Part III — Percolation and Random Walks on
Graphs

Definitions

Based on lectures by P. Sousi
Notes taken by Dexter Chua

Michaelmas 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what
was actually lectured, and in particular, all errors are almost surely mine.

A phase transition means that a system undergoes a radical change when a continuous
parameter passes through a critical value. We encounter such a transition every day
when we boil water. The simplest mathematical model for phase transition is percolation.
Percolation has a reputation as a source of beautiful mathematical problems that are
simple to state but seem to require new techniques for a solution, and a number of
such problems remain very much alive. Amongst connections of topical importance
are the relationships to so-called Schramm-Loewner evolutions (SLE), and to other
models from statistical physics. The basic theory of percolation will be described in
this course with some emphasis on areas for future development.

Our other major topic includes random walks on graphs and their intimate connection
to electrical networks; the resulting discrete potential theory has strong connections
with classical potential theory. We will develop tools to determine transience and
recurrence of random walks on infinite graphs. Other topics include the study of
spanning trees of connected graphs. We will present two remarkable algorithms to
generate a uniform spanning tree (UST) in a finite graph G via random walks, one
due to Aldous-Broder and another due to Wilson. These algorithms can be used to
prove an important property of uniform spanning trees discovered by Kirchhoff in the
19th century: the probability that an edge is contained in the UST of GG, equals the
effective resistance between the endpoints of that edge.

Pre-requisites

There are no essential pre-requisites beyond probability and analysis at undergraduate
levels, but a familiarity with the measure-theoretic basis of probability will be helpful.



Contents III Percolation and Random Walks on Graphs (Definitions)

Contents
0 Introduction

1 Percolation
1.1 The critical probability . . . . . . ... ..
1.2 Correlation inequalities . . . . ... ...
1.3 Two dimensions . . . . . .. ... ... ..
1.4 Conformal invariance and SLE ind =2 .

2 Random walks
2.1 Random walks in finite graphs . . . . ..
2.2 Infinite graphs . . . . ... ... .. ...

3 Uniform spanning trees
3.1 Finite uniform spanning trees . . . . . ..
3.2 Infinite uniform spanning trees and forests

o S I, ENSENGIN

(=}

oo



0 Introduction III Percolation and Random Walks on Graphs (Definitions)

0 Introduction



1 Percolation ~ III Percolation and Random Walks on Graphs (Definitions)

1 Percolation

1.1 The critical probability

Notation. We write x <> y if there is an open path of edges from z to y.
Notation. We write C(z) = {y € V : y <> z}, the cluster of z.

Notation. We write 2 + oo if |C(z)| = oo.

Definition (6(p)). We define 8(p) = P,(|C(0)] = o0).

Definition (Coupling). Let p and v be two probability measures on (potentially)
different probability spaces. A coupling is a pair of random variables (X,Y)

defined on the same probability space such that the marginal distribution of X
is p and the marginal distribution of Y is v.

Definition (Critical probability). We define p.(d) = sup{p € [0, 1] : 6(p) = 0}.
Definition (0,,). We write o,, for the number of self-avoiding paths of length n
starting from 0.

Definition (A and k). We define

. logo
A= lim gn, Kk =e\
n—oo n

k is known as the connective constant.

Definition (Planar graph). A graph G is called planar if it can be embedded
on the plane in such a way that no two edges cross.

Definition (Dual graph). Let G be a planar graph (which we call the primal
graph). We define the dual graph by placing a vertex in each face of G, and
connecting 2 vertices if their faces share a boundary edge.

1.2 Correlation inequalities
Notation (<). Given w,w’ € Q, we write w < w’ if w(e) < w'(e) for all e € E.

Definition (Increasing random variable). A random variable X is increasing if
X(w) < X(w') whenever w < «’, and is decreasing if —X is increasing.

Definition (Increasing event). An event A is increasing (resp. decreasing) if
the indicator 1(A) is increasing (resp. decreasing)

Definition (Disjoint occurrence). Let F be a set and Q = {0,1}. If A and B
are events, then the event that A and B occurs disjointly is

AoB={weQ:35CFst. [ws CAand [w]ps C B}

Definition (Pivotal edge). Let A be an event and w a percolation configuration.
The edge e is pivotal for (A,w) if

lwe A) # 1w € A),
where w’ is defined by
’ _ w(f) [#e
“(f)_{lwm f=e

The event that e is pivotal for A is defined to be the set of all w such that e is
pivotal for (A,w).



1 Percolation ~ III Percolation and Random Walks on Graphs (Definitions)

1.3 Two dimensions

1.4 Conformal invariance and SLE in d = 2
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2 Random walks

2.1 Random walks in finite graphs

Definition (Flow). A flow 6 on G is a function defined on oriented edges which
is anti-symmetric, i.e. 8(z,y) = —6(y, z).

Definition (Divergence). The divergence of a flow 6 is
divl(z) = Z 0(x,y).
y~a
Definition (Flow from a to z). A flow 0 from a to z is a flow such that
(i) div@(xz) =0 for all = ¢ {a, z}. (Kirchhoff ’s node law)
(i) divé(a) > 0.

The strength of the flow from a to z is ||0|| = div 8(a).We say this is a unit flow
if ||0] = 1.

Definition (Harmonic function). Let P be a transition matrix on 2. We call h
harmonic for P at the vertex z if

h(z) =Y P(z,y)h(y).

Definition (Voltage). A wvoltage W is a function on € that is harmonic on
Q\ {a, z}.

Definition (Current flow). The current flow associated to the voltage W is
W(z) — W(y)

1o)==y

= c(z,y)(W(z) = W(y)).

Definition (Effective resistance). The effective resistance Reg(a, z) of an electric
network is defined to be the ratio

W(a) - W(2)

Ren(@:2) = =

for any voltage W with associated current I. The effective conductance is
Cet(a,2) = Regr(a, z) L.

Definition (Green kernel). Let 7 be a stopping time. We define the Green

kernel to be
Zl(Xt =z,t < T)] :
t=0

Definition (Energy). Let 6 be a flow on G with conductances (¢(e)). Then the
energy is

G‘r(a'a JJ) = E’a

Here we sum over unoriented edges.

Definition (Edge cutset). A set of edges II is an edge-cutset separating a from
z if every path from a to z uses an edge of II.
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2.2 Infinite graphs

Definition (Flow). Let G be an infinite graph. A flow 6 from 0 to oo is an
anti-symmetric function on the edges such that divé(z) = 0 for all = # 0.



3 Uniform spannlil Peseolation and Random Walks on Graphs (Definitions)

3 Uniform spanning trees

3.1 Finite uniform spanning trees

Definition (Spanning tree). Let G = (V, E) be a finite connected graph. A
spanning tree T of G is a connected subgraph of G which is a tree (i.e. there are
no cycles) and contains all the vertices in G.

Notation. Fix two vertices s,t of G. For all every edge ¢ = (a,b), define
N (s,a,b,t) to be the set of spanning tress of G whose unique path from s to ¢
passes along the edge (a,b) in the direction from a to b. Write

N(s,a,b,t) =|N(s,a,b,t)],
and N the total number of spanning trees.

Definition (Loop erasure). Let = (z1,...2,) be a finite path in the graph
G. We define the loop erasure as follows: for any pair ¢ < j such that z; = x;,
remove Tjy1,Tiy2,---,%;, and keep repeating until no such pairs exist.

3.2 Infinite uniform spanning trees and forests
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