
Part III — Modern Statistical Methods

Definitions

Based on lectures by R. D. Shah
Notes taken by Dexter Chua

Michaelmas 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

The remarkable development of computing power and other technology now allows
scientists and businesses to routinely collect datasets of immense size and complexity.
Most classical statistical methods were designed for situations with many observations
and a few, carefully chosen variables. However, we now often gather data where we
have huge numbers of variables, in an attempt to capture as much information as we
can about anything which might conceivably have an influence on the phenomenon
of interest. This dramatic increase in the number variables makes modern datasets
strikingly different, as well-established traditional methods perform either very poorly,
or often do not work at all.

Developing methods that are able to extract meaningful information from these large
and challenging datasets has recently been an area of intense research in statistics,
machine learning and computer science. In this course, we will study some of the
methods that have been developed to analyse such datasets. We aim to cover some of
the following topics.

– Kernel machines: the kernel trick, the representer theorem, support vector
machines, the hashing trick.

– Penalised regression: Ridge regression, the Lasso and variants.

– Graphical modelling: neighbourhood selection and the graphical Lasso. Causal
inference through structural equation modelling; the PC algorithm.

– High-dimensional inference: the closed testing procedure and the Benjamini–
Hochberg procedure; the debiased Lasso

Pre-requisites

Basic knowledge of statistics, probability, linear algebra and real analysis. Some

background in optimisation would be helpful but is not essential.
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2 Kernel machines

2.1 Ridge regression

Definition (Ridge regression). Ridge regression solves

(µ̂Rλ , β̂
R
λ ) = argmin

(µ,β)∈R×Rp

{‖Y − µ1−Xβ‖22 + λ‖β‖22},

where 1 is a vector of all 1’s. Here λ ≥ 0 is a tuning parameter, and it controls
how much we penalize a large choice of β.

2.2 v-fold cross-validation

2.3 The kernel trick

Definition (Inner product space). an inner product space is a real vector space
H endowed with a map 〈 · , · 〉 : H×H → R and obeys

– Symmetry: 〈u, v〉 = 〈v, u〉

– Linearity: If a, b ∈ R, then 〈au+ bw, v〉 = a〈u, v〉+ b〈w, v〉.

– Positive definiteness: 〈u, u〉 ≥ 0 with 〈u, u〉 = 0 iff u = 0.

Definition (Positive-definite kernel). A positive-definite kernel (or simply
kernel) is a symmetric map k : X × X → R such that for all n ∈ N and
x1, . . . , xn ∈ X , the matrix K ∈ Rn × Rn with entries

Kij = k(xi, xj)

is positive semi-definite.

Definition (Reproudcing kernel Hilbert space (RKHS)). A Hilbert space B of
functions f : X → R is a reproducing kernel Hilbert space if for each x ∈ X ,
there exists a kx ∈ B such that

〈kx, f〉 = f(x)

for all x ∈ B.
The function k : X × X → R given by

k(x, x′) = 〈kx, k′x〉 = kx(x′) = kx′(x)

is called the reproducing kernel associated with B.

2.4 Making predictions

2.5 Other kernel machines

2.6 Large-scale kernel machines
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3 The Lasso and beyond

3.1 The Lasso estimator

3.2 Basic concentration inequalities

Definition (Sub-Gaussian random variable). A random variable W is sub-
Gaussian (with parameter σ) if

Eeα(W−EW ) ≤ eα
2σ2/2

for all α ∈ R.

Definition (Bernstein’s condition). We say that a random variable W satisfies
Bernstein’s condition with parameters (σ, b) where a, b > 0 if

E[|W − EW |k] ≤ 1

2
k!σ2bk−2

for k = 2, 3, . . ..

3.3 Convex analysis and optimization theory

Definition (Convex set). A set A ⊆ Rd is convex if for any x, y ∈ A and
t ∈ [0, 1], we have

(1− t)x+ ty ∈ A.

Definition (Convex function). A function f : Rd → R̄ is convex iff

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

for all x, y ∈ Rd and t ∈ (0, 1). Moreover, we require that f(x) <∞ for at least
one x.

We say it is strictly convex if the inequality is strict for all x, y and t ∈ (0, 1).

Definition (Domain). Define the domain of a function f : Rd → R̄ to be

dom f = {x : f(x) <∞}.

Definition (Subgradient). A vector v ∈ Rd is a subgradient of a convex function
at x if f(y) ≥ f(x) + vT (y − x) for all y ∈ Rd.

The set of subgradients of f at x is denoted ∂f(x), and is called the subdif-
ferential .

Notation. For x ∈ Rd and A ⊆ {1 . . . , d}, we write xA for the sub-vector of x
formed by the components of x induced by A. We write x−j = x{j}c = x{1,...,d}\j .
Similarly, we write x−jk = x{jk}c etc.

We write

sgn(xi) =


−1 xi < 0

1 xi > 0

0 otherwise

,

and sgn(x) = (sgn(x1), . . . , sgn(xd))
T .

6



3 The Lasso and beyond III Modern Statistical Methods (Definitions)

3.4 Properties of Lasso solutions

Definition (Equicorrelation set). Define the equicorrelation set Êλ to be the
set of k such that

1

n
|XT

k (Y −Xβ̂Lλ )| = λ,

or equivalently, the k with νk = ±1, which is well-defined since it depends only
on the fitted values.

3.5 Variable selection

Definition (Compatibility factor). Define the compatibility factor to be

φ2 = inf
β∈Rp

‖βN‖1≤3‖βS‖1
βS 6=0

1
n‖Xβ‖

2
2

1
s‖βS‖

2
1

= inf
β∈Rp

‖βS‖=1
‖βN‖1≤3

s

n
‖XSβS −XNβN‖22.

Definition (Compatibility condition). The compatibility condition is φ2 > 0.

3.6 Computation of Lasso solutions

3.7 Extensions of the Lasso
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4 Graphical modelling

4.1 Conditional independence graphs

Definition (Graph). A graph is a pair G = (V,E), where V is a set and
E ⊆ (V, V ) such that (v, v) 6∈ E for all v ∈ V .

Definition (Edge). We say there is an edge between j and k and that j and k
are adjacent if (j, k) ∈ E or (k, j) ∈ E.

Definition (Undirected edge). An edge (j, k) is undirected if also (k, j) ∈ E.
Otherwise, it is directed and we write j → k to represent it. We also say that j
is a parent of k, and write pa(k) for the set of all parents of k.

Definition ((Un)directed graph). A graph is (un)directed if all its edges are
(un)directed.

Definition (Skeleton). The skeleton of G is a copy of G with every edge replaced
by an undirected edge.

Definition (Subgraph). A graph G1 = (V,E) is a subgraph of G = (V,E) if
V1 ⊆ V and E1 ⊆ E. A proper subgraph is one where either of the inclusions are
proper inclusions.

Definition (Conditional independence). Let X,Y, Z be random vectors with
joint density fXY Z . We say that X is conditionally independent of Y given Z,
written X q Y | Z, if

fXY |Z(x, y | z) = fX|Z(x | z)fY |Z(y | z).

Equivalently,
fX|Y Z(x | y, z) = fX|Z(x | z)

for all y.

Definition (Conditional independence graph (CIG)). Let P be the law of
Z = (Z1, . . . , Zp)

T . The conditional independent graph (CIG) is the graph whose
vertices are {1, . . . , p}, and contains an edge between j and k iff Zj and Zk are
conditionally dependent given Z−jk.

Definition (Pairwise Markov property). Let P be the law of Z = (Z1, . . . , Zp)
T .

We say P satisfies the pairwise Markov property with respect to a graph G if for
any distinct, non-adjacent vertices j, k, we have Zj q Zk | Z−jk.

Definition (Separates). Given a triple of (disjoint) subsets of nodes A,B, S,
we say S separates A from B if every path from a node in A to a node in B
contains a node in S.

Definition (Global Markov property). We say P satisfies the global Markov
property with respect to G if for any triple of disjoint subsets of V (A,B, S), if
S separates A and B, then ZA q ZB | ZS .

Notation (MA,B). Let M be a matrix. Then MA,B refers to the submatrix
given by the rows in A and columns in B.
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4.2 Structural equation modelling

Definition (Path). A path from j to k is a sequence j = j1, j2, . . . , jm = k of
(at least two) distinct vertices such that j` and j`+1 are adjacent.

A path is directed if j` → j`+1 for all `.

Definition (Directed acyclic graph (DAG)). A directed cycle is (almost) a
directed path but with the start and end points the same.

A directed acyclic graph (DAG) is a directed graph containing no directed
cycles.

Definition (Structural equation model (SEM)). A structural equation model S
for a random vector Z ∈ Rp is a collection of equations

Zk = hk(Zpk , εk),

where k = 1, . . . , p and ε1, . . . , εp are independent, and pk ⊆ {1, . . . , p} \ {k} and
such that the graph with pa(k) = pk is a directed acyclic graph.

Definition (Descendant). We say k is a descendant of j if there is a directed
path from j to k. The set of descendant of j will be denoted de(j).

Definition (Topological ordering). Given a DAG G with V = {1, . . . , p} we say
that a permutation π : V → V is a topological ordering if π(j) < π(k) whenever
k ∈ de(j).

Definition (Blocked). In a DAG, we say a path (j1, . . . , jm) between j1 and
jm is blocked by a set of nodes S (with neither j1 nor jm in S) if there is some
j` ∈ S and the path is not of the form

j`−1 j` j`+1

or there is some j` such that the path is of this form, but neither j` nor any of
its descendants are in S.

Definition (d-separate). If G is a DAG, given a triple of (disjoint) subsets of
nodes A,B, S, we say S d-separates A from B if S blocks every path from A to
B.

Definition (v-structure). A set of three nodes is called a v-structure if one node
is a child of the two other nodes, and these two nodes are not adjacent.

Definition (Markov properties). Let P be the distribution of Z and let f be
the density. Given a DAG G, we say P satisfies

(i) the Markov factorization criterion if

f(z1, . . . , zp) =

p∏
k=1

f(zk | zpa(k)).

(ii) the global Markov property if for all disjoint A,B, S such that A,B is
d-separated by S, then ZA q ZB | ZS .
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4.3 The PC algorithm

Definition (Causal minimality). A distribution P satisfies causal minimality
with respect to G but not any proper subgraph of G.

Definition (Markov equivalence). For a DAG G, we let

M(G) = {distributions P such that P is Markov with respect to G}.

We say two DAGs G1,G2 are are Markov equivalent if M(G1) =M(G2).

Definition (Faithfulness). We say P is faithful to a DAG G if it is Markov
with respect to G and for all A,B, S disjoint, ZA q ZB | ZS implies A,B are
d-separated by S.
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5 High-dimensional inference

5.1 Multiple testing

5.2 Inference in high-dimensional regression
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