same set of cycles will be popped, thus
leaving the same spanning tree lying underneath.

Corollary (Cayley’s formula). The number of labeled unrooted trees on n-
vertices is equal to nn−2.

3.2 Infinite uniform spanning trees and forests

Proposition. Let G be a transient graph. The wired uniform spanning forest
is the same as the spanning forest generated using Wilson’s method rooted at
infinity.

Theorem (Pemantle, 1991). The uniform spanning forest on Zd is a single tree
almost surely if and only if d ≤ 4.

Proposition (Pemantle). The uniform spanning forest is a single tree iff starting
from every vertex, a simple random walk intersects an independent loop erased
random walk infinitely many times with probability 1. Moreover, the probability
that x and y are in the same tree of the uniform spanning forest is equal to the
probability that simple random walk started from x intersects an independent
loop-erased random walk started from y.

Theorem (Lyons, Peres, Schramm). Two independent simple random walks
intersect infinitely often with probability 1 if one walks intersects the loop erasure
of the other one infinitely often with probability 1.

Theorem. The uniform spanning forest is not a tree for d ≥ 5 with probability
1.
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