
Part III — Modern Statistical Methods

Theorems

Based on lectures by R. D. Shah
Notes taken by Dexter Chua

Michaelmas 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

The remarkable development of computing power and other technology now allows
scientists and businesses to routinely collect datasets of immense size and complexity.
Most classical statistical methods were designed for situations with many observations
and a few, carefully chosen variables. However, we now often gather data where we
have huge numbers of variables, in an attempt to capture as much information as we
can about anything which might conceivably have an influence on the phenomenon
of interest. This dramatic increase in the number variables makes modern datasets
strikingly different, as well-established traditional methods perform either very poorly,
or often do not work at all.

Developing methods that are able to extract meaningful information from these large
and challenging datasets has recently been an area of intense research in statistics,
machine learning and computer science. In this course, we will study some of the
methods that have been developed to analyse such datasets. We aim to cover some of
the following topics.

– Kernel machines: the kernel trick, the representer theorem, support vector
machines, the hashing trick.

– Penalised regression: Ridge regression, the Lasso and variants.

– Graphical modelling: neighbourhood selection and the graphical Lasso. Causal
inference through structural equation modelling; the PC algorithm.

– High-dimensional inference: the closed testing procedure and the Benjamini–
Hochberg procedure; the debiased Lasso

Pre-requisites

Basic knowledge of statistics, probability, linear algebra and real analysis. Some

background in optimisation would be helpful but is not essential.
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1 Classical statistics

Theorem (Cramér–Rao bound). If θ̃ is an unbiased estimator for θ, then
var(θ̃)− I−1(θ) is positive semi-definite.

Moreover, asymptotically, as n→∞, the maximum likelihood estimator is
unbiased and achieves the Carmér–Rao bound.
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2 Kernel machines

2.1 Ridge regression

Theorem. Suppose rank(X) = p. Then for λ > 0 sufficiently small (depending
on β0 and σ2), the matrix

E(β̂OLS − β0)(β̂OLS − β0)T − E(β̂Rλ − β0)(β̂Rλ − β0)T (∗)

is positive definite.

Theorem (Singular value decomposition). Let X ∈ Rn×p be any matrix. Then
it has a singular value decomposition (SVD)

X
n×p

= U
n×n

D
n×p

V T
p×p

,

where U, V are orthogonal matrices, and D11 ≥ D22 ≥ · · · ≥ Dmm ≥ 0, where
m = min(n, p), and all other entries of D are zero.

2.2 v-fold cross-validation

2.3 The kernel trick

Proposition. Given φ : X × X → H, define k : X × X → R by

k(x, x′) = 〈φ(x), φ(x′)〉.

Then for any x1, . . . , xn ∈ X , the matrix K ∈ Rn × Rn with entries

Kij = k(xi, xj)

is positive semi-definite.

Theorem (Moore–Aronszajn theorem). For every kernel k : X × X → R, there
exists an inner product space H and a feature map φ : X → H such that

k(x, x′) = 〈φ(x), φ(x′)〉.

2.4 Making predictions

Theorem (Representer theorem). Let H be an RKHS with reproducing kernel
k. Let c be an arbitrary loss function and J : [0,∞)→ R any strictly increasing

function. Then the minimizer f̂ ∈ H of

Q1(f) = c(Y, x1, . . . , xn, f(x1), . . . , f(xn)) + J(‖f‖2H)

lies in the linear span of {k( · , xi)}ni=1.

Theorem. We have

1

n

n∑
i=1

E(f0(xi)− f̂λ(xi))
2 ≤ σ2

n

n∑
i=1

d2
i

(di + λ)2
+

λ

4n

≤ σ2

n

1

λ

n∑
i=1

min

(
di
4
, λ

)
+

λ

4n
.
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2.5 Other kernel machines

2.6 Large-scale kernel machines

Theorem (Bochner’s theorem). Let k : Rp × Rp → R be a continuous kernel.
Then k is shift-invariant if and only if there exists some distribution F on Rp
and c > 0 such that if W ∼ F , then

k(x, x′) = cE cos((x− x′)TW ).
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3 The Lasso and beyond

3.1 The Lasso estimator

Theorem. Let β̂ be the Lasso solution with

λ = Aσ

√
log p

n

for some A. Then with probability 1− 2p−(A2/2−1), we have

1

n
‖Xβ0 −Xβ̂‖22 ≤ 4Aσ

√
log p

n
‖β0‖1.

3.2 Basic concentration inequalities

Lemma (Markov’s inequality). Let W be a non-negative random variable. Then

P(W ≥ t) ≤ 1

t
EW.

Corollary (Chernoff bound). For any random variable W , we have

P(W ≥ t) ≤ inf
α>0

e−αtEeαW .

Corollary. Any sub-Gaussian random variable W with parameter σ satisfies

P(W ≥ t) ≤ e−t
2/2σ2

. �

Lemma (Hoeffding’s lemma). If W has mean zero and takes values in [a, b],
then W is sub-Gaussian with parameter b−a

2 .

Proposition. Let (Wi)
n
i=1 be independent mean-zero sub-Gaussian random

variables with parameters (σi)
n
i=0, and let γ ∈ Rn. Then γTW is sub-Gaussian

with parameter (∑
(γiσi)

2
)1/2

.

Lemma. Suppose (εi)
n
i=1 are independent, mean-zero sub-Gaussian with com-

mon parameter σ. Let

λ = Aσ

√
log p

n
.

Let X be a matrix whose columns all have norm
√
n. Then

P
(

1

n
‖XT ε‖∞ ≤ λ

)
≥ 1− 2p−(A2/2−1).

Proposition (Bernstein’s inequality). Let W1,W2, . . . ,Wn be independent ran-
dom variables with EWi = µ, and suppose each Wi satisfies Bernstein’s condition
with parameters (σ, b). Then

Eeα(Wi−µ) ≤ exp

(
α2σ2/2

1− b|α|

)
for all |α| < 1

b
,

P

(
1

n

n∑
i=1

Wi − µ ≥ t

)
≤ exp

(
− nt2

2(σ2 + bt)

)
for all t ≥ 0.
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Lemma. Let W,Z be mean-zero sub-Gaussian random variables with parameters
σW and σZ respectively. Then WZ satisfies Bernstein’s condition with parameter
(8σWσZ , 4σWσZ).

3.3 Convex analysis and optimization theory

Proposition.

(i) Let f1, . . . , fm : Rd → R̄ be convex with dom f1 ∩ · · · ∩ dom fm 6= ∅, and
let c1, . . . , cm ≥ 0. Then c1 + · · ·+ cmfm is a convex function.

(ii) If f : Rd → R is twice continuously differentiable, then

(a) f is convex iff its Hessian is positive semi-definite everywhere.

(b) f is strictly convex if its Hessian positive definite everywhere.

Proposition. Let f be convex and differentiable at x ∈ int(dom f). Then
∂f(x) = {∇f(x)}.

Proposition. Suppose f and g are convex with int(dom f) ∩ int(dom g) 6= ∅,
and α > 0. Then

∂(αf)(x) = α∂f(x) = {αv : v ∈ ∂f(x)}
∂(f + g)(x) = ∂g(x) + ∂f(x).

Proposition. If f is convex, then

x∗ ∈ argmin
x∈Rd

f(x)⇔ 0 ∈ ∂f(x∗).

Proposition. For x ∈ Rd and A ∈ {j : xj 6= 0}, we have

∂‖x‖1 = {v ∈ Rd : ‖v‖∞ ≤ 1, vA = sgn(xA)}.

3.4 Properties of Lasso solutions

Proposition. Xβ̂Lλ is unique.

3.5 Variable selection

Theorem.

(i) If ‖∆‖∞ ≤ 1, or equivalently

max
k∈N
| sgn(β0

S)T (XT
SXS)−1XT

SXk| ≤ 1,

and moreover

|β0
k| > λ

∣∣∣∣∣sgn(β0
S)T

(
1

n
XT
j Xj

)−1

k

∣∣∣∣∣
for all k ∈ S, then there exists a Lasso solution β̂Lλ with sgn(β̂Lλ ) = sgn(β0).

(ii) If there exists a Lasso solution with sgn(β̂Lλ ) = sgn(β0), then ‖∆‖∞ ≤ 1.
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Theorem. Assume φ2 > 0, and let β̂ be the Lasso solution with

λ = Aσ
√

log p/n.

Then with probability at least 1− 2p−(A2/8−1), we have

1

n
‖X(β0 − β̂)‖22 + λ‖β̂ − β0‖1 ≤

16λ2s

φ2
=

16A2 log p

φ2

sσ2

n
.

Lemma. Let Θ,Σ ∈ Rp×p. Suppose φ2
Θ(S) > 0 and

max
j,k
|Θjk − Σjk| ≤

φ2
Θ(S)

32|S|
.

Then

φ2
Σ(S) ≥ 1

2
φ2

Θ(S).

Theorem. Suppose the rows of X are iid and each entry is sub-Gaussian with
parameter v. Suppose s

√
log p/n → 0 as n → ∞, and φ2

Σ0,s is bounded away

from 0. Then if Σ0 = EΣ̂, then we have

P
(
φ2

Σ̂,s
≥ 1

2
φ2

Σ0,s

)
→ 1 as n→∞.

Corollary. Suppose the rows of X are iid mean-zero multivariate Gaussian
with variance Σ0. Suppose Σn has minimum eigenvalue bounded from below by
cmin > 0, and suppose the diagonal entries of Σ0 are bounded from above. If
s
√

log p/n→ 0, then

P
(
φ2

Σ̂,s
≥ 1

2
cmin

)
→ 1 as n→∞.

3.6 Computation of Lasso solutions

3.7 Extensions of the Lasso
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4 Graphical modelling

4.1 Conditional independence graphs

Proposition. If P has a positive density, then if it satisfies the pairwise Markov
property with respect to G, then it also satisfies the global Markov property.

Proposition. Suppose Z ∼ Np(µ,Σ) and Σ is positive definite. Then

ZA | ZB = zB ∼ N|A|(µA + ΣA,BΣ−1
B,B(zB − µB),ΣA,A − ΣA,BΣ−1

B,BΣB,A).

Lemma. Given k, let j′ be such that (Z−k)j = Zj′ . This j′ is either j or j + 1,
depending on whether it comes after or before k.

If the jth component of Σ−1
−k,−kΣ−k,k is 0, then Zk q Zj′ | Z−kj′ .

Lemma. Let M ∈ Rp×p be positive definite, and write

M =

(
P Q
QT R

)
,

where P and Q are square. The Schur complement of R is

S = P −QR−1QT .

Note that this has the same size as P . Then

(i) S is positive definite.

(ii)

M−1 =

(
S−1 −S−1QR−1

−R−1QTS−1 R−1 +R−1QTS−1QR−1

)
.

(iii) det(M) = det(S) det(R)

4.2 Structural equation modelling

Proposition. If P has a density with respect to a product measure, then (i)
and (ii) are equivalent.

Proposition. Let P be the structural equation model with DAG G. Then P
obeys the Markov factorization property.

4.3 The PC algorithm

Proposition. Two DAGs are Markov equivalent iff they have the same skeleton
and same set of v-structure.

Proposition. If nodes j and k are adjacent in a DAG G, then no set can
d-separate them.

If they are not adjacent, and π is a topological order for G with π(j) < π(k),
then they are d-separated by pa(k).

Proposition. Suppose we have j − `− k in the skeleton of a DAG.

(i) If j → `← k, then no S that d-separates j can have ` ∈ S.

(ii) If there exists S that d-separates j and k and ` 6∈ S, then j → `← k.
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5 High-dimensional inference

5.1 Multiple testing

Theorem. When using the Bonferroni correction, we have

FWER ≤ E(N) ≤ m0α

m
≤ α.

Theorem. Closed testing makes no false rejections with probability ≥ 1− α.
In particular, FWER ≤ α.

Theorem. Suppose that for each i ∈ I0, pi is independent of {pj : j 6= i}. Then
using the Benjamini–Hochberg procedure, the false discovery rate

FDR = E
N

max(R, 1)
≤ αM0

M
≤ α.

5.2 Inference in high-dimensional regression

Theorem. Suppose the maximum eigenvalue of Σ is always at least cmin > 0
and maxj Σjj ≤ 1. Suppose further that smax

√
log(p)/n→ 0. Then there exists

constants A1, A2 such that setting λ = λj = A1

√
log(p)/n, we have

√
n(b̂− β0) = W + ∆

W | X ∼ Np(0, σ2Θ̂Σ̂Θ̂T ),

and as n, p→∞,

P
(
‖∆‖∞ > A2s

log(p)√
n

)
→ 0.
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