
Part III — Local Fields

Based on lectures by H. C. Johansson
Notes taken by Dexter Chua

Michaelmas 2016

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

The p-adic numbers Qp (where p is any prime) were invented by Hensel in the late 19th
century, with a view to introduce function-theoretic methods into number theory. They
are formed by completing Q with respect to the p-adic absolute value | − |p , defined
for non-zero x ∈ Q by |x|p = p−n, where x = pna/b with a, b, n ∈ Z and a and b are
coprime to p. The p-adic absolute value allows one to study congruences modulo all
powers of p simultaneously, using analytic methods. The concept of a local field is an
abstraction of the field Qp, and the theory involves an interesting blend of algebra and
analysis. Local fields provide a natural tool to attack many number-theoretic problems,
and they are ubiquitous in modern algebraic number theory and arithmetic geometry.

Topics likely to be covered include:

The p-adic numbers. Local fields and their structure.

Finite extensions, Galois theory and basic ramification theory.

Polynomial equations; Hensel’s Lemma, Newton polygons.

Continuous functions on the p-adic integers, Mahler’s Theorem.

Local class field theory (time permitting).

Pre-requisites

Basic algebra, including Galois theory, and basic concepts from point set topology

and metric spaces. Some prior exposure to number fields might be useful, but is not

essential.
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0 Introduction III Local Fields

0 Introduction

What are local fields? Suppose we are interested in some basic number theoretic
problem. Say we have a polynomial f(x1, · · · , xn) ∈ Z[x1, · · · , xn]. We want to
look for solutions a ∈ Zn, or show that there are no solutions at all. We might
try to view this polynomial as a real polynomial, look at its roots, and see if
they are integers. In lucky cases, we might be able to show that there are no
real solutions at all, and conclude that there cannot be any solutions at all.

On the other hand, we can try to look at it modulo some prime p. If there
are no solutions mod p, then there cannot be any solution. But sometimes p is
not enough. We might want to look at it mod p2, or p3, or . . . . One important
application of local fields is that we can package all these information together.
In this course, we are not going to study the number theoretic problems, but
just look at the properties of the local fields for their own sake.

Throughout this course, all rings will be commutative with unity, unless
otherwise specified.
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1 Basic theory III Local Fields

1 Basic theory

We are going to start by making loads of definitions, which you may or may not
have seen before.

1.1 Fields

Definition (Absolute value). Let K be a field. An absolute value on K is a
function | · | : K → R≥0 such that

(i) |x| = 0 iff x = 0;

(ii) |xy| = |x||y| for all x, y ∈ K;

(iii) |x+ y| ≤ |x|+ |y|.

Definition (Valued field). A valued field is a field with an absolute value.

Example. The rationals, reals and complex numbers with the usual absolute
values are absolute values.

Example (Trivial absolute value). The trivial absolute value on a field K is the
absolute value given by

|x| =

{
1 x 6= 0

0 x = 0
.

The only reason we mention the trivial absolute value here is that from
now on, we will assume that the absolute values are not trivial, because trivial
absolute values are boring and break things.

There are some familiar basic properties of the absolute value such as

Proposition. ||x| − |y|| ≤ |x − y|. Here the outer absolute value on the left
hand side is the usual absolute value of R, while the others are the absolute
values of the relevant field.

An absolute value defines a metric d(x, y) = |x− y| on K.

Definition (Equivalence of absolute values). Let K be a field, and let | · |, | · |′
be absolute values. We say they are equivalent if they induce the same topology.

Proposition. Let K be a field, and | · |, | · |′ be absolute values on K. Then
the following are equivalent.

(i) | · | and | · |′ are equivalent

(ii) |x| < 1 implies |x|′ < 1 for all x ∈ K

(iii) There is some s ∈ R>0 such that |x|s = |x|′ for all x ∈ K.

Proof. (i) ⇒ (ii) and (iii) ⇒ (i) are easy exercises. Assume (ii), and we shall
prove (iii). First observe that since |x−1| = |x|−1, we know |x| > 1 implies
|x|′ > 1, and hence |x| = 1 implies |x|′ = 1. To show (iii), we have to show that

the ratio log |x|
log |x′| is independent of x.
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1 Basic theory III Local Fields

Suppose not. We may assume

log |x|
log |x|′

<
log |y|
log |y|′

,

and moreover the logarithms are positive. Then there are m,n ∈ Z>0 such that

log |x|
log |y|

<
m

n
<

log |x|′

log |y|′
.

Then rearranging implies ∣∣∣∣ xnym
∣∣∣∣ < 1 <

∣∣∣∣ xnym
∣∣∣∣′ ,

a contradiction.

Exercise. Let K be a valued field. Then equivalent absolute values induce the
same the completion K̂ of K, and K̂ is a valued field with an absolute value
extending | · |.

In this course, we are not going to be interested in the usual absolute values.
Instead, we are going to consider some really weird ones, namely non-archimedean
ones.

Definition (Non-archimedean absolute value). An absolute value | · | on a field
K is called non-archimedean if |x+ y| ≤ max(|x|, |y|). This condition is called
the strong triangle inequality .

An absolute value which isn’t non-archimedean is called archimedean.

Metrics satisfying d(x, z) ≤ max(d(x, y), d(y, z)) are often known as ultra-
metrics.

Example. Q, R and C under the usual absolute values are archimedean.

In this course, we will only consider non-archimedean absolute values. Thus,
from now on, unless otherwise mentioned, an absolute value is assumed to be
non-archimedean. The metric is weird!

We start by proving some absurd properties of non-archimedean absolute
values.

Recall that the closed balls are defined by

B(x, r) = {y : |x− y| ≤ r}.

Proposition. Let (K, | · |) be a non-archimedean valued field, and let x ∈ K
and r ∈ R>0. Let z ∈ B(x, r). Then

B(x, r) = B(z, r).

So closed balls do not have unique “centers”. Every point can be viewed as
the center.

Proof. Let y ∈ B(z, r). Then

|x− y| = |(x− z) + (z − y)| ≤ max(|x− z|, |z − y|) ≤ r.

So y ∈ B(x, r). By symmetry, y ∈ B(x, r) implies y ∈ B(z, r).
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Corollary. Closed balls are open.

Proof. To show that B(x, r) is open, we let z ∈ B(x, r). Then we have

{y : |y − z| < r} ⊆ B(z, r) = B(x, r).

So we know the open ball of radius r around z is contained in B(x, r). So B(x, r)
is open.

Norms in non-archimedean valued fields are easy to compute:

Proposition. Let K be a non-archimedean valued field, and x, y ∈ K. If
|x| > |y|, then |x+ y| = |x|.

More generally, if x =
∑∞
c=0 xi and the non-zero |xi| are distinct, then

|x| = max |xi|.

Proof. On the one hand, we have |x + y| ≤ max{|x|, |y|}. On the other hand,
we have

|x| = |(x+ y)− y| ≤ max(|x+ y|, |y|) = |x+ y|,

since we know that we cannot have |x| ≤ |y|. So we must have |x| = |x+ y|.

Convergence is also easy for valued fields.

Proposition. Let K be a valued field.

(i) Let (xn) be a sequence in K. If xn − xn+1 → 0, then xn is Cauchy.

If we assume further that K is complete, then

(ii) Let (xn) be a sequence in K. If xn − xn+1 → 0, then a sequence (xn) in
K converges.

(iii) Let
∑∞
n=0 yn be a series in K. If yn → 0, then

∑∞
n=0 yn converges.

The converses to all these are of course also true, with the usual proofs.

Proof.

(i) Pick ε > 0 and N such that |xn − xn+1| < ε for all n ≥ N . Then given
m ≥ n ≥ N , we have

|xm − xn| = |xm − xm−1 + xm−1 − xm−2 + · · · − xn|
≤ max(|xm − xm−1|, · · · , |xn+1 − xn|)
< ε.

So the sequence is Cauchy.

(ii) Follows from (1) and the definition of completeness.

(iii) Follows from the definition of convergence of a series and (2).

The reason why we care about these weird non-archimedean fields is that
they have very rich algebraic structure. In particular, there is this notion of the
valuation ring.
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Definition (Valuation ring). Let K be a valued field. Then the valuation ring
of K is the open subring

OK = {x : |x| ≤ 1}.

We prove that it is actually a ring

Proposition. Let K be a valued field. Then

OK = {x : |x| ≤ 1}

is an open subring of K. Moreover, for each r ∈ (0, 1], the subsets {x : |x| < r}
and {x : |x| ≤ r} are open ideals of OK . Moreover, O×K = {x : |x| = 1}.

Note that this is very false for usual absolute values. For example, if we take
R with the usual absolute value, we have 1 ∈ OR, but 1 + 1 6∈ OR.

Proof. We know that these sets are open since all balls are open.
To see OK is a subring, we have |1| = |−1| = 1. So 1,−1 ∈ OK . If x, y ∈ OK ,

then |x+ y| ≤ max(|x|, |y|) ≤ 1. So x+ y ∈ OK . Also, |xy| = |x||y| ≤ 1 · 1 = 1.
So xy ∈ OK .

That the other sets are ideals of OK is checked in the same way.
To check the units, we have x ∈ O×K ⇔ |x|, |x−1| ≤ 1⇔ |x| = |x|−1 = 1.

1.2 Rings

Definition (Integral element). Let R ⊆ S be rings and s ∈ S. We say s is
integral over R if there is some monic f ∈ R[x] such that f(s) = 0.

Example. Any r ∈ R is integral (take f(x) = x− r).

Example. Take Z ⊆ C. Then z ∈ C is integral over Z if it is an algebraic
integer (by definition of algebraic integer). For example,

√
2 is an algebraic

integer, but 1√
2

is not.

We would like to prove the following characterization of integral elements:

Theorem. Let R ⊆ S be rings. Then s1, · · · , sn ∈ S are all integral iff
R[s1, · · · , sn] ⊆ S is a finitely-generated R-module.

Note that R[s1, · · · , sn] is by definition a finitely-generated R-algebra, but
requiring it to be finitely-generated as a module is stronger.

Here one direction is easy. It is not hard to show that if s1, · · · , sn are all
integral, then R[s1, · · · , sn] is finitely-generated. However to show the other
direction, we need to find some clever trick to produce a monic polynomial that
kills the si.

The trick we need is the adjugate matrix we know and love from IA Vectors
and Matrices.

Definition (Adjoint/Adjugate matrix). Let A = (aij) be an n× n matrix with
coefficients in a ring R. The adjugate matrix or adjoint matrix A∗ = (a∗ij) of A
is defined by

a∗ij = (−1)i+j det(Aij),

where Aij is an (n − 1) × (n − 1) matrix obtained from A by deleting the ith
column and the jth row.
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As we know from IA, the following property holds for the adjugate matrix:

Proposition. For any A, we have A∗A = AA∗ = det(A)I, where I is the
identity matrix.

With this, we can prove our claim:

Proof of theorem. Note that we can construct R[s1, · · · , sn] by a sequence

R ⊆ R[s1] ⊆ R[s1, s2] ⊆ · · · ⊆ R[s1, · · · , sn] ⊆ S,

and each si is integral over R[s1, · · · , sn−1]. Since the finite extension of a finite
extension is still finite, it suffices to prove it for the case n = 1, and we write s
for s1.

Suppose f(x) ∈ R[x] is monic such that f(s) = 0. If g(x) ∈ R[x], then there
is some q, r ∈ R[x] such that g(x) = f(x)q(x) + r(x) with deg r < deg f . Then
g(s) = r(s). So any polynomial expression in s can be written as a polynomial
expression with degree less than deg f . So R[s] is generated by 1, s, · · · , sdeg f−1.

In the other direction, let t1, · · · , td be R-module generators of R[s1, · · · , sn].
We show that in fact any element of R[s1, · · · , sn] is integral over R. Consider
any element b ∈ R[s1, · · · , sn]. Then there is some aij ∈ R such that

bti =

d∑
j=1

aijtj .

In matrix form, this says
(bI −A)t = 0.

We now multiply by (bI −A)∗ to obtain

det(bI −A)tj = 0

for all j. Now we know 1 ∈ R. So 1 =
∑
cjtj for some cj ∈ R. Then we have

det(bI −A) = det(bI −A)
∑

cjtj =
∑

cj(det(bI −A)tj) = 0.

Since det(bI −A) is a monic polynomial in b, it follows that b is integral.

Using this characterization, the following result is obvious:

Corollary. Let R ⊆ S be rings. If s1, s2 ∈ S are integral over R, then s1 + s2

and s1s2 are integral over R. In particular, the set R̃ ⊆ S of all elements in S
integral over R is a ring, known as the integral closure of R in S.

Proof. If s1, s2 are integral, then R[s1, s2] is a finite extension over R. Since
s1 + s2 and s1s2 are elements of R[s1, s2], they are also integral over R.

Definition (Integrally closed). Given a ring extension R ⊆ S, we say R is
integrally closed in S if R̃ = R.
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1.3 Topological rings

Recall that we previously constructed the valuation ring OK . Since the valued
field K itself has a topology, the valuation ring inherits a subspace topology.
This is in fact a ring topology.

Definition (Topological ring). Let R be a ring. A topology on R is called a
ring topology if addition and multiplication are continuous maps R×R→ R. A
ring with a ring topology is a topological ring.

Example. R and C with the usual topologies and usual ring structures are
topological rings.

Exercise. Let K be a valued field. Then K is a topological ring. We can see
this from the fact that the product topology on K ×K is induced by the metric
d((x0, y0), (x1, y1)) = max(|x0 − x1|, |y0 − y1|).

Now if we are just randomly given a ring, there is a general way of constructing
a ring topology. The idea is that we pick an ideal I and declare its elements to
be small. For example, in a valued ring, we can pick I = {x ∈ OK : |x| < 1}.
Now if you are not only in I, but I2, then you are even smaller. So we have a
hierarchy of small sets

I ⊇ I2 ⊇ I3 ⊇ I4 ⊇ · · ·

Now to make this a topology on R, we say that a subset U ⊆ R is open if every
x ∈ U is contained in some translation of In (for some n). In other words, we
need some y ∈ R such that

x ∈ y + In ⊆ U.

But since In is additively closed, this is equivalent to saying x+ In ⊆ U . So we
make the following definition:

Definition (I-adically open). Let R be a ring and I ⊆ R an ideal. A subset
U ⊆ R is called I-adically open if for all x ∈ U , there is some n ≥ 1 such that
x+ In ⊆ U .

Proposition. The set of all I-adically open sets form a topology on R, called
the I-adic topology .

Note that the I-adic topology isn’t really the kind of topology we are used
to thinking about, just like the topology on a valued field is also very weird.
Instead, it is a “filter” for telling us how small things are.

Proof. By definition, we have ∅ and R are open, and arbitrary unions are clearly
open. If U, V are I-adically open, and x ∈ U ∩ V , then there are n,m such that
x+ In ⊆ U and x+ Im ⊆ V . Then x+ Imax(m,n) ⊆ U ∩ V .

Exercise. Check that the I-adic topology is a ring topology.

In the special case where I = xR, we often call the I-adic topology the x-adic
topology .

Now we want to tackle the notion of completeness. We will consider the case
of I = xR for motivation, but the actual definition will be completely general.
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If we pick the x-adic topology, then we are essentially declaring that we take
x to be small. So intuitively, we would expect power series like

a0 + a1x+ a2x
2 + a3x

3 + · · ·

to “converge”, at least if the ai are “of bounded size”. In general, the ai are
“not too big” if aix

i is genuinely a member of xiR, as opposed to some silly thing
like x−i.

As in the case of analysis, we would like to think of these infinite series as a
sequence of partial sums

(a0, a0 + a1x, a0 + a1x+ a2x
2, · · · )

Now if we denote the limit as L, then we can think of this sequence alternatively
as

(L mod I, L mod I2, L mod I3, · · · ).
The key property of this sequence is that if we take L mod Ik and reduce it mod
Ik−1, then we obtain L mod Ik−1.

In general, suppose we have a sequence

(bn ∈ R/In)∞n=1.

such that bn mod In−1 = bn−1. Then we want to say that the ring is I-adically
complete if every sequence satisfying this property is actually of the form

(L mod I, L mod I2, L mod I3, · · · )

for some L. Alternatively, we can take the I-adic completion to be the collection
of all such sequences, and then a space is I-adically complete it is isomorphic to
its I-adic completion.

To do this, we need to build up some technical machinery. The kind of
sequences we’ve just mentioned is a special case of an inverse limit.

Definition (Inverse/projective limit). Let R1, R2, , · · · be topological rings, with
continuous homomorphisms fn : Rn+1 → Rn.

R1 R2 R3 R4 · · ·
f1 f2 f3

The inverse limit or projective limit of the Ri is the ring

lim←−Rn =

{
(xn) ∈

∏
n

Rn : fn(xn+1) = xn

}
,

with coordinate-wise addition and multiplication, together with the subspace
topology coming from the product topology of

∏
Rn. This topology is known as

the inverse limit topology .

Proposition. The inverse limit topology is a ring topology.

Proof sketch. We can fit the addition and multiplication maps into diagrams

lim←−Rn × lim←−Rn lim←−Rn

∏
Rn ×

∏
Rn

∏
Rn

10
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By the definition of the subspace topology, it suffices to show that the correspond-
ing maps on

∏
Rn are continuous. By the universal property of the product, it

suffices to show that the projects
∏
Rn ×

∏
Rn → Rm is continuous for all m.

But this map can alternatively be obtained by first projecting to Rm, then doing
multiplication in Rm, and projection is continuous. So the result follows.

It is easy to see the following universal property of the inverse limit topology:

Proposition. Giving a continuous ring homomorphism g : S → lim←−Rn is the
same as giving a continuous ring homomorphism gn : S → Rn for each n, such
that each of the following diagram commutes:

S Rn

Rn−1

gn

gn−1
fn−1

Definition (I-adic completion). Let R be a ring and I be an ideal. The I-adic
completion of R is the topological ring

lim←−R/I
n,

where R/In has the discrete topology, and R/In+1 → R/In is the quotient map.
There is an evident map

ν : R→ lim←−R/I
n

r 7→ (r mod In).

This map is a continuous ring homomorphism if R is given the I-adic topology.

Definition (I-adically complete). We say that R is I-adically complete if ν is a
bijection.

Exercise. If ν is a bijection, then ν is in fact a homeomorphism.

1.4 The p-adic numbers

For the rest of this course, p is going to be a prime number.
We consider a particular case of valued fields, namely the p-adic numbers,

and study some of its basic properties.
Let x ∈ Q be non-zero. Then by uniqueness of factorization, we can write x

uniquely as

x = pn
a

b
,

where a, b, n ∈ Z, b > 0 and a, b, p are pairwise coprime.

Definition (p-adic absolute value). The p-adic absolute value on Q is the
function | · |p : Q→ R≥0 given by

|x|p =

{
0 x = 0

p−n x = pn ab as above
.

Proposition. The p-adic absolute value is an absolute value.
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Proof. It is clear that |x|p = 0 iff x = 0.
Suppose we have

x = pn
a

b
, y = pm

c

d
.

We wlog m ≥ n. Then we have

|xy|p =
∣∣∣pn+m ac

bd

∣∣∣ = p−m−n = |x|p|y|p.

So this is multiplicative. Finally, we have

|x+ y|p =

∣∣∣∣pn ab+ pm−ncb

bd

∣∣∣∣ ≤ p−n = max(|x|p, |y|p).

Note that we must have bd coprime to p, but ab+ pm−ncb need not be. However,
any extra powers of p could only decrease the absolute value, hence the above
result.

Note that if x ∈ Z is an integer, then |x|p = p−n iff pn || x (we say pn || x if
pn | x and pn+1 - x).

Definition (p-adic numbers). The p-adic numbers Qp is the completion of Q
with respect to | · |p.

Definition (p-adic integers). The valuation ring

Zp = {x ∈ Qp : |x|p ≤ 1}

is the p-adic integers.

Proposition. Zp is the closure of Z inside Qp.

Proof. If x ∈ Z is non-zero, then x = pna with n ≥ 0. So |x|p ≤ 1. So Z ⊆ Zp.
We now want to show that Z is dense in Zp. We know the set

Z(p) = {x ∈ Q : |x|p ≤ 1}

is dense inside Zp, essentially by definition. So it suffices to show that Z is dense
in Z(p). We let x ∈ Z(p) \ {0}, say

x = pn
a

b
, n ≥ 0.

It suffices to find xi ∈ Z such that xi → 1
b . Then we have pnaxi → x.

Since (b, p) = 1, we can find xi, yi ∈ Z such that bxi + piyi = 1 for all i ≥ 1.
So ∣∣∣∣xi − 1

b

∣∣∣∣
p

=

∣∣∣∣1b
∣∣∣∣
p

|bxi − 1|p = |piyi|p ≤ p−i → 0.

So done.

Proposition. The non-zero ideals of Zp are pnZp for n ≥ 0. Moreover,

Z
pnZ

∼=
Zp
pnZp

.
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Proof. Let 0 6= I ⊆ Zp be an ideal, and pick x ∈ I such that |x|p is maximal.
This supremum exists and is attained because the possible values of the absolute
values are discrete and bounded above. If y ∈ I, then by maximality, we have
|y|p ≤ |x|p. So we have |yx−1|p ≤ 1. So yx−1 ∈ Zp, and this implies that
y = (yx−1)x ∈ xZp. So I ⊆ xZp, and we obviously have xZp ⊆ I. So we have
I = xZp.

Now if x = pn ab , then since a
b is invertible in Zp, we have xZp = pnZp. So

I = pnZp.
To show the second part, consider the map

fn : Z→ Zp
pnZp

given by the inclusion map followed by quotienting. Now pnZp = {x : |x|p ≤ p−n.
So we have

ker fn = {x ∈ Z : |x|p ≤ p−n} = pnZ.

Now since Z is dense in Zp, we know the image of fn is dense in Zp/pnZp.
But Zp/pnZp has the discrete topology. So fn is surjective. So fn induces an
isomorphism Z/pnZ ∼= Zp/pnZp.

Corollary. Zp is a PID with a unique prime element p (up to units).

This is pretty much the point of the p-adic numbers — there are a lot of
primes in Z, and by passing on to Zp, we are left with just one of them.

Proposition. The topology on Z induced by | · |p is the p-adic topology (i.e.
the pZ-adic topology).

Proof. Let U ⊆ Z. By definition, U is open wrt | · |p iff for all x ∈ U , there is
an n ∈ N such that

{y ∈ Z : |y − x|p ≤ p−n} ⊆ U.

On the other hand, U is open in the p-adic topology iff for all x ∈ U , there is
some n ≥ 0 such that x+ pnZ ⊆ U . But we have

{y ∈ Z : |y − x|p ≤ p−n} = x+ pnZ.

So done.

Proposition. Zp is p-adically complete and is (isomorphic to) the p-adic com-
pletion of Z.

Proof. The second part follows from the first as follows: we have the maps

Zp lim←−Zp/(pnZp) limZ/(pnZ)ν (fn)n

We know the map induced by (fn)n is an isomorphism. So we just have to show
that ν is an isomorphism

To prove the first part, we have x ∈ ker ν iff x ∈ pnZp for all n iff |x|p ≤ p−n
for all n iff |x|p = 0 iff x = 0. So the map is injective.

To show surjectivity, we let

zn ∈ lim←−Zp/pnZp.

13



1 Basic theory III Local Fields

We define ai ∈ {0, 1, · · · , p− 1} recursively such that

xn =

n−1∑
i=0

aip
i

is the unique representative of zn in the set of integers {0, 1, · · · , pn − 1}. Then

x =

∞∑
i=0

aip
i

exists in Zp and maps to x ≡ xn ≡ zn (mod pn) for all n ≥ 0. So ν(x) = (zn).
So the map is surjective. So ν is bijective.

Corollary. Every a ∈ Zp has a unique expansion

a =

∞∑
i=0

aip
i.

with ai ∈ {0, · · · , p− 1}.
More generally, for any a ∈ Q×, there is a unique expansion

a =

∞∑
i=n

aip
i

for ai ∈ {0, · · · , p− 1}, an 6= 0 and

n = − logp |a|p ∈ Z.

Proof. The second part follows from the first part by multiplying a by p−n.

Example. We have

1

1− p
= 1 + p+ p2 + p3 + · · · .

14
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2 Valued fields

2.1 Hensel’s lemma

We return to the discussion of general valued fields. We are now going to introduce
an alternative to the absolute value that contains the same information, but is
presented differently.

Definition (Valuation). Let K be a field. A valuation on K is a function
v : K → R ∪ {∞} such that

(i) v(x) = 0 iff x = 0

(ii) v(xy) = v(x) + v(y)

(iii) v(x+ y) ≥ min{v(x), v(y)}.

Here we use the conventions that r +∞ =∞ and r ≤ ∞ for all r ∈ ∞.
In some sense, this definition is sort-of pointless, since if v is a valuation,

then the function
|x| = c−v(x)

for any c > 1 is a (non-archimedean) absolute value. Conversely, if | · | is a
valuation, then

v(x) = − logc |x|

is a valuation.
Despite this, sometimes people prefer to talk about the valuation rather than

the absolute value, and often this is more natural. As we will later see, in certain
cases, there is a canonical normalization of v, but there is no canonical choice
for the absolute value.

Example. For x ∈ Qp, we define

vp(x) = − logp |x|p.

This is a valuation, and if x ∈ Zp, then vp(x) = n iff pn || x.

Example. Let K be a field, and define

k((T )) =

{ ∞∑
i=n

aiT
i : ai ∈ k, n ∈ Z

}
.

This is the field of formal Laurent series over k. We define

v
(∑

aiT
i
)

= min{i : ai 6= 0}.

Then v is a valuation of k((T )).

Recall that for a valued field K, the valuation ring is given by

OK = {x ∈ K : |x| ≤ 1} = {x ∈ K : v(x) ≥ 0}.

Since this is a subring of a field, and the absolute value is multiplicative, we
notice that the units in O are exactly the elements of absolute value 1. The

15
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remaining elements form an ideal (since the field is non-archimedean), and thus
we have a maximal ideal

m = mK = {x ∈ K : |x| < 1}

The quotient
k = kK = OK/mK

is known as the residue field .

Example. Let K = Qp. Then O = Zp, and m = pZp. So

k = O/m = Zp/pZp ∼= Z/pZ.

Definition (Primitive polynomial). If K is a valued field and f(x) = a0 + a1x+
· · ·+ anx

n ∈ K[x] is a polynomial, we say that f is primitive if

max
i
|ai| = 1.

In particular, we have f ∈ O[x].

The point of a primitive polynomial is that such a polynomial is naturally,
and non-trivially, an element of k[x]. Moreover, focusing on such polynomials is
not that much of a restriction, since any polynomial is a constant multiple of a
primitive polynomial.

Theorem (Hensel’s lemma). Let K be a complete valued field, and let f ∈ K[x]
be primitive. Put f̄ = f mod m ∈ k[x]. If there is a factorization

f̄(x) = ḡ(x)h̄(x)

with (ḡ, h̄) = 1, then there is a factorization

f(x) = g(x)h(x)

in O[x] with
ḡ = g, h̄ = h mod m,

with deg g = deg ḡ.

Note that requiring deg g = deg ḡ is the best we can hope for — we cannot
guarantee deg h = deg h̄, since we need not have deg f = deg f̄ .

This is one of the most important results in the course.

Proof. Let g0, h0 be arbitrary lifts of ḡ and h̄ to O[x] with deg ḡ = g0 and
deg h̄ = h0. Then we have

f = g0h0 mod m.

The idea is to construct a “Taylor expansion” of the desired g and h term by
term, starting from g0 and h0, and using completeness to guarantee convergence.
To proceed, we use our assumption that ḡ, h̄ are coprime to find some a, b ∈ O[x]
such that

ag0 + bh0 ≡ 1 mod m. (†)

16
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It is easier to work modulo some element π instead of modulo the ideal m, since
we are used to doing Taylor expansion that way. Fortunately, since the equations
above involve only finitely many coefficients, we can pick an π ∈ m with absolute
value large enough (i.e. close enough to 1) such that the above equations hold
with m replaced with π. Thus, we can write

f = g0h0 + πr0, r0 ∈ O[x].

Plugging in (†), we get

f = g0h0 + πr0(ag0 + bh0) + π2(something).

If we are lucky enough that deg r0b < deg g0, then we group as we learnt in
secondary school to get

f = (g0 + πr0b)(h0 + πr0a) + π2(something).

We can then set

g1 = g0 + πr0b

h1 = h0 + πr0a,

and then we can write

f = g1h1 + π2r1, r1 ∈ O[x], deg g1 = deg ḡ. (∗)

If it is not true that deg r0b ≤ deg g0, we use the division algorithm to write

r0b = qg0 + p.

Then we have
f = g0h0 + π((r0a+ q)g0 + ph0),

and then proceed as above.
Given the factorization (∗), we replace r1 by r1(ag0 + bh0), and then repeat

the procedure to get a factorization

f ≡ g2h2 mod π3, deg g2 = deg ḡ.

Inductively, we constrict gk, hk such that

f ≡ gkhk mod πk+1

gk ≡ gk−1 mod πk

hk ≡ hk−1 mod πk

deg gk = deg ḡ

Note that we may drop the terms of hk whose coefficient are in πk+1O, and the
above equations still hold. Moreover, we can then bound deg hk ≤ deg f −deg gk.
It now remains to set

g = lim
k→∞

gk, h = lim
k→∞

hk.

17
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Corollary. Let f(x) = a0 + a1x+ · · ·+ anx
n ∈ K[x] where K is complete and

a0, an 6= 0. If f is irreducible, then

|a`| ≤ max(|a0|, |an|)

for all `.

Proof. By scaling, we can wlog f is primitive. We then have to prove that
max(|a0|, |an|) = 1. If not, let r be minimal such that |ar| = 1. Then 0 < r < n.
Moreover, we can write

f(x) ≡ xr(ar + ar+1x+ · · ·+ anx
n−r) mod m.

But then Hensel’s lemma says this lifts to a factorization of f , a contradiction.

Corollary (of Hensel’s lemma). Let f ∈ O[x] be monic, and K complete. If f
mod m has a simple root ᾱ ∈ k, then f has a (unique) simple root α ∈ O lifting
ᾱ.

Example. Consider xp−1 − 1 ∈ Zp[x]. We know xp−1 splits into distinct linear
factors over Fp[x]. So all roots lift to Zp. So xp−1 − 1 splits completely in Zp.
So Zp contains all p roots of unity.

Example. Since 2 is a quadratic residue mod 7, we know
√

2 ∈ Q7.

2.2 Extension of norms

The main goal of this section is to prove the following theorem:

Theorem. Let K be a complete valued field, and let L/K be a finite extension.
Then the absolute value on K has a unique extension to an absolute value on L,
given by

|α|L = n

√
|NL/K(α)|,

where n = [L : K] and NL/K is the field norm. Moreover, L is complete with
respect to this absolute value.

Corollary. Let K be complete and M/K be an algebraic extension of K. Then
| · | extends uniquely to an absolute value on M .

This is since any algebraic extension is the union of finite extensions, and
uniqueness means we can patch the absolute values together.

Corollary. Let K be a complete valued field and L/K a finite extension. If
σ ∈ Aut(L/K), then |σ(α)|L = |α|L.

Proof. We check that α 7→ |σ(α)|L is also an absolute value on L extending the
absolute value on K. So the result follows from uniqueness.

Before we can prove the theorem, we need some preliminaries. Given a finite
extension L/K, we would like to consider something more general than a field
norm on L. Instead, we will look at norms of L as a K-vector space. There
are less axioms to check, so naturally there will be more choices for the norm.
However, just as in the case of R-vector spaces, we can show that all choices of
norms are equivalent. So to prove things about the extended field norm, often
we can just pick a convenient vector space norm, prove things about it, then
apply equivalence.

18
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Definition (Norm on vector space). Let K be a valued field and V a vector
space over K. A norm on V is a function ‖ · ‖ : V → R≥0 such that

(i) ‖x‖ = 0 iff x = 0.

(ii) ‖λ‖ = |λ| ‖x‖ for all λ ∈ K and x ∈ V .

(iii) ‖x+ y‖ ≤ max{‖x‖ , ‖y‖}.

Note that our norms are also non-Archimedean.

Definition (Equivalence of norms). Let ‖ · ‖ and ‖ · ‖′ be norms on V . Then
two norms are equivalent if they induce the same topology on V , i.e. there are
C,D > 0 such that

C ‖x‖ ≤ ‖x‖′ ≤ D ‖x‖

for all x ∈ V .

One of the most convenient norms we will work with is the max norm:

Example (Max norm). Let K be a complete valued field, and V a finite-
dimensional K-vector space. Let x1, · · · , xn be a basis of V . Then if

x =
∑

aixi,

then
‖x‖max = max

i
|ai|

defines a norm on V .

Proposition. Let K be a complete valued field, and V a finite-dimensional
K-vector space. Then V is complete under the max norm.

Proof. Given a Cauchy sequence in V under the max norm, take the limit of each
coordinate to get the limit of the sequence, using the fact that K is complete.

That was remarkably easy. We can now immediately transfer this to all other
norms we can think of by showing all norms are equivalent.

Proposition. Let K be a complete valued field, and V a finite-dimensional
K-vector space. Then any norm ‖ · ‖ on V is equivalent to ‖ · ‖max.

Corollary. V is complete with respect to any norm.

Proof. Let ‖ · ‖ be a norm. We need to find C,D > 0 such that

C ‖x‖max ≤ ‖x‖ ≤ D ‖x‖max .

We set D = maxi(‖xi‖). Then we have

‖x‖ =
∥∥∥∑ aixi

∥∥∥ ≤ max (|ai| ‖xi‖) ≤ (max |ai|)D = ‖x‖maxD.

We find C by induction on n. If n = 1, then ‖x‖ = ‖a1x1‖ = |a1| ‖x‖ =
‖x‖max ‖x1‖. So C = ‖x1‖ works.
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For n ≥ 2, we let

Vi = Kx1 ⊕ · · · ⊕Kxi−1 ⊕Kxi+1 ⊕ · · · ⊕Kxn
= span{x1, · · · , xi−1, xi+1, · · · , xn}.

By the induction hypothesis, each Vi is complete with respect to (the restriction
of) ‖ · ‖. So in particular Vi is closed in V . So we know that the union

n⋃
i=1

xi + Vi

is also closed. By construction, this does not contain 0. So there is some C > 0
such that if x ∈

⋃n
i=1 xi + Vi, then ‖x‖ ≥ C. We claim that

C ‖x‖max ≤ ‖x‖.

Indeed, take x =
∑
aixi ∈ V . Let r be such that

|ar| = max
i

(|ai|) = ‖x‖max .

Then

‖x‖−1
max ‖x‖ =

∥∥a−1
r x

∥∥
=

∥∥∥∥a1

ar
x1 + · · ·+ ar−1

ar
xr−1 + xr +

ar+1

ar
xr+1 + · · ·+ an

ar
xn

∥∥∥∥
≥ C,

since the last vector is an element of xr + Vr.

Before we can prove our theorem, we note the following two easy lemmas:

Lemma. Let K be a valued field. Then the valuation ring OK is integrally
closed in K.

Proof. Let x ∈ K and |x| > 1. Suppose we have an−1, · · · , a0 ∈ OK . Then we
have

|xn| > |a0 + a1x+ · · ·+ an−1x
n−1|.

So we know
xn + an−1x

n−1 + · · ·+ a1x+ a0

has non-zero norm, and in particular is non-zero. So x is not integral over OK .
So OK is integrally closed.

Lemma. Let L be a field and | · | a function that satisfies all axioms of an
absolute value but the strong triangle inequality. Then | · | is an absolute value
iff |α| ≤ 1 implies |α+ 1| ≤ 1.

Proof. It is clear that if | · | is an absolute value, then |α| ≤ 1 implies |α+ 1| ≤ 1.
Conversely, if this holds, and |x| ≤ |y|, then |x/y| ≤ 1. So |x/y + 1| ≤ 1. So

|x+ y| ≤ |y|. So |x+ y| ≤ max{|x|, |y|}.

Finally, we get to prove our theorem.
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Theorem. Let K be a complete valued field, and let L/K be a finite extension.
Then the absolute value on K has a unique extension to an absolute value on L,
given by

|α|L = n

√∣∣NL/K(α)
∣∣,

where n = [L : K] and NL/K is the field norm. Moreover, L is complete with
respect to this absolute value.

Proof. For uniqueness and completeness, if | · |L is an absolute value on L, then
it is in particular a K-norm on L as a finite-dimensional vector space. So we
know L is complete with respect to | · |L.

If | · |′L is another absolute value extending | · |, then we know | · |L and | · |′L
are equivalent in the sense of inducing the same topology. But then from one of
the early exercises, when field norms are equivalent, then we can find some s > 0
such that | · |sL = | · |′L. But the two norms agree on K, and they are non-trivial.
So we must have s = 1. So the norms are equal.

To show existence, we have to prove that

|α|L = n

√∣∣NL/K(α)
∣∣

is a norm.

(i) If |α|L = 0, then NL/K(α) = 0. This is true iff α = 0.

(ii) The multiplicativity of |α| and follows from the multiplicativity of NL/K ,
| · | and n

√
· .

To show the strong triangle inequality, it suffices to show that |α|L ≤ 1 implies
|α+ 1|L ≤ 1.

Recall that

OL = {α ∈ L : |α|L ≤ 1} = {α ∈ L : NL/K(α) ∈ OK}.

We claim that OL is the integral closure of OK in L. This implies what we
want, since the integral closure is closed under addition (and 1 is in the integral
closure).

Let α ∈ OL. We may assume α 6= 0, since that case is trivial. Let the
minimal polynomial of α over K be

f(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn ∈ K[x].

We need to show that ai ∈ OK for all i. In other words, |ai| ≤ 1 for all i. This
is easy for a0, since

NL/K(α) = ±am0 ,
and hence |a0| ≤ 1.

By the corollary of Hensel’s lemma, for each i, we have

|ai| ≤ max(|a0|, 1)

By general properties of the field norm, there is some m ∈ Z≥1 such that
NL/K(α) = ±am0 . So we have

|ai| ≤ max
(∣∣∣NL/K(α)1/m

∣∣∣ , 1) = 1.
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So f ∈ OK [x]. So α is integral over OK .
On the other hand, suppose α is integral over OK . Let K̄/K be an algebraic

closure of K. Note that

NL/K(α) =

( ∏
σ:L↪→K̄

σ(α)

)d
,

for some d ∈ Z≥1, and each σ(α) is integral over OK , since α is (apply σ to the
minimal polynomial). This implies that NL/K(α) is integral over OK (and lies
in K). So NL/K(α) ∈ OK since OK is integrally closed in K.

Corollary (of the proof). Let K be a complete valued field, and L/K a finite
extension. We equip L with | · |L extending | · | on K. Then OL is the integral
closure of OK in L.

2.3 Newton polygons

We are going to have a small digression to Newton polygons. We will not make
use of them in this course, but it is a cute visual devices that tell us about roots
of polynomials. It is very annoying to write down a formal definition, so we first
look at some examples. We will work with valuations rather than the absolute
value.

Example. Consider the valued field (Qp, vp), and the polynomial

t4 + p2t4 − p3t2 + pt+ p3.

We then plot the coefficients for each power of t, and then draw a “convex
polygon” so that all points lie on or above it:

power of t

valuation of coefficient

1 2 3 40

1

2

3

Example. Consider (Q2, v2) with the polynomial

4t4 + 5t3 +
7

2
t+

9

2
.

Here there is no t2 term, so we simply don’t draw anything.
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power of t

valuation of coefficient

1 2 3 40

−1

1

2

We now go to come up with a formal definition.

Definition (Lower convex set). We say a set S ⊆ R2 is lower convex if

(i) Whenever (x, y) ∈ S, then (x, z) ∈ S for all z ≥ y.

(ii) S is convex.

Definition (Lower convex hull). Given any set of points T ⊆ R2, there is a
minimal lower convex set S ⊇ T (by the intersection of all lower convex sets
containing T – this is a non-empty definition because R2 satisfies the property).
This is known as the lower convex hull of the points.

Example. The lower convex hull of the points (0, 3), (1, 1), (2, 3), (3, 2), (4, 0) is
given by the region denoted below:

Definition (Newton polygon). Let f(x) = a0 + a1x+ · · ·+ anx
n ∈ K[x], where

(K, v) is a valued field. Then the Newton polygon of f is the lower convex hull
of {(i, v(ai)) : i = 0, · · · , n, ai 6= 0}.

This is the formal definition, so in our first example, the Newton polygon
really should be the shaded area shown above, but most of the time, we only
care about the lower line.

Definition (Break points). Given a polynomial, the points (i, v(ai)) lying on
the boundary of the Newton polygon are known as the break points.
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Definition (Line segment). Given a polynomial, the line segment between two
adjacent break points is a line segment .

Definition (Multiplicity/length). The length or multiplicity of a line segment
is the horizontal length.

Definition (Slope). The slope of a line segment is its slope.

Example. Consider again (Q2, v2) with the polynomial

4t4 + 5t3 +
7

2
t+

9

2
.

power of t

valuation of coefficient

The middle segment has length 2 and slope 1/2.

Example. In the following Newton polygon:

The second line segment has length 3 and slope − 1
3 .

It turns out the Newton polygon tells us something about the roots of the
polynomial.

Theorem. Let K be complete valued field, and v the valuation on K. We let

f(x) = a0 + a1x+ · · ·+ anx
n ∈ K[x].

Let L be the splitting field of f over K, equipped with the unique extension w
of v.

If (r, v(ar))→ (s, v(as)) is a line segment of the Newton polygon of f with
slope −m ∈ R, then f has precisely s− r roots of valuation m.
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Note that by lower convexity, there can be at most one line segment for each
slope. So this theorem makes sense.

Proof. Dividing by an only shifts the polygon vertically, so we may wlog an = 1.
We number the roots of f such that

w(α1) = · · · = w(αs1) = m1

w(αs1+1) = · · · = w(αs2) = m2

...

w(αst) = · · · = w(αn) = mt+1,

where we have
m1 < m2 < · · · < mt+1.

Then we know

v(an) = v(1) = 0

v(an−1) = w
(∑

αi

)
≥ min

i
w(αi) = m1

v(an−2) = w
(∑

αiαj

)
≥ min

i 6=j
w(αiαj) = 2m1

...

v(an−s1) = w

 ∑
i1 6=... 6=is1

αi1...αis1

 = minw(αi1 · · ·αis1 ) = s1m1.

It is important that in the last one, we have equality, not an inequality, because
there is one term in the sum whose valuation is less than all the others.

We can then continue to get

v(αn−s1−1) ≥ minw(αi1 · · ·αis1+1) = s1m1 +m2,

until we reach
v(αn−s1−s2) = s1m1 + (s2 − s1)m2.

We keep going on.
We draw the Newton polygon.

(n, 0)

(n− s1, s1m1)

(n− s1 − s2, s1m1 + (s2 − s1)m1)
· · ·
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We don’t know where exactly the other points are, but the inequalities imply
that the (i, v(ai)) are above the lines drawn. So this is the Newton polygon.

Counting from the right, the first line segment has length n− (n− s1) = s1

and slope
0− s1m1

n− (n− s1)
= −m1.

In general, the kth segment has length (n− sk−1)− (n− sk) = sk − sk−1, and
slope (

s1m1 +
∑k−2
i=1 (si+1 − si)mi+1

)
−
(
s1m1 +

∑k−1
i=1 (si+1 − si)mi+1

)
sk − sk−1

=
−(sk − sk−1)mk

sk − sk−1
= −mk.

and the others follow similarly.

Corollary. If f is irreducible, then the Newton polygon has a single line segment.

Proof. We need to show that all roots have the same valuation. Let α, β be in
the splitting field L. Then there is some σ ∈ Aut(L/K) such that σ(α) = β.
Then w(α) = w(σ(α)) = β. So done.

Note that Eisenstein’s criterion is a (partial) converse to this!
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3 Discretely valued fields

We are now going to further specialize. While a valued field already has some
nice properties, we can’t really say much more about them without knowing
much about their valuations.

Recall our previous two examples of valued fields: Qp and Fp((T )). The
valuations had the special property that they take values in Z. Such fields are
known as discretely valued fields.

Definition (Discretely valued field). Let K be a valued field with valuation v.
We say K is a discretely valued field (DVF) if v(k×) ⊆ R is a discrete subgroup
of R, i.e. v(k×) is infinite cyclic.

Note that we do not require the image to be exactly Z ⊆ R. So we allow
scaled versions of the valuation. This is useful because the property of mapping
into Z is not preserved under field extensions in general, as we will later see. We
will call those that do land in Z normalized valuations.

Definition (Normalized valuation). Let K be a DVF. The normalized valuation
VK on K is the unique valuation on K in the given equivalence class of valuations
whose image is Z.

Note that the normalized valuation does not give us a preferred choice of
absolute value, since to obtain an absolute value, we still have to arbitrarily pick
the base c > 1 to define |x| = c−v(x).

Definition (Uniformizer). Let K be a discrete valued field. We say π ∈ K is
uniformizer if v(π) > 0 and v(π) generates v(k×) (iff v(π) has minimal positive
valuation).

So with a normalized valuation, we have vK(π) = 1.

Example. The usual valuation on Qp is normalized, and so is the usual valuation
on k((T )). p is a uniformizer for Qp and T is a uniformizer for k((T )).

The kinds of fields we will be interested are local fields. The definition we
have here might seem rather ad hoc. This is just one of the many equivalent
characterizations of a local field, and the one we pick here is the easiest to state.

Definition (Local field). A local field is a complete discretely valued field with
a finite residue field.

Example. Q and Qp with vp are both discretely valued fields, and Qp is a local
field. p is a uniformizer.

Example. The Laurent series field k((T )) with valuation

v
(∑

anT
n
)

= inf{n : an 6= 0}

is a discrete valued field, and is a local field if and only if k is finite field, as the
residue field is exactly k. We have

Ok((T )) = k[[T ]] =

{ ∞∑
n=0

anT
n : an ∈ k

}
.

Here T is a uniformizer.
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These discretely valued field are pretty much like the p-adic numbers.

Proposition. Let K be a discretely valued field with uniformizer π. Let S ⊆ OK
be a set of coset representatives of Ok/mk = kK containing 0. Then

(i) The non-zero ideals of OK are πnOK for n ≥ 0.

(ii) The ring OK is a PID with unique prime π (up to units), and mK = πOK .

(iii) The topology on OK induced by the absolute value is the π-adic topology.

(iv) If K is complete, then OK is π-adically complete.

(v) If K is complete, then any x ∈ K can be written uniquely as

x =

∞∑
n�−∞

anπ
n,

where an ∈ S, and
|x| = |π|− inf{n:an 6=0}.

(vi) The completion K̂ is also discretely valued and π is a uniformizer, and
moreover the natural map

Ok
πnOk

OK̂
πnOK̂

∼

is an isomorphism.

Proof. The same as for Qp and Zp, with π instead of p.

Proposition. Let K be a discretely valued field. Then K is a local field iff OK
is compact.

Proof. If OK is compact, then π−nOK is compact for all n ≥ 0 (where π is the
uniformizer), and in particular complete. So

K =

∞⋃
n≥0

π−nOK

is complete, as this is an increasing union, and Cauchy sequences are bounded.
Also, we know the quotient map OK → kK is continuous when kK is given the
discrete topology, by definition of the π-adic topology. So kK is compact and
discrete, hence finite.

In the other direction, if K is local, then we know OK/πnOK is finite for
all n ≥ 0 (by induction and finiteness of kK). We let (xi) be a sequence in OK .
Then by finiteness of OK/πOK , there is a subsequence (x1,i) which is constant
modulo π. We keep going, choosing a subsequence (xn+1,i) of (xni) such that
(xn+1,i) is constant modulo πn+1. Then (xi,i)

∞
i=1 converges, since it is Cauchy as

|xii − xjj | ≤ |π|j

for j ≤ i. So OK is sequentially compact, hence compact.
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Now the valuation ring OK inherits a valuation from K, and this gives it a
structure of a discrete valuation ring. We will define a discrete valuation ring in
a funny way, but there are many equivalent definitions that we will not list.

Definition (Discrete valuation ring). A ring R is called a discrete valuation
ring (DVR) if it is a PID with a unique prime element up to units.

Proposition. R is a DVR iff R ∼= OK for some DVF K.

Proof. We have already seen that valuation rings of discrete valuation fields are
DVRs. In the other direction, let R be a DVR, and π a prime. Let x ∈ R \ {0}.
Then we can find a unique unit u ∈ R× and n ∈ Z≥0 such that x = πnu (say,
by unique factorization of PIDs). We define

v(x) =

{
n x 6= 0

∞ x = 0

This is then a discrete valuation of R. This extends uniquely to the field of
fractions K. It remains to show that R = OK . First note that

K = R

[
1

π

]
.

This is since any non-zero element in R
[

1
π

]
looks like πnu, u ∈ R×, n ∈ Z, and

is already invertible. So it must be the field of fractions. Then we have

v(πnu) = n ∈ Z≥0 ⇐⇒ πnu ∈ R.

So we have R = OK .

Now recall our two “standard” examples of valued fields — Fp((T )) and
Qp. Both of their residue fields are Fp, and in particular has characteristic p.
However, Fp((T )) itself is also of characteristic p, while Qp has characteristic 0.
It would thus be helpful to split these into two different cases:

Definition (Equal and mixed characteristic). Let K be a valued field with
residue field kK . Then K has equal characteristic if

charK = char kK .

Otherwise, we have K has mixed characteristic.

If K has mixed characteristic, then necessarily charK = 0, and char kK > 0.

Example. Qp has mixed characteristic, since charQp = 0 but char kQp =
Z/pZ = p.

We will also need the following definition:

Definition (Perfect ring). Let R be a ring of characteristic p. We say R is
perfect if the Frobenius map x 7→ xp is an automorphism of R, i.e. every element
of R has a pth root.

Fact. Let F be a field of characteristic p. Then F is perfect if and only if every
finite extension of F is separable.

Example. Fq is perfect for every q = pn.
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3.1 Teichmüller lifts

Take our favorite discretely valued ring Zp. This is p-adically complete, so we
can write each element as

x = a0 + a1p+ a2p
2 + · · · ,

where each ai is in {0, 1, · · · , p− 1}. The reason this works is that 0, 1, · · · , p−
1 are coset representatives of the ring Zp/pZp ∼= Z/pZ. While these coset
representatives might feel like a “natural” thing to do in this context, this is
because we have implicitly identified with Zp/pZp ∼= Z/pZ as a particular subset
of Z ⊆ Zp. However, this identification respects effectively no algebraic structure
at all. For example, we cannot multiplying the cosets simply by multiplying the
representatives as elements of Zp, because, say, (p− 1)2 = p2 − 2p+ 1, which is
not 1. So this is actually quite bad, at least theoretically.

It turns out that we can actually construct “natural” lifts in a very general
scenario.

Theorem. Let R be a ring, and let x ∈ R. Assume that R is x-adically
complete and that R/xR is perfect of characteristic p. Then there is a unique
map [−] : R/xR→ R such that

[a] ≡ a mod x

and
[ab] = [a][b].

for all a, b ∈ R/xR. Moreover, if R has characteristic p, then [−] is a ring
homomorphism.

Definition (Teichmüller map). The map [−] : R/xR → R is called the Te-
ichm uller map. [x] is called the Teichmüller lift or representative of x.

The idea of the proof is as follows: suppose we have an a ∈ R/xR. If we
randomly picked a lift α, then chances are it would be a pretty “bad” choice,
since any two such choices can differ by a multiple of x.

Suppose we instead lifted a pth root of a to R, and then take the pth power
of it. We claim that this is a better way of picking a lift. Suppose we have picked
two lifts of ap

−1

, say, α1 and α′1. Then α′1 = xc+ α1 for some c. So we have

(α′1)p − αp1 = αp1 + pxc+O(x2)− αp1 = pxc+O(x2),

where we abuse notation and write O(x2) to mean terms that are multiples of
x2.

We now recall that R/xR has characteristic p, so p ∈ xR. Thus in fact
pxc = O(x2). So we have

(α′1)p − αp1 = O(x2).

So while the lift is still arbitrary, any two arbitrary choices can differ by at most
x2. Alternatively, our lift is now a well-defined element of R/x2R.

We can, of course, do better. We can lift the p2th root of a to R, then take
the p2th power of it. Now any two lifts can differ by at most O(x3). More
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generally, we can try to lift the pnth root of a, then take the pnth power of
it. We keep picking a higher and higher n, take the limit, and hopefully get
something useful out!

To prove this result, we will need the following messy lemma:

Lemma. Let R be a ring with x ∈ R such that R/xR has characteristic p. Let
α, β ∈ R be such that

α = β mod xk (†)

Then we have
αp = βp mod xk+1.

Proof. It is left as an exercise to modify the proof to work for p = 2 (it is actually
easier). So suppose p is odd. We take the pth power of (†) to obtain

αp − βp +

p−1∑
i=1

(
p

i

)
αp−iβi ∈ xp(k+1)R.

We can now write

p−1∑
i=1

(−1)i
(
p

i

)
αp−iβi =

p−1
2∑
i=1

(−1)i
(
p

i

)
(αβ)i

(
αp−2i − βp−2i

)
= p(α− β)(something).

Now since R/xR has characteristic p, we know p ∈ xR. By assumption, we know
α− β ∈ xk+1R. So this whole mess is in xk+2R, and we are done.

Proof of theorem. Let a ∈ R/xR. For each n, there is a unique ap
−n ∈ R/xR.

We lift this arbitrarily to some αn ∈ R such that

αn ≡ ap
−n

mod x.

We define
βn = αp

n

n .

The claim is that
[a] = lim

n→∞
βn

exists and is independent of the choices.
Note that if the limit exists no matter how we choose the αn, then it

must be independent of the choices. Indeed, if we had choices βn and β′n,
then β1, β

′
2, β3, β

′
4, β5, β

′
6, · · · is also a respectable choice of lifts, and thus must

converge. So βn and β′n must have the same limit.
Since the ring is x-adically complete and is discretely valued, to show the

limit exists, it suffices to show that βn+1 − βn → 0 x-adically. Indeed, we have

βn+1 − βn = (αpn+1)p
n

− αp
n

n .

We now notice that

αpn+1 ≡ (ap
−n−1

)p = ap
−n
≡ αn mod x.
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So by applying the previous the lemma many times, we obtain

(αpn+1)p
n

≡ αp
n

n mod xn+1.

So βn+1 − βn ∈ xn+1R. So limβn exists.
To see [a] = a mod x, we just have to note that

lim
n→∞

αp
n

n ≡ lim
n→∞

(ap
−n

)p
n

= lim a = a mod x.

(here we are using the fact that the map R → R/xR is continuous when R is
given the x-adic topology and R/xR is given the discrete topology)

The remaining properties then follow trivially from the uniqueness of the
above limit.

For multiplicativity, if we have another element b ∈ R/xR, with γn ∈ R

lifting bp
−n

for all n, then αnγn lifts (ab)p
−n

. So

[ab] = limαp
n

n γp
n

n = limαp
n

n lim γp
n

n = [a][b].

If R has characteristic p, then αn + γn lifts ap
−n

+ bp
−n

= (a+ b)p
−n

. So

[a+ b] = lim(αn + γn)p
n

= limαp
n

n + lim γp
n

n = [a] + [b].

Since 1 is a lift of 1 and 0 is a lift of 0, it follows that this is a ring homomorphism.
Finally, to show uniqueness, suppose φ : R/xR → R is a map with these

properties. Then we note that φ(ap
−n

) ≡ ap−n mod x, and is thus a valid choice
of αn. So we have

[a] = lim
n→∞

φ(ap
−n

)p
n

= limφ(a) = φ(a).

Example. Let R = Zp and x = p. Then [−] : Fp → Zp satisfies

[x]p−1 = [xp−1] = [1] = 1.

So the image of [x] must be the unique p− 1th root of unity lifting x (recall we
proved their existence via Hensel’s lemma).

When proving theorems about these rings, the Teichmüller lifts would be
very handy and natural things to use. However, when we want to do actual
computations, there is absolutely no reason why these would be easier!

As an application, we can prove the following characterization of equal
characteristic complete DVF’s.

Theorem. Let K be a complete discretely valued field of equal characteristic p,
and assume that kK is perfect. Then K ∼= kK((T )).

Proof. Let K be a complete DVF. Since every DVF the field of fractions of
its valuation ring, it suffices to prove that OK ∼= kK [[T ]]. We know OK has
characteristic p. So [−] : kK → OK is an injective ring homomorphism. We
choose a uniformizer π ∈ OK , and define

kK [[T ]]→ OK
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by
∞∑
n=0

anT
n 7→

∞∑
n=0

[an]πn.

Then this is a ring homomorphism since [−] is. The bijectivity follows from
property (v) in our list of properties of complete DVF’s.

Corollary. Let K be a local field of equal characteristic p. Then kK ∼= Fq for
some q a power of p, and K ∼= Fq((T )).

3.2 Witt vectors*

We are now going to look at the mixed characteristic analogue of this result. We
want something that allows us to go from characteristic p to characteristic 0.
This is known as Witt vectors, which is non-examinable.

We start with the notion of a strict p-ring. Roughly this is a ring that satisfies
all the good properties whose name has the word “p” in it.

Definition (Strict p-ring). Let A be a ring. A is called a strict p-ring if it is
p-torsion free, p-adically complete, and A/pA is a perfect ring.

Note that a strict p-ring in particular satisfies the conditions for the Te-
ichmüller lift to exist, for x = p.

Example. Zp is a strict p-ring.

The next example we are going to construct is more complicated. This is in
some sense a generalization of the usual polynomial rings Z[x1, · · · , xn], or more
generally,

Z[xi | i ∈ I],

for I possibly infinite. To construct the “free” strict p-ring, after adding all these
variables xi, to make it a strict p-ring, we also need to add their pth roots, and
the p2th roots etc, and then take the p-adic completion, and hope for the best.

Example. Let X = {xi : i ∈ I} be a set. Let

B = Z[xp
−∞

i | i ∈ I] =

∞⋃
n=0

Z[xp
−n

i | i ∈ I].

Here the union on the right is taken by treating

Z[xi | i ∈ I] ⊆ Z[xp
−1

i | i ∈ I] ⊆ · · ·

in the natural way.
We let A be the p-adic completion of B. We claim that A is a strict p-ring

and A/pA ∼= Fp[xp
−∞

i | i ∈ I].
Indeed, we see that B is p-torsion free. By Exercise 13 on Sheet 1, we know

A is p-adically complete and torsion free. Moreover,

A/pA ∼= B/pB ∼= Fp[xp
−∞

i | i ∈ I],

which is perfect since every element has a p-th root.
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If A is a strict p-ring, then we know that we have a Teichmüller map

[−] : A/pA→ A,

Lemma. Let A be a strict p-ring. Then any element of A can be written
uniquely as

a =

∞∑
n=0

[an]pn,

for a unique an ∈ A/pA.

Proof. We recursively construct the an by

a0 = a (mod p)

a1 ≡ p−1(a− [a0]) (mod p)

...

Lemma. Let A and B be strict p-rings and let f : A/pA → B/pB be a ring
homomorphism. Then there is a unique homomorphism F : A→ B such that
f = F mod p, given by

F
(∑

[an]pn
)

=
∑

[f(an)]pn.

Proof sketch. We define F by the given formula and check that it works. First of
all, by the formula, F is p-adically continuous, and the key thing is to check that
it is additive (which is slightly messy). Multiplicativity then follows formally
from the continuity and additivity.

To show uniqueness, suppose that we have some ψ lifting f . Then ψ(p) = p.
So ψ is p-adically continuous. So it suffices to show that ψ([a]) = [ψ(a)].

We take αn ∈ A lifting ap
−n ∈ A/pA. Then ψ(αn) lifts f(a)p

−n
. So

ψ([a]) = limψ(αp
−n

n ) = limψ(αn)p
−n

= [f(a)].

So done.

There is a generalization of this result:

Proposition. Let A be a strict p-ring and B be a ring with an element x
such that B is x-adically complete and B/xB is perfect of characteristic p. If
f : A/pA → B/xB is a ring homomorphism. Then there exists a unique ring
homomorphism F : A → B with f = F mod x, i.e. the following diagram
commutes:

A B

A/pA B/xB

F

f

.

Indeed, the conditions on B are sufficient for Teichmüller lifts to exist, and
we can at least write down the previous formula, then painfully check it works.

We can now state the main theorem about strict p-rings.

34



3 Discretely valued fields III Local Fields

Theorem. Let R be a perfect ring. Then there is a unique (up to isomorphism)
strict p-ring W (B) called the Witt vectors of R such that W (R)/pW (R) ∼= R.

Moreover, for any other perfect ring R, the reduction mod p map gives a
bijection

HomRing(W (R),W (R′)) HomRing(R,R′)∼ .

Proof sketch. If W (R) and W (R′) are such strict p-rings, then the second part
follows from the previous lemma. Indeed, if C is a strict p-ring with C/pC ∼=
R ∼= W (R)/pW (R), then the isomorphism ᾱ : W (R)/pW (R)→ C/pC and its
inverse ᾱ−1 have unique lifts γ : W (R) → C and γ−1 : C → W (R), and these
are inverses by uniqueness of lifts.

To show existence, let R be a perfect ring. We form

Fp[xp
−∞

r | r ∈ R]→ R

xr 7→ r

Then we know that the p-adic completion of Z[xp
−∞

r | r ∈ R], written A, is a
strict p-ring with

A/pA ∼= Fp[xp
−∞

r | r ∈ R].

We write
I = ker(Fp[xp

−∞

r | r ∈ R]→ R).

Then define

J =

{ ∞∑
n=0

[ak]pn ∈ A : an ∈ I for all n

}
.

This turns out to be an ideal.

J A R

0 I A/pA R 0

We put W (R) = A/J . We can then painfully check that this has all the required
properties. For example, if

x =

∞∑
n=0

[an]pn ∈ A,

and

px =

∞∑
n=0

[an]pn+1 ∈ J,

then by definition of J , we know [an] ∈ I. So x ∈ J . So W (R)/J is p-torsion
free. By a similar calculation, one checks that

∞⋂
n=0

pnW (R) = {0}.

This implies that W (R) injects to its p-adic completion. Using that A is p-adically
complete, one checks the surjectivity by hand.
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Also, we have
W (R)

pW (R)
∼=

A

J + pA
.

But we know

J + pA =

{∑
n

[an]pn | a0 ∈ I

}
.

So we have
W (R)

pW (R)
∼=

Fp[xp
−∞

r | r ∈ R]

I
∼= R.

So we know that W (R) is a strict p-ring.

Example. W (Fp) = Zp, since Zp satisfies all the properties W (Fp) is supposed
to satisfy.

Proposition. A complete DVR A of mixed characteristic with perfect residue
field and such that p is a uniformizer is the same as a strict p-ring A such that
A/pA is a field.

Proof. Let A be a complete DVR such that p is a uniformizer and A/pA is
perfect. Then A is p-torsion free, as A is an integral domain of characteristic 0.
Since it is also p-adically complete, it is a strict p-ring.

Conversely, if A is a strict p-ring, and A/pA is a field, then we have A× ⊆
A \ pA, and we claim that A× = A \ pA. Let

x =

∞∑
n=0

[xn]pn

with x0 6= 0, i.e. x 6∈ pA. We want to show that x is a unit. Since A/pA is a
field, we can multiply by [x−1

0 ], so we may wlog x0 = 1. Then x = 1 − py for
some y ∈ A. So we can invert this with a geometric series

x−1 =

∞∑
n=0

pnyn.

So x is a unit. Now, looking at Teichmüller expansions and factoring out multiple
of p, any non-zero element z can be written as pnu for a unique n ≥ Z≥0 and
u ∈ A×. Then we have

v(z) =

{
n z 6= 0

∞ z = 0

is a discrete valuation on A.

Definition (Absolute ramification index). Let R be a DVR with mixed charac-
teristic p with normalized valuation vR. The integer vR(p) is called the absolute
ramification index of R.

Corollary. Let R be a complete DVR of mixed characteristic with absolute
ramification index 1 and perfect residue field k. Then R ∼= W (k).

Proof. Having absolute ramification index 1 is the same as saying p is a uni-
formizer. So R is a strict p-ring with R/pR ∼= k. By uniqueness of the Witt
vector, we know R ∼= W (k).
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Theorem. Let R be a complete DVR of mixed characteristic p with a perfect
residue field k and uniformizer π. Then R is finite over W (k).

Proof. We need to first exhibit W (k) as a subring of R. We know that id : k → k
lifts to a homomorphism W (k)→ R. The kernel is a prime ideal because R is
an integral domain. So it is either 0 or pW (k). But R has characteristic 0. So it
can’t be pW (k). So this must be an injection.

Let e be the absolute ramification index of R. We want to prove that

R =

e−1⊕
i=0

πiW (k).

Looking at valuations, one sees that 1, π, π, · · · , πe−1 are linearly independent
over W (k). So we can form

M =

e−1⊕
i=0

πiW (k) ⊆ R.

We consider R/pR. Looking at Teichmüller expansions

∞∑
n=0

[xn]πn ≡
e−1∑
n=0

[xn]πn mod pR,

we see that 1, π, · · · , πe−1 generate R/pR as W (k)-modules (all the Teichmüller
lifts live in W (k)). Therefore R = M + pR. We iterate to get

R = M + p(M + pR) = M + p2r = · · · = M + pmR

for all m ≥ 1. So M is dense in R. But M is also p-adically complete, hence
closed in R. So M = R.

The important statement to take away is

Corollary. Let K be a mixed characteristic local field. Then K is a finite
extension of Qp.

Proof. Let Fq be the residue field of K. Then OK is finite over W (Fq) by the
previous theorem. So it suffices to show that W (Fq) is finite over W (Fp) = Zp.
Again the inclusion Fp ⊆ Fq gives an injection W (Fp) ↪→W (Fq). Write q = pd,
and let x1, · · · , xd ∈W (Fq) be lifts of an Fp-bases of Fq.. Then we have

W (Fq) =

d⊕
i=1

xdZp + pW (Fq),

and then argue as in the end of the previous theorem to get

W (Fq) =

d⊕
i=1

xdZp.
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4 Some p-adic analysis

We are now going to do some fun things that is not really related to the course.
In “normal” analysis, the applied mathematicians hold the belief that every
function can be written as a power series

f(x) =

∞∑
n=0

anx
n.

When we move on to p-adic numbers, we do not get such a power series expansion.
However, we obtain an analogous result using binomial coefficients.

Before that, we have a quick look at our familiar functions exp and log, which
we shall continue to define as a power series:

exp(x) =

∞∑
n=0

xn

n!
, log(1 + x) =

∞∑
n=1

(−1)n−1x
n

n

The domain will no longer be all of the field. Instead, we have the following
result:

Proposition. Let K be a complete valued field with an absolute value | · | and
assume that K ⊇ Qp and | · | restricts to the usual p-adic norm on Qp. Then
exp(x) converges for |x| < p−1/(p−1) and log(1 + x) converges for |x| < 1, and
then define continuous maps

exp : {x ∈ K : |x| < p−1/(p−1)} → OK
log : {1 + x ∈ K : |x| < 1} → K.

Proof. We let v = − logp | · | be a valuation extending vp. Then we have the
dumb estimate

v(n) ≤ logp n.

Then we have

v

(
xn

n

)
≥ n · v(x)− logp n→∞

if v(x) > 0. So log converges.
For exp, we have

v(n!) =
n− sp(n)

p− 1
,

where sp(n) is the sum of the p-adic digits of n. Then we have

v

(
xn

n!

)
≥ n · v(x)− n

p− 1
= n ·

(
v(x)− 1

p− 1

)
→∞

if v(x) > 1/(p− 1). Since v
(
xn

n!

)
≥ 0, this lands in OK .

For the continuity, we just use uniform convergence as in the real case.

What we really want to talk about is binomial coefficients. Let n ≥ 1. Then
we know that (

x

n

)
=
x(x− 1) · · · (x− n+ 1)

n!
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is a polynomial in x, and so defines a continuous function Zp → Qp by x 7→
(
x
n

)
.

When n = 0, we set
(
x
n

)
= 1 for all x ∈ Zp.

We know
(
x
n

)
∈ Z if x ∈ Z≥0. So by density of Z≥0 ⊆ Zp, we must have(

x
n

)
∈ Zp for all x ∈ Zp.
We will eventually want to prove the following result:

Theorem (Mahler’s theorem). Let f : Zp → Qp be any continuous function.
Then there is a unique sequence (an)n≥0 with an ∈ Qp and an → 0 such that

f(x) =

∞∑
n=0

an

(
x

n

)
,

and moreover
sup
x∈Zp

|f(x)| = max
k∈N
|ak|.

We write C(Zp,Qp) for the set of continuous functions Zp → Qp as usual.
This is a Qp vector space as usual, with

(λf + µg)(x) = λf(x) + µg(x)

for all λ, µ ∈ Qp and f, g ∈ C(Zp,Qp) and x ∈ Zp.
If f ∈ C(Zp,Qp), we set

‖f‖ = sup
x∈Zp

|f(x)|p.

Since Zp is compact, we know that f is bounded. So the supremum exists and
is attained.

Proposition. The norm ‖ · ‖ defined above is in fact a (non-archimedean)
norm, and that C(Zp,Qp) is complete under this norm.

Let c0 denote the set of sequences (an)∞n=0 in Qp such that an → 0. This is
a Qp-vector space with a norm

‖(an)‖ = max
n∈N
|an|p,

and c0 is complete. So what Mahler’s theorem gives us is an isometric isomor-
phism between c0 and C(Zp,Qp).

We define
∆ : C(Zp,Qp)→ C(Zp,Qp)

by
∆f(x) = f(x+ 1)− f(x).

By induction, we have

∆nf(x) =

n∑
i=0

(−1)i
(
n

i

)
f(x+ n− i).

Note that ∆ is a linear operator on C(Zp,Qp), and moreover

|∆f(x)|p = |f(x+ 1)− f(x)|p ≤ ‖f‖.
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So we have
‖∆f‖ ≤ ‖f‖.

In other words, we have
‖∆‖ ≤ 1.

Definition (Mahler coefficient). Let f ∈ C(Zp,Qp). Then nth-Mahler coeffi-
cient an(f) ∈ Qp is defined by the formula

an(f) = ∆n(f)(0) =

n∑
i=0

(−1)i
(
n

i

)
f(n− i).

We will eventually show that these are the an’s that appear in Mahler’s
theorem. The first thing to prove is that these coefficients do tend to 0. We
already know that they don’t go up, so we just have to show that they always
eventually go down.

Lemma. Let f ∈ C(Zp,Qp). Then there exists some k ≥ 1 such that

‖∆pkf‖ ≤ 1

p
‖f‖.

Proof. If f = 0, there is nothing to prove. So we will wlog ‖f‖ = 1 by scaling
(this is possible since the norm is attained at some x0, so we can just divide by
f(x0)). We want to find some k such that

∆pkf(x) ≡ 0 mod p

for all x. To do so, we use the explicit formula

∆pkf(x) =

pk∑
i=0

(−1)i
(
pk

i

)
f(x+ pk − i) ≡ f(x+ pk)− f(x) (mod p)

because the binomial coefficients
(
pk

i

)
are divisible by p for i 6= 0, pk. Note that

we do have a negative sign in front of f(x) because (−1)p
k

is −1 as long as p is
odd, and 1 = −1 if p = 2.

Now Zp is compact. So f is uniformly continuous. So there is some k such
that |x− y|p ≤ p−k implies |f(x)− f(y)|p ≤ p−1 for all x, y ∈ Zp. So take this
k, and we’re done.

We can now prove that the Mahler’s coefficients tend to 0.

Proposition. The map f 7→ (an(f))∞n=0 defines an injective norm-decreasing
linear map C(Zp,Qp)→ c0.

Proof. First we prove that an(f)→ 0. We know that

‖an(f)‖p ≤ ‖∆nf‖.

So it suffices to show that ‖∆nf‖ → 0. Since ‖∆‖ ≤ 1, we know ‖∆nf‖ is
monotonically decreasing. So it suffices to find a subsequence that tends to 0.
To do so, we simply apply the lemma repeatedly to get k1, k2, · · · such that∥∥∥∥∆p

k
1+...+kn

∥∥∥∥ ≤ 1

pn
‖f‖.
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This gives the desired sequence.
Note that

|an(f)|p ≤ ‖∆n‖ ≤ ‖f‖.

So we know
‖(an(f))n‖ = max |an(f)|p ≤ ‖f‖.

So the map is norm-decreasing. Linearity follows from linearity of ∆. To finish,
we have to prove injectivity.

Suppose an(f) = 0 for all n ≥ 0. Then

a0(f) = f(0) = 0,

and by induction,we have that

f(n) = ∆kf(0) = an(f) = 0.

for all n ≥ 0. So f is constantly zero on Z≥0. By continuity, it must be zero
everywhere on Zp.

We are almost at Mahler’s theorem. We have found some coefficients already,
and we want to see that it works. We start by proving a small, familiar, lemma.

Lemma. We have (
x

n

)
+

(
x

n− 1

)
=

(
x+ 1

n

)
for all n ∈ Z≥1 and x ∈ Zp.

Proof. It is well known that this is true when x ∈ Z≥n. Since the expressions
are polynomials in x, them agreeing on infinitely many values implies that they
are indeed the same.

Proposition. Let a = (an)∞n=0 ∈ c0. We define fa : Zp → Qp by

fa(x) =
∞∑
n=0

an

(
x

n

)
.

This defines a norm-decreasing linear map c0 → C(Zp,Qp). Moreover an(fa) =
an for all n ≥ 0.

Proof. Linearity is clear. Norm-decreasing follows from

|fa(x)| =
∣∣∣∣∑ an

(
x

n

)∣∣∣∣ ≤ sup
n
|an|p

∣∣∣∣(xn
)∣∣∣∣

p

≤ sup
n
|an|p = ‖an‖,

where we used the fact that
(
x
n

)
∈ Zp, hence

∣∣(x
n

)∣∣
p
≤ 1.

Taking the supremum, we know that

‖fa‖ ≤ ‖a‖.

For the last statement, for all k ∈ Z≥0, we define

a(k) = (ak, ak+1, ak+1, · · · ).
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Then we have

∆fa(x) = fa(x+ 1)− fa(x)

=

∞∑
n=1

an

((
x+ 1

n

)
−
(
x

n

))

=

∞∑
n=1

an

(
x

n− 1

)

=

∞∑
n=0

an+1

(
x

n

)
= fa(1)(x)

Iterating, we have
∆kfa = fa(k) .

So we have
an(fa) = ∆nfa(0) = fa(n)(0) = an.

Summing up, we now have maps

C(Zp,Qp) c0
F

G

with

F (f) = (an(f))

G(a) = fa.

We now that F is injective and norm-decreasing, and G is norm-decreasing
and FG = id. It then follows formally that GF = id and the maps are norm-
preserving.

Lemma. Suppose V,W are normed spaces, and F : V → W , G : W → V are
maps such that F is injective and norm-decreasing, and G is norm-decreasing
and FG = idW . Then GF = idV and F and G are norm-preserving.

Proof. Let v ∈ V . Then

F (v −GFv) = Fv − FGFv = (F − F )v = 0.

Since F is injective, we have
v = GFv.

Also, we have
‖v‖ ≥ ‖Fv‖ ≥ ‖GFv‖ = ‖v‖.

So we have equality throughout. Similarly, we have ‖v‖ = ‖Gv‖.

This finishes the proof Mahler’s theorem, and also finishes this section on
p-adic analysis.
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5 Ramification theory for local fields

From now on, the characteristic of the residue field of any local field will be
denoted p, unless stated otherwise.

5.1 Ramification index and inertia degree

Suppose we have an extension L/K of local fields. Then since mK ⊆ mL, and
OL ⊆ OL, we obtain an injection

kK =
OK
mk

↪→ OL
mL

= kL.

So we also get an extension of residue fields kL/kK . The question we want to ask
is how much of the extension is “due to” the extension of residue fields kL/kK ,
and how much is “due to” other things happening.

It turns out these are characterized by the following two numbers:

Definition (Inertia degree). Let L/K be a finite extension of local fields. The
inertia degree of L/K is

fL/K = [kL : kK ].

Definition (Ramification index). Let L/K be a finite extension of local fields,
and let vL be the normalized valuation of L and πK a uniformizer of K. The
integer

eL/K = vL(πK)

is the ramification index of L/K.

The goal of the section is to show the following result:

Theorem. Let L/K be a finite extension. Then

[L : K] = eL/KfL/K .

We then have two extreme cases of ramification:

Definition (Unramified extension). Let L/K be a finite extension of local fields.
We say L/K is unramified if eL/K = 1, i.e. fL/K = [L : K].

Definition (Totally ramified extension). Let L/K be a finite extension of local
fields. We say L/K is totally ramified if fL/K = 1, i.e. eL/K = [L : K].

In the next section we will, amongst many things, show that every extension
of local fields can be written as an unramified extension followed by a totally
ramified extension.

Recall the following: let R be a PID and M a finitely-generated R-module.
Assume that M is torsion-free. Then there is a unique integer n ≥ 0 such that
M ∼= Rn. We say n has rank n. Moreover, if N ⊆M is a submodule, then N is
finitely-generated, so N ∼= Rm for some m ≤ n.

Proposition. Let K be a local field, and L/K a finite extension of degree n.
Then OL is a finitely-generated and free OK module of rank n, and kL/kK is
an extension of degree ≤ n.

Moreover, L is also a local field.
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Proof. Choose a K-basis α1, · · · , αn of L. Let ‖ · ‖ denote the maximum norm
on L. ∥∥∥∥∥

n∑
i=1

xiαi

∥∥∥∥∥ = max
i=1,...,n

|xi|

as before. Again, we know that ‖ · ‖ is equivalent to the extended norm | · | on
L as K-norms. So we can find r > s > 0 such that

M = {x ∈ L : ‖x‖ ≤ s} ⊆ OL ⊆ N = {x ∈ L : ‖x‖ ≤ r}.

Increasing r and decreasing s if necessary, we wlog r = |a| and s = |b| for some
a, b ∈ K.

Then we can write

M =

n⊕
i=1

Okbαi ⊆ OL ⊆ N =

n⊕
i=1

OKaαi.

We know that N is finitely generated and free of rank n over OK , and so is M .
So OL must be finitely generated and free of rank n over OK .

Since mk = mk ∩ OK , we have a natural injection

OK
mk

↪→ OL
mL

= kL.

Since OL is generated over OK by n elements, we know that kK is generated by
n elements over kK , so it has rank at most n.

To see that L is a local field, we know that kL/kK is finite and kK is finite,
so kL is finite. It is complete under the norm because it is a finite-dimensional
vector space over a complete field.

Finally, to see that the valuation is discrete, suppose we have a normalized
valuation on K, and w the unique extension of vK to L. Then we have

w(α) =
1

n
vK(NL/K(α)).

So we have

w(L×) ⊆ 1

n
v(K×) =

1

n
Z.

So it is discrete.

Note that we cannot just pick an arbitrary basis of L/K and scale it to give
a basis of OL/OK . For example, Q2(

√
2)/Q2 has basis 1,

√
2, but |

√
2| = 1√

2

and cannot be scaled to 1 by an element in Q2.
Even if such a scaled basis exists, it doesn’t necessarily give a basis of the

integral rings. For example, Q3(
√
−1)/Q3 has a Q3-basis 1, 1 + 3

√
−1 and

|1 + 3
√
−1| = 1, but √

−1 6∈ Z3 + Z3(1 + 3
√
−1).

So this is not a basis of OQ3(
√
−1) over Z3.

Theorem. Let L/K be a finite extension. Then

[L : K] = eL/KfL/K ,

and there is some α ∈ OL such that OL = OK [α].
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Proof. We will be lazy and write e = eL/K and f = fL/K . We first note that
kL/kK is separable, so there is some ᾱ ∈ kL such that kL = kK(ᾱ) by the
primitive element theorem. Let

f̄(x) ∈ kK [x]

be the minimal polynomial of ᾱ over kK and let f ∈ OL[x] be a monic lift of f̄
with deg f = deg f̄ .

We first claim that there is some α ∈ OL lifting ᾱ such that vL(f(α)) = 1
(note that it is always ≥ 1). To see this, we just take any lift β. If vL(f(β)) = 1,
then we are happy and set α = β. If it doesn’t work, we set α = β + πL, where
πL is the uniformizer of L.

Then we have

f(α) = f(β + πL) = f(β) + f ′(β)πL + bπ2
L

for some b ∈ OL, by Taylor expansion around β. Since vL(f(β)) ≥ 2 and
vL(f ′(β)) = 0 (since f̄ is separable, we know f ′(β) does not vanish when we
reduce mod m), we know vL(f(α)) = 1. So f(α) is a uniformizer of L.

We now claim that the elements αiπj for i = 0, · · · , f−1 and j = 0, · · · , e−1
are an OK-basis of OL. Suppose we have∑

i,j

aijα
iπj = 0

for some aij ∈ K not all 0. We put

sj =

f−1∑
i=0

aijα
i.

We know that 1, α, · · · , αf−1 are linearly independent over K since their re-
ductions are linearly independent over kK . So there must be some j such that
sj 6= 0.

The next claim is that if sj 6= 0, then e | vL(sj). We let k be an index for
which |akj | is maximal. Then we have

a−1
kj sj =

f−1∑
i=0

a−1
kj aijα

i.

Now note that by assumption, the coefficients on the right have absolute value
≤ 1, and is 1 when i = k. So we know that

a−1
kj sj 6≡ 0 mod πL,

because 1, ᾱ, · · · , ᾱf−1 are linearly independent. So we have

vL(a−1
kj sj) = 0.

So we must have

vL(sj) = vL(akj) + vL(a−1
kj sj) ∈ vL(K×) = evL(L×) = eZ.
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Now we write ∑
aijα

iπj =

e−1∑
j=0

sjπ
j = 0.

If sj 6= 0, then we have vL(sjπ
j) = vL(sj) + j ∈ j + eZ. So no two non-zero

terms in
∑e−1
j=0 sjπ

j have the same valuation. This implies that
∑e−1
j=0 sjπ

j 6= 0,
which is a contradiction.

We now want to prove that

OL =
⊕
i,j

OKαiπj .

We let
M =

⊕
i,j

OKαiπj ,

and put

N =

f−1⊕
i=0

OLαi.

Then we have
M = N + πN + π2N + · · ·+ πe−1N.

We are now going to use the fact that 1, ᾱ, · · · , ᾱf−1 span kL over kK . So we
must have that OL = N + πOL. We iterate this to obtain

OL = N + π(N +OL)

= N + πN + π2OL
= · · ·
= N + πN + π2N + · · ·+ πe−1N + πnOL
= M + πKOL,

using the fact that πK and πe have the same valuation, and thus they differ by
a unit in OL. Iterating this again, we have

OL = M + πnkOL

for all n ≥ 1. So M is dense in OL. But M is the closed unit ball in the subspace⊕
i,j

Kαiπj ⊆ l

with respect to the maximum norm with respect to the given basis. So it must
be complete, and thus M = OL.

Finally, since αiπj = αif(α)j is a polynomial in α, we know that OL =
OK [α].

Corollary. If M/L/K is a tower of finite extensions of local fields, then

fM/K = fL/KfM/L

eM/K = eL/KeM/L

Proof. The multiplicativity of fM/K follows from the tower law for the residue
fields, and the multiplicativity of eM/K follows from the tower law for the local
fields and that fM/KeM/K = [M : K].

46



5 Ramification theory for local fields III Local Fields

5.2 Unramified extensions

Unramified extensions are easy to classify, since they just correspond to extensions
of the residue field.

Theorem. Let K be a local field. For every finite extension `/kK , there is a
unique (up to isomorphism) finite unramified extension L/K with kL ∼= ` over
kK . Moreover, L/K is Galois with

Gal(L/K) ∼= Gal(`/kK).

Proof. We start with existence. Let ᾱ be a primitive element of `/kK with
minimal polynomial f̄ ∈ kK [x]. Take a monic lift f ∈ OK [x] of f̄ such that
deg f = deg f̄ . Note that since f̄ is irreducible, we know f is irreducible. So we
can take L = K(α), where α is a root of f (i.e. L = K[x]/f). Then we have

[L : K] = deg f = deg(f̄) = [` : kK ].

Moreover, kL contains a root of f̄ , namely the reduction α. So there is an
embedding ` ↪→ kL, sending ᾱ to the reduction of α. So we have

[kL : kK ] ≥ [` : kL] = [L : K].

So L/K must be unramified and kL ∼= ` over kK .
Uniqueness and the Galois property follow from the following lemma:

Lemma. Let L/K be a finite unramified extension of local fields and let M/K
be a finite extension. Then there is a natural bijection

HomK - Alg(L,M)←→ HomkK - Alg(kL, kM )

given in one direction by restriction followed by reduction.

Proof. By the uniqueness of extended absolute values, any K-algebra homomor-
phism ϕ : L ↪→M is an isometry for the extended absolute values. In particular,
we have ϕ(OL) ⊆ OM and ϕ(mL) ⊆ mM . So we get an induced kK-algebra
homomorphism ϕ̄ : kL → kM .

So we obtain a map

HomK-Alg(L,M)→ HomkK -Alg(kL, kM )

To see this is bijective, we take a primitive element ᾱ ∈ kL over kK , and take a
minimal polynomial f̄ ∈ kK [x]. We take a monic lift of f̄ to Ok[x], and α ∈ OL
the unique root of f which lifts ᾱ, which exists by Hensel’s lemma. Then by
counting dimensions, the fact that the extension is unramified tells us that

kL = kK(ᾱ), L = K(α).

So we can construct the following diagram:

ϕ HomK-Alg(L,M) HomkK -Alg(kL, kM ) ϕ̄

ϕ(α) {x ∈M : f(x) = 0} {x̄ ∈ kM : f̄(x̄) = 0} ϕ̄(ᾱ)

∼=

reduction

∼=

reduction

But the bottom map is a bijection by Hensel’s lemma. So done.
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Alternatively, given a map ϕ̄ : kL → kM , we can lift it to the map ϕ : L→M
given by

ϕ
(∑

[an]πnk

)
=
∑

[ϕ̄(an)]πnk ,

using the fact that πnk is a uniformizer in L since the extension is unramified. So
we get an explicit inverse.

Proof of theorem (continued). To finish off the proof of the theorem, we just
note that an isomorphism ϕ̄ : kL ∼= kM over kK between unramified extensions.
Then ϕ̄ lifts to a K-embedding ϕ : L ↪→M and [L : K] = [M : K] implies that
ϕ is an isomorphism.

To see that the extension is Galois, we just notice that

|AutK(L)| = |AutkK (kL)| = [kL : kK ] = [L : K].

So L/K is Galois. Moreover, the map AutK(L) → AutkK (kL) is really a
homomorphism, hence an isomorphism.

Proposition. Let K be a local field, and L/K a finite unramified extension,
and M/K finite. Say L,M are subfields of some fixed algebraic closure K̄ of K.
Then LM/M is unramified. Moreover, any subextension of L/K is unramified
over K. If M/K is unramified as well, then LM/K is unramified.

Proof. Let ᾱ be a primitive element of kK/kL, and f̄ ∈ kK [x] a minimal polyno-
mial of ᾱ, and f ∈ Ok[x] a monic lift of f̄ , and α ∈ OL a unique lift of f lifting
ᾱ. Then L = K(α). So LM = M(α).

Let ḡ be the minimal polynomial of ᾱ over kM . Then ḡ | f̄ . By Hensel’s
lemma, we can factorize f = gh in OM [x], where g is monic and lifts ḡ. Then
g(α) = 0 and g is irreducible in M [x]. So g is the minimal polynomial of α over
M . So we know that

[LM : M ] = deg g = deg ḡ ≤ [kLM : kM ] ≤ [LM : M ].

So we have equality throughout and LM/M is unramified.
The second assertion follows from the multiplicativity of fL/K , as does the

third.

Corollary. Let K be a local field, and L/K finite. Then there is a unique
maximal subfield K ⊆ T ⊆ L such that T/K is unramified. Moreover, [T : K] =
fL/K .

Proof. Let T/K be the unique unramified extension with residue field extension
kL/kK . Then id : kT = kL → kL lifts to a K-embedding T ↪→ L. Identifying T
with its image, we know

[T : K] = fL/K .

Now if T ′ is any other unramified extension, then T ′T is an unramified extension
over K, so

[T : K] ≤ [TT ′ : K] ≤ fL/K = [T : K].

So we have equality throughout, and T ′ ⊆ T . So this is maximal.
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5.3 Totally ramified extensions

We now quickly look at totally ramified extensions. Recall the following irre-
ducibility criterion:

Theorem (Eisenstein criterion). Let K be a local field, and f(x) = xn +
an−1x

n−1 + · · · + a0 ∈ OK [x]. Let πK be the uniformizer of K. If πK |
an−1, · · · , a0 and π2

K - a0, then f is irreducible.

Proof. Left as an exercise. You’ve probably seen this already in a much more
general context, but in this case there is a neat proof using Newton polygons.

We will need to use the following characterization of the ramification index:

Proposition. Let L/K be an extension of local fields, and vK be the normalized
valuation. Let w be the unique extension of vK to L. Then the ramification
index eL/K is given by

e−1
L/K = w(πL) = min{w(x) : x ∈ mL},

Proof. We know w and vL differ by a constant. To figure out what this is, we
have

1 = w(πK) = e−1
L/KvL(πK).

So for any x ∈ L, we have

w(x) = e−1
L/KvL(x).

In particular, putting x = πL, we have

w(πL) = e−1
L/KvL(πL) = e−1

L/K .

The equality
w(πL) = min{w(x) : x ∈ mL},

is trivially true because the minimum is attained by πL.

Definition (Eisenstein polynomial). A polynomial f(x) ∈ OK [x] satisfying the
assumptions of Eisenstein’s criterion is called an Eisenstein polynomial .

We can now state the proposition:

Proposition. Let L/K be a totally ramified extension of local fields. Then
L = K(πL) and the minimal polynomial of πL over K is Eisenstein.

Conversely, if L = K(α) and the minimal polynomial of α over K is Eisenstein,
then L/K is totally ramified and α is a uniformizer of L.

Proof. Let n = [L : K], vK be the valuation of K, and w the unique extension
to L. Then

[K(πL) : K]−1 ≤ e−1
K(πL)/K = min

x∈mK(πL)

w(c) ≤ 1

n
,

where the last inequality follows from the fact that πL ∈ mL(πL).
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But we also know that

[K(πL) : K] ≤ [L : K].

So we know that L = K(πL).
Now let f(x) = xn+an−1x

n−1 + · · ·+a0 ∈ OK [x] be the minimal polynomial
of πL/K. Then we have

πnL = −(a0 + a1πL + · · ·+ an−1π
n−1
L ).

So we have

1 = w(πnL) = w(a0 + a1πL + · · ·+ an−1π
n−1
L ) = min

i=0,...,n−1

(
vk(ai) +

i

n

)
.

This implies that vK(ai) ≥ 1 for all i, and vK(x0) = 1. So it is Eisenstein.
For the converse, if K = K(α) and n = [L : K], take

g(x) = xn + bn−1x
n−1 + ..+ b0 ∈ OK [x]

be the minimal polynomial of α. So all roots have the same valuation. So we
have

1 = w(b0) = n · w(α).

So we have w(α) = 1
n . So we have

e−1
L/K = min

x∈mL
w(x) ≤ 1

n
= [L : K]−1.

So [L : K] = eL/K = n. So L/K is totally ramified and α is a uniformizer.

In fact, more is true. We have OL = OK [πL], since every element in OL can
be written as ∑

i≥0

aiπ
i
L,

where ai is a lift of an element in kL = kK , which can be chosen to be in OK .
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6 Further ramification theory

6.1 Some filtrations

If we have a field K, then we have a unit group UK = O×K . We would like to
come up with a filtration of subgroups of the unit group, namely a sequence

· · · ⊆ U (2)
K ⊆ U (1)

K ⊆ U (0)
K = UK

of subgroups that tells us how close a unit is to being 1. The further down we
are in the chain, the closer we are to being 1.

Similarly, given a field extension L/K, we want a filtration on the Galois
group (the indexing is conventional)

· · · ⊆ G2(L/K) ⊆ G1(L/K) ⊆ G0(L/K) ⊆ G−1(L/K) = Gal(L/K).

This time, the filtration tells us how close the automorphisms are to being the
identity map.

The key thing about these filtrations is that we can figure out information

about the quotients U
(s)
K /U

(s+1)
K and Gs(L/K)/Gs+1(L/K), which is often easier.

Later, we might be able to patch these up to get more useful information about
UK and Gal(L/K).

We start with the filtration of the unit group.

Definition (Higher unit groups). We define the higher unit groups to be

U
(s)
K = U (s) = 1 + πsKOK .

We also put

UK = U
(0)
K = U (0) = O×K .

The quotients of these units groups are surprisingly simple:

Proposition. We have

UK/U
(1)
K
∼= (k×K , · ),

U
(s)
K /U

(s+1)
K

∼= (kK ,+).

for s ≥ 1.

Proof. We have a surjective homomorphism O×K → k×K which is just reduction

mod πK , and the kernel is just things that are 1 modulo πK , i.e. U
(1)
K . So this

gives the first part.

For the second part, we define a surjection U
(s)
K → kK given by

1 + πsKx 7→ x mod πk.

This is a group homomorphism because

(1 + πsKx)(1 + πsKy) = 1 + πS(x+ y + πsxy),

and this gets mapped to

x+ y + πsx+ y ∼= x+ y mod πK .

Then almost by definition, the kernel is U
(s+1)
K .
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The next thing to consider is a filtration of the Galois group.

Definition (Higher ramification group). Let L/K be a finite Galois extension
of local fields, and vL the normalized valuation of L.

Let s ∈ R≥−1. We define the sth ramification group by

Gs(L/K) = {σ ∈ Gal(L/K) : vL(σ(x)− x) ≥ s+ 1 for all x ∈ OL}.

So if you belong to Gs for a large s, then you move things less. Note that we
could have defined these only for s ∈ Z≥−1, but allowing fractional indices will
be helpful in the future.

Now since σ(x)− x ∈ OL for all x ∈ OL, we know

G−1(L/K) = Gal(L/K).

We next consider the case of G0(L/K). This is, by definition

G0(L/K) = {σ ∈ Gal(L/K) : vL(σ(x)− x) ≥ 1 for all x ∈ OL}
= {σ ∈ Gal(L/K) : σ(x) ≡ x mod m for all x ∈ OL}.

In other words, these are all the automorphisms that reduce to the identity when
we reduce it to Gal(kL/kK).

Definition (Inertia group). Let L/K be a finite Galois extension of local fields.
Then the inertia group of L/K is the kernel of the natural homomorphism

Gal(L/K)→ Gal(kL/kK)

given by reduction. We write this as

I(L/K) = G0(L/K).

Proposition. Let L/K be a finite Galois extension of local fields. Then the
homomorphism

Gal(L/K)→ Gal(kL/kK)

given by reduction is surjective.

Proof. Let T/K be maximal unramified subextension. Then by Galois theory,
the map Gal(L/K) → Gal(T/K) is a surjection. Moreover, we know that
kT = kL. So we have a commutative diagram

Gal(L/K) Gal(kL/kK)

Gal(T/K) Gal(kT /kK).∼

So the map Gal(L/K)→ Gal(kL/kK) is surjective.

Then the inertia group is trivial iff L/K is unramified. The field T is
sometimes called the inertia field .
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Lemma. Let L/K be a finite Galois extension of local fields, and let σ ∈ I(L/K).
Then σ([x]) = [x] for all x.

More generally, let x ∈ kL and σ ∈ Gal(L/K) with image σ̄ ∈ Gal(kL/kK).
Then we have

[σ̄(x)] = σ([x]).

Proof. Consider the map kL → OL given by

f : x 7→ σ−1([σ̄(x)]).

This is multiplicative, because every term is multiplicative, and

σ−1([σ̄(x)]) ≡ x mod πL.

So this map f has to be the Teichmüller lift by uniqueness.

That’s all we’re going to say about the inertia group. We now consider the
general properties of this filtration.

Proposition. Let L/K be a finite Galois extension of local fields, and vL the
normalized valuation of L. Let πL be the uniformizer of L. Then Gs+1(L/K) is
a normal subgroup of Gs(L/K) for s ∈ Z≥0, and the map

Gs(L/K)

Gs+1(L/K)
→

U
(s)
L

U
(s+1)
L

given by

σ 7→ σ(πL)

πL

is a well-defined injective group homomorphism, independent of the choice of
πL.

Proof. We define the map

φ : Gs(L/K)→
U

(s)
L

U
(s+1)
L

σ 7→ σ(πL)/πL.

We want to show that this has kernel Gs+1(L/K).
First we show it is well-defined. If σ ∈ Gs(L/K), we know

σ(πL) = πL + πs+1
L x

for some x ∈ OL. So we know

σ(πL)

πL
= 1 + πsLx ∈ U

(s)
L .

So it has the right image. To see this is independent of the choice of πL, we let
u ∈ O×L . Then σ(u) = u+ πs+1

L y for some y ∈ OL.
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Since any other uniformizer must be of the form πLu, we can compute

σ(πLu)

πLu
=

(πL + πs+1
L )(u+ πs+1

L y)

πLu

= (1 + πsLx)(1 + πs+1
L u−1y)

≡ 1πsLx (mod Us+1
L ).

So they represent the same element in in U
(s)
L /U

(s+1)
L .

To see this is a group homomorphism, we know

φ(στ) =
σ(τ(πL))

πL
=
σ(τ(πL))

τ(πL)

τ(πL)

πL
= φ(σ)φ(t),

using the fact that τ(πL) is also a uniformizer.
Finally, we have to show that kerφ = Gs+1(L/K). We write down

kerφ = {σ ∈ Gs(L/K) : vL(σ(πL)− πL) ≥ s+ 2}.

On the other hand, we have

Gs+1(L/K) = {σ ∈ Gs(L/K) : vL(σ(z)− z) ≥ s+ 2 for all z ∈ OL}.

So we trivially have Gs+1(L/K) ⊆ kerφ. To show the converse, let x ∈ OL and
write

x =

∞∑
n=0

[xn]πnL.

Take σ ∈ kerφ ⊆ Gs(L/K) ⊆ I(L/K). Then we have

σ(πL) = πL + πs+2
L y, y ∈ OL.

Then by the previous lemma, we know

σ(x)− x =

∞∑
n=1

[xn] ((σ(πL))n − πnL)

=

∞∑
n=1

[xn]
(
(πL + πs+2

L y)n − πnL
)

= πs+2
L (things).

So we know vL(σ(x)− x) ≥ s+ 2.

Corollary. Gal(L/K) is solvable.

Proof. Note that ⋂
s

Gs(L/K) = {id}.

So (Gs(L/K))s∈Z≥−1
is a subnormal series of Gal(L/K), and all quotients are

abelian, because they embed into
U

(s)
L

U
(s+1)
L

∼= (kK ,+) (and s = −1 can be checked

separately).
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Thus if L/K is a finite extension of local fields, then we have, for s ≥ 1,
injections

Gs(L/K)

Gs+1(L/K)
↪→ kL.

Since kL is a p-group, it follows that

|Gs(L/K)|
|Gs+1(L/K)|

is a pth power. So it follows that for any t, the quotient

|G1(L/K)|
|Gt(L/K)|

is also a pth power. However, we know that the intersection of all Gs(L/K)
is {id}, and also Gal(L/K) is finite. So for sufficiently large t, we know that
|Gt(L/K)| = 1. So we conclude that

Proposition. G1(L/K) is always a p-group.

We now use the injection

G0(L/K)

G1(L/K)
↪→ k×L ,

and the fact that k×L has order prime to p. So G1(L/K) must be the Sylow
p-subgroup of G0(L/K). Since it is normal, it must be the unique p-subgroup.

Definition (Wild inertia group and tame quotient). G1(L/K) is called the wild
inertia group, and the quotient G0(L/K)/G1(L/K) is the tame quotient .

6.2 Multiple extensions

Suppose we have tower M/L/K of finite extensions of local fields. How do the
ramification groups of the different extensions relate? We first do the easy case.

Proposition. Let M/L/K be finite extensions of local fields, and M/K Galois.
Then

Gs(M/K) ∩Gal(M/L) = Gs(M/L).

Proof. We have

Gs(M/K) = {σ ∈ Gal(M/L) : vM (σx− x) ≥ s+ 1} = Gs(M/K) ∩Gal(M/L).

This is trivial, because the definition uses the valuation vM of the bigger field
all the time. What’s more difficult and interesting is quotients, namely going
from M/K to L/K.

We want to prove the following theorem:

Theorem (Herbrand’s theorem). Let M/L/K be finite extensions of local fields
with M/K and L/K Galois. Then there is some function ηM/L such that

Gt(L/K) ∼=
Gs(M/K)

Gs(M/L)

for all s, where t = ηM/L(s).
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To better understand the situation, it helps to provide an alternative charac-
terization of the Galois group.

Definition (iL/K). We define

iL/K(σ) = min
x∈OL

vL(σ(x)− x).

It is then immediate that

Gs(L/K) = {σ ∈ Gal(L/K) : iL/K(σ) ≥ s+ 1}.

This is not very helpful. We now claim that we can compute iL/K using the
following formula:

Proposition. Let L/K be a finite Galois extension of local fields, and pick
α ∈ OL such that OL = OK [α]. Then

iL/K(σ) = vL(σ(α)− α).

Proof. Fix a σ. It is clear that iL/K(σ) ≤ vL(σ(α) − α). Conversely, for any
x ∈ OL, we can find a polynomial g ∈ OK [t] such that

x = g(α) =
∑

biα
i,

where bi ∈ OK . In particular, bi is fixed by σ.
Then we have

vL(σ(x)− x) = vL(σg(α)− g(α))

= vL

(
n∑
i=1

bi(σ(α)i − αi)

)
≥ vL(σ(α)− α),

using the fact that σ(α)− α | σ(α)i − αi for all i. So done.

Now if M/L/K are finite Galois extensions of local fields, then OM = OK [α]
implies OM = OL[α]. So for σ ∈ Gal(M/L), we have

iM/L(σ) = iM/K(σ).

Going in the other direction is more complicated.

Proposition. Let M/L/K be a finite extension of local fields, such that M/K
and L/K are Galois. Then for σ ∈ Gal(L/K), we have

iL/K(σ) = e−1
M/L

∑
τ∈Gal(M/K)

τ |L=σ

iM/K(τ).

Here eM/L is just to account for the difference between vL and vM . So the
real content is that the value of iL/K(σ) is the sum of the values of iM/K(τ) for
all τ that restrict to σ.
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Proof. If σ = 1, then both sides are infinite by convention, and equality holds.
So we assume σ 6= 1. Let OM = OL[α] and OL = OK [β], where α ∈ OM and
β ∈ OL. Then we have

eM/LiL/K(σ) = eM/LvL(σβ − β) = vM (σβ − β).

Now if τ ∈ Gal(M/K), then

iM/K(τ) = vM (τα− α)

Now fix a τ such that τ |L = σ. We set H = Gal(M/L). Then we have

∑
τ ′∈Gal(M/K),τ ′|L=σ

iM/K(τ ′) =
∑
g∈H

vM (τg(α)− α) = vM

∏
g∈H

(τg(α)− α)

 .

We let
b = σ(β)− β = τ(β)− β

and
a =

∏
g∈H

(τg(α)− α).

We want to prove that vM (b) = vM (a). We will prove that a | b and b | a.
We start with a general observation about elements in OL. Given z ∈ OL,

we can write

z =

n∑
i=1

ziβ
i, zi ∈ OK .

Then we know

τ(z)− z =

n∑
i=1

zi(τ(β)i − βi)

is divisible by τ(β)− β = b.
Now let F (x) ∈ OL[x] be the minimal polynomial of α over L. Then explicitly,

we have
F (x) =

∏
g∈H

(x− g(α)).

Then we have
(τF )(x) =

∏
g∈H

(x− τg(α)),

where τF is obtained from F by applying τ to all coefficients of F . Then all
coefficients of τF −F are of the form τ(z)− z for some z ∈ OL. So it is divisible
by b. So b divides every value of this polynomial, and in particular

b | (τF − F )(α) =
∏
g∈H

(α− g(α)) = ±a,

So b | a.
In other direction, we pick f ∈ OK [x] such that f(α) = β. Then f(α)−β = 0.

This implies that the polynomial f(x)− β divides the minimal polynomial of α
in OL[x]. So we have

f(x)− β = F (x)h(x)
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for some h ∈ OL[x].
Then noting that f has coefficients in OK , we have

(f − τβ)(x) = (τf − τb)(x) = (τF )(x)(τh)(x).

Finally, set x = α. Then

−b = β − τβ = ±a(τh)(α).

So a | b.

Now that we understand how the iL/K behave when we take field extensions,
we should be able to understand how the ramification groups behave!

We now write down the right choice of ηL/K : [−1,∞)→ [−1,∞):

ηL/K(s) =

(
e−1
L/K

∑
σ∈G

min(iL/K(σ), s+ 1)

)
− 1.

Theorem (Herbrand’s theorem). Let M/L/K be a finite extension of local
fields with M/K and L/K Galois. We set

H = Gal(M/L), t = ηM/L(s).

Then we have
Gs(M/K)H

H
= Gt(L/K).

By some isomorphism theorem, and the fact that H ∩Gs(M/K) = Gs(M/L),
this is equivalent to saying

Gt(L/K) ∼=
Gs(M/K)

Gs(M/L)
.

Proof. Let G = Gal(M/K). Fix a σ ∈ Gal(L/K). We let τ ∈ Gal(M/K) be an
extension of σ to M that maximizes iM/K , i.e.

iM/K(τ) ≥ iM/K(τg)

for all g ∈ H. This is possible since H is finite.
We claim that

iL/K(σ)− 1 = ηM/L(iM/K(τ)− 1).

If this were true, then we would have

σ ∈ Gs(M/K)H

H
⇔ τ ∈ Gs(M/K)

⇔ iM/K(τ)− 1 ≥ s

Since ηM/L is strictly increasing, we have

⇔ ηM/L(iM/K(τ)− 1) ≥ ηM/L(s) = t

⇔ iL/K(σ)− 1 ≥ t
⇔ σ ∈ Gt(L/K),
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and we are done.
To prove the claim, we now use our known expressions for iL/K(σ) and

ηM/L(iM/K(τ)− 1) to rewrite it as

e−1
M/L

∑
g∈H

iM/K(τg) = e−1
M/L

∑
g∈H

min(iM/L(g), iM/K(τ)).

We then make the stronger claim

iM/K(τg) = min(iM/L(g), iM/K(τ)).

We first note that

iM/K(τg) = vM (τg(α)− α)

= vM (τg(α)− g(α) + g(α)− α)

≥ min(vM (τg(α)− g(α)), vM (g(α)− α))

= min(iM/K(τ), iM/K(g))

We cannot conclude our (stronger) claim yet, since we have a ≥ in the middle.
We now have to split into two cases.

(i) If iM/K(g) ≥ iM/K(τ), then the above shows that iM/K(τg) ≥ iM/K(τ).
But we also know that it is bounded above by m. So iM/K(τg) = iM/K(τ).
So our claim holds.

(ii) If iM/K(g) < iM/K(τ), then the above inequality is in fact an equality as
the two terms have different valuations. So our claim also holds.

So done.

We now prove an alternative characterization of the function ηL/K , using a
funny integral.

Proposition. Write G = Gal(L/K). Then

ηL/K(s) =

∫ s

0

dx

(G0(L/K) : Gx(L/K))
.

When −1 ≤ x < 0, our convention is that

1

(G0(L/K) : Gx(L/K))
= (Gx(L/K) : G0(L/K)),

which is just equal to 1 when −1 < x < 0. So

ηL/K(s) = s if − 1 ≤ s ≤ 0.

Proof. We denote the RHS by θ(s). It is clear that both ηL/K(s) and θ(s) are
piecewise linear and the break points are integers (since iL/K(σ) is always an
integer). So to see they are the same, we see that they agree at a point, and
that they have equal derivatives. We have

ηL/K(0) =
|{σ ∈ G : iL/K(σ) ≥ 1}|

eL/K
− 1 = 0 = θ(0),
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since the numerator is the size of the inertia group.
If s ∈ [−1,∞) \ Z, then

η′L/K(s) = e−1
L/K(|{σ ∈ G : iL/K(σ) ≥ s+ 1}|)

=
|Gs(L/K)|
|G0(L/K)|

=
1

(G0(L/K) : Gs(L/K))

= θ′(s).

So done.

We now tidy up the proof by inventing a different numbering of the ramifica-
tion groups. Recall that

ηL/K : [−1,∞)→ [−1,∞)

is continuous, strictly increasing, and

ηL/K(−1) = −1, ηL/K(s)→∞ as s→∞.

So this is invertible. We set

Notation.
ψL/K = η−1

L/K .

Definition (Upper numbering). Let L/K be a Galois extension of local fields.
Then the upper numbering of the ramification groups of L/K is defined by

Gt(L/K) = GψL/K(t)(L/K)

for t ∈ [−1,∞). The original number is called the lower numbering.

To rephrase our previous theorem using the upper numbering, we need a
little lemma:

Lemma. Let M/L/K be a finite extension of local fields, and M/K and L/K
be Galois. Then

ηM/K = ηL/K ◦ ηM/L.

Hence
ψM/K = ψM/L ◦ ψL/K .

Proof. Let s ∈ [−1,∞), and let t = ηM/L(s), and H = Gal(M/L). By Her-
brand’s theorem, we know

Gt(L/K) ∼=
Gs(M/K)H

H
∼=

Gs(M/K)

H ∩Gs(M/K)
=
Gs(M/K)

Gs(M/L)
.

Thus by multiplicativity of the inertia degree, we have

|Gs(M/K)|
eM/K

=
|Gt(L/K)|
eL/K

|Gs(M/L)|
eM/L

.
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By the fundamental theorem of calculus, we know that whenever the derivatives
make sense, we have

η′M/K(s) =
|Gs(M/K)|
eM/K

.

So putting this in, we know

η′M/K(s) = η′L/K(t)η′M/L(s) = (ηL/K ◦ ηM/L)′(s).

Since ηM/K and ηL/K ◦ ηM/L agree at 0 (they both take value 0), we know that
the functions must agree everywhere. So done.

Corollary. Let M/L/K be finite Galois extensions of local fields, and H =
Gal(M/L). Let t ∈ [−1,∞). Then

Gt(M/K)H

H
= Gt(L/K).

Proof. Put s = ηL/K(t). Then by Herbrand’s theorem, we have

Gt(M/K)H

H
=
GψM/K(t)(M/K)H

H
∼= GηM/L(ψM/K(t))(L/K)

= Gs(L/K)

= Gt(L/K).

This upper numbering might seem like an unwieldy beast that was invented
just so that our theorem looks nice. However, it turns out that often the upper
numberings are rather natural, as we could see in the example below:

Example. Consider ζpn a primitive pnth root of unity, and K = Qp(ζpn). The
minimal polynomial of ζpn is the pnth cyclotomic polynomial

Φpn(x) = xp
n−1(p−1) + xp

n−1(p−2) + · · ·+ 1.

It is an exercise on the example sheet to show that this is indeed irreducible.
So K/Qp is a Galois extension of degree pn−1(p − 1). Moreover, it is totally
ramified by question 6 on example sheet 2, with uniformizer

π = ζpn − 1

is a uniformizer. So we know

OK = Zp[ζpn − 1] = Zp[ζpn ].

We then have an isomorphism(
Z
pnZ

)×
→ Gal(L/Qp)

obtained by sending m→ σm, where

σm(ζpn) = ζmpn .
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We have

iK/Qp(σm) = vK(σm(ζpn)− ζpn)

= vK(ζmpn − ζpn)

= vK(ζm−1
pn − 1)

since ζpn is a unit. If m = 1, then this thing is infinity. If it is not 1, then ζm−1
pn

is a primitive pn−kth root of unity for the maximal k such that pk | m− 1. So
by Q6 on example sheet 2, we have

vK(ζm−1
pn − 1) =

pn−1(p− 1)

pn−k−1(p− 1)
= pk.

Thus we have
vK(ζm−1

pn − 1) ≥ pk ⇔ m ≡ 1 mod pk.

It then follows that for
pk ≥ s+ 1 ≥ pk−1 + 1,

we have
Gs(K/Qp) ∼= {m ∈ (Z/pn)× : m ≡ 1 mod pk}.

Now m ≡ 1 mod pk iff σm(ζpk) = ζpk . So in fact

Gs(K/Qp) ∼= Gal(K/Qp(ζpk)).

Finally, when s ≥ pn − 1, we have

Gs(K/Qp) = 1.

We claim that
ηK/Qp(pk − 1) = k.

So we have
Gk(K/Qp) = Gal(K/Qp(ζpk)).

This actually looks much nicer!
To actually compute ηK/Qp , we have notice that the function we integrate to

get η looks something like this (not to scale):

1
p−1

1
p(p−1)

1
p2(p−1)

p− 1 p2 − 1 p3 − 1

The jumps in the lower numbering are at pk− 1 for k = 1, · · · , n− 1. So we have

ηK/Qp(pk − 1) = (p− 1)
1

p− 1
+ ((p2 − 1)− (p− 1))

1

p(p− 1)

+ · · ·+ ((pk − 1)− (pk−1 − 1))
1

pk−1(p− 1)

= k.
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7 Local class field theory

Local class field theory is the study of abelian extensions of local fields, i.e. a
Galois extension whose Galois group is abelian.

7.1 Infinite Galois theory

It turns out that the best way of formulating this theory is to not only use finite
extensions, but infinite extensions as well. So we need to begin with some infinite
Galois theory. We will mostly just state the relevant results instead of proving
them, because this is not a course on Galois theory.

In this section, we will work with any field.

Definition (Separable and normal extensions). Let L/K be an algebraic exten-
sion of fields. We say that L/K is separable if, for every α ∈ L, the minimal
polynomial fα ∈ K[α] is separable. We say L/K is normal if fα splits in L for
every α ∈ L.

Definition (Galois extension). Let L/K be an algebraic extension of fields.
Then it is Galois if it is normal and separable. If so, we write

Gal(L/K) = AutK(L).

These are all the same definitions as in the finite case.
In finite Galois theory, the subgroups of Gal(L/K) match up with the

intermediate extensions, but this is no longer true in the infinite case. The
Galois group has too many subgroups. To fix this, we need to give Gal(L/K) a
topology, and talk about closed subgroups.

Definition (Krull topology). Let M/K be a Galois extension. We define the
Krull topology on M/K by the basis

{Gal(M/L) : L/K is finite}.

More explicitly, we say that U ⊆ Gal(M/K) is open if for every σ ∈ U , we can
find a finite subextension L/K of M/K such that σGal(M/L) ⊆ U .

Note that any open subgroup of a topological group is automatically closed,
but the converse does not hold.

Note that when M/K is finite, then the Krull topology is discrete, since we
can just take the finite subextension to be M itself.

Proposition. Let M/K be a Galois extension. Then Gal(M/K) is compact
and Hausdorff, and if U ⊆ Gal(M/K) is an open subset such that 1 ∈ U , then
there is an open normal subgroup N ⊆ Gal(M/K) such that N ⊆ U .

Groups with properties in this proposition are known as profinite groups.

Proof. We will not prove the first part.
For the last part, note that by definition, there is a finite subextension of

M/K such that Gal(M/L) ⊆ U . We then let L′ be the Galois closure of L over
K. Then Gal(M/L′) ⊆ Gal(M/L) ⊆ U , and Gal(M/L′) is open and normal.
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Recall that we previously defined the inverse limit of a sequence rings. More
generally, we can define such an inverse limit for any sufficiently nice poset
of things. Here we are going to do it for topological groups (for those doing
Category Theory, this is the filtered limit of topological groups).

Definition (Directed system). Let I be a set with a partial order. We say that
I is a directed system if for all i, j ∈ I, there is some k ∈ I such that i ≤ k and
j ≤ k.

Example. Any total order is a directed system.

Example. N with divisibility | as the partial order is a directed system.

Definition (Inverse limit). Let I be a directed system. An inverse system (of
topological groups) indexed by I is a collection of topological groups Gi for each
i ∈ I and continuous homomorphisms

fij : Gj → Gi

for all i, j ∈ I such that i ≤ j, such that

fii = idGi

and
fik = fij ◦ fjk

whenever i ≤ j ≤ k.
We define the inverse limit on the system (Gi, fij) to be

lim←−
i∈I

Gi =

{
(gi) ∈

∏
i∈I

Gi : fij(gj) = gi for all i ≤ j

}
⊆
∏
i∈I

gi,

which is a group under coordinate-wise multiplication and a topological space
under the subspace topology of the product topology on

∏
i∈I Gi. This makes

lim←−i∈I Gi into a topological group.

Proposition. Let M/K be a Galois extension. The set I of finite Galois
subextensions L/K is a directed system under inclusion. If L,L′ ∈ I and L ⊆ L′,
then we have a restriction map

· |L
′

L : Gal(L′/K)→ Gal(L/K).

Then (Gal(L/K), · |L′L ) is an inverse system, and the map

Gal(M/K)→ lim←−
i∈I

Gal(L/K)

σ 7→ (σ|L)i∈I

is an isomorphism of topological groups.

We now state the main theorem of Galois theory.

64



7 Local class field theory III Local Fields

Theorem (Fundamental theorem of Galois theory). Let M/K be a Galois ex-
tension. Then the map L 7→ Gal(M/L) defines a bijection between subextensions
L/K of M/K and closed subgroups of Gal(M/K), with inverse given by sending
H 7→MH , the fixed field of H.

Moreover, L/K is finite if and only if Gal(M/L) is open, and L/K is Galois
iff Gal(M/L) is normal, and then

Gal(L/K)

Gal(M/L)
→ Gal(L/K)

is an isomorphism of topological groups.

Proof. This follows easily from the fundamental theorem for finite field extensions.
We will only show that Gal(M/L) is closed and leave the rest as an exercise. We
can write

L =
⋃
L′⊆L

L′/K finite

L′.

Then we have
Gal(M/L) =

⋂
L′⊆L

L′/K finite

Gal(M/L′),

and each Gal(M/L′) is open, hence closed. So the whole thing is closed.

7.2 Unramified extensions and Weil group

We first define what it means for an infinite extension to be unramified or totally
ramified. To do so, we unexcitingly patch up the definitions for finite cases.

Definition (Unramified extension). Let K be a local field, and M/K be alge-
braic. Then M/K is unramified if L/K is unramified for every finite subextension
L/K of M/K.

Note that since the extension is not necessarily finite, in general M will not
be a local field, since chances are its residue field would be infinite.

Definition (Totally ramified extension). Let K be a local field, and M/K be
algebraic. Then M/K is totally ramified if L/K is totally ramified for every
finite subextension L/K of M/K.

Proposition. Let M/K be an unramified extension of local fields. Then M/K
is Galois, and

Gal(M/K) ∼= Gal(kM/kK)

via the reduction map.

Proof. Every finite subextension of M/K is unramified, so in particular is Galois.
So M/K is Galois (because normality and separability is checked for each
element). Then we have a commutative diagram

Gal(M/K) Gal(kM/kK)

lim←−
L/K

Gal(L/K) lim←−
L/K

Gal(kL/kK)

reduction

∼ ∼

reduction
∼
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The left hand map is an isomorphism by (infinite) Galois theory, and since all
finite subextensions of kM/kK are of the form kL/kK by our finite theory, we
know the right-hand map is an isomorphism. The bottom map is an isomorphism
since it is an isomorphism in each component. So the top map must be an
isomorphism.

Since the compositor of unramified extensions is unramified, it follows that
any algebraic extension M/K has a maximal unramified subextension

T = TM/K/K.

In particular, every field K has a maximal unramified extension Kur.
We now try to understand unramified extensions. For a finite unramified

extension L/K, we have an isomorphism

Gal(L/K) Gal(kL/kK)∼ ,

By general field theory, we know that Gal(kL/kK) is a cyclic group generated by

FrobL/K : x 7→ xq,

where q = |kK | is the size of kK . So by the isomorphism, we obtain a generator
of Gal(L/K).

Definition (Arithmetic Frobenius). Let L/K be a finite unramified extension
of local fields, the (arithmetic) Frobenius of L/K is the lift of FrobL/K ∈
Gal(kL/kK) under the isomorphism Gal(L/K) ∼= Gal(kL/kK).

There is also a geometric Frobenius, which is its inverse, but we will not use
that in this course.

We know Frob is compatible in towers, i.e. if M/L/K is a tower of finite
unramified extension of local fields, then FrobM/K |L = FrobL/K , since they both

reduce to the map x 7→ x|kK | in Gal(kL/kK), and the map between Gal(kL/kK)
and Gal(L/K) is a bijection.

So if M/K is an arbitrary unramified extension, then we have an element

(FrobL/K) ∈ lim←−
L/K

Gal(L/K) ∼= Gal(M/K).

So we get an element FrobM/K ∈ Gal(M/K). By tracing through the proof of

Gal(M/K) ∼= Gal(kM/kK), we see that this is the unique lift of x 7→ x|kK |.
Note that while for finite unramified extensions M/K, the Galois group is

generated by the Frobenius, this is not necessarily the case when the extension is
infinite. However, powers of the Frobenius are the only things we want to think
about, so we make the following definition:

Definition (Weil group). Let K be a local field and M/K be Galois. Let
T = TM/K be the maximal unramified subextension of M/K. The Weil group
of M/K is

W (M/K) = {σ ∈ Gal(M/K) : σ|T = FrobnT/K for some n ∈ Z}.

We define a topology on W (M/K) by saying that U is open iff there is a finite
extension L/T such that σGal(L/T ) ⊆ U .
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In particular, if M/K is unramified, then W (M/K) = FrobZ
T/K .

It is helpful to put these groups into a diagram of topological groups to see
what is going on.

Gal(M/T ) W (M/K) FrobZ
T/K

Gal(M/T ) Gal(M/K) Gal(T/K)

Here we put the discrete topology on the subgroup generated by the Frobenius.
The topology of W (M/K) is then chosen so that all these maps are continuous
homomorphisms of groups.

In many ways, the Weil group works rather like the Galois group.

Proposition. Let K be a local field, and M/K Galois. Then W (M/K) is dense
in Gal(M/K). Equivalently, for any finite Galois subextension L/K of M/K,
the restriction map W (M/K)→ Gal(L/K) is surjective.

If L/K is a finite subextension of M/K, then

W (M/L) = W (M/K) ∩Gal(M/L).

If L/K is also Galois, then

W (M/K)

W (M/L)
∼= Gal(L/K)

via restriction.

Proof. We first prove density. To see that density is equivalent to W (M/K)→
Gal(L/K) being surjective for all finite subextension L/K, note that by the
topology on Gal(M/K), we know density is equivalent to saying that W (M/K)
hits every coset of Gal(M/L), which means that W (M/K) → Gal(L/K) is
surjective.

Let L/K be a subextension. We let T = TM/K . Then TL/K = T ∩ L. Then
we have a diagram

Gal(M/T ) W (M/K) FrobZ
T/K

Gal(L/T ∩ L) Gal(L/K) Gal(T ∩ L/K)

Here the surjectivity of the left vertical arrow comes from field theory, and the
right hand vertical map is surjective because T ∩ L/K is finite and hence the
Galois group is generated by the Frobenius. Since the top and bottom rows are
short exact sequences (top by definition, bottom by Galois theory), by diagram
chasing (half of the five lemma), we get surjectivity in the middle.

To prove the second part, we again let L/K be a finite subextension. Then
L · TM/K ⊆ TM/L. We then have maps

FrobZ
TM/K/K

Gal(TM/K/K) Gal(kM/kK)

FrobZ
TM/L/L

Gal(TM/L/L) Gal(kM/kL)

∼=

∼=
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So the left hand vertical map is an inclusion. So we know

FrobZ
TM/L/L

= FrobZ
TM/K/K

∩Gal(TM/L/L).

Now if σ ∈ Gal(M/L), then we have

σ ∈W (M/L)⇔ σ|TM/L/L ∈ FrobZ
TM/L/L

⇔ σ|TM/K/K ∈ FrobZ
TM/K/K

⇔ σ ∈W (M/K).

So this gives the second part.

Now L/K is Galois as well. Then Gal(M/L) is normal in Gal(M/K). So
W (M/L) is normal in W (M/K) by the second part. Then we can compute

W (M/K)

W (M/L)
=

W (M/K)

W (M/K) ∩Gal(M/L)

∼=
W (M/K) Gal(M/L)

Gal(M/L)

=
Gal(M/K)

Gal(M/L)
∼= Gal(L/K).

The only non-trivial part in this chain is the assertion thatW (M/K) Gal(M/L) =
Gal(M/K), i.e. that W (M/K) hits every coset of Gal(M/L), which is what
density tells us.

7.3 Main theorems of local class field theory

We now come to the main theorems of local class field theory.

Definition (Abelian extension). Let K be a local field. A Galois extension
L/K is abelian if Gal(L/K) is abelian.

We will fix an algebraic closure K̄ of K, and all algebraic extensions we will
consider will be taken to be subextensions of K̄/K. We let Ksep be the separable
closure of K inside K̄.

If M/K and M/K are Galois extensions, then LM/K is Galois, and the map
given by restriction

Gal(LM/K) ↪→ Gal(L/K)×Gal(M/K).

is an injection. In particular, if L/K and M/K are both abelian, then so is
LM/K. This implies that there is a maximal abelian extension Kab.

Finally, note that we know an example of an abelian extension, namely the
maximal unramified extension Kur = TKsep/K ⊆ Kab, and we put FrobK =
FrobKur/K .

Theorem (Local Artin reciprocity). There exists a unique topological isomor-
phism

ArtK : K× →W (Kab/K)

characterized by the properties
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(i) ArtK(πK)|Kur = FrobK , where πK is any uniformizer.

(ii) We have
ArtK(NL/K(x))|L = idL

for all L/K finite abelian and x ∈ L×.

Moreover, if M/K is finite, then for all x ∈ M×, we know ArtM (x) is an
automorphism of Mab/M , and restricts to an automorphisms of Kab/K. Then
we have

ArtM (x)|K
ab

K = ArtK(NM/K(x)).

Moreover, ArtK induces an isomorphism

K×

NM/K(M×)
→ Gal

(
M ∩Kab

K

)
.

To simplify this, we will write N(L/K) = NL/K(L×) for L/K finite. From
this theorem, we can deduce a lot of more precise statements.

Corollary. Let L/K be finite. Then N(L/K) = N((L ∩Kab)/K), and

(K× : N(L/K)) ≤ [L : K]

with equality iff L/K is abelian.

Proof. To see this, we let M = L ∩Kab. Applying the isomorphism twice gives

K×

N(L/K)
∼= Gal(M/K) ∼=

K×

N(M/K)
.

Since N(L/K) ⊆ N(M/K), and [L : K] ≥ [M : K] = |Gal(M/K)|, we are
done.

The theorem tells us if we have a finite abelian extension M/K, then we
obtain an open finite-index subgroup NM/K(M×) ≤ K×. Conversely, if we are
given an open finite index subgroup of K×, we might ask if there is an abelian
extension of K whose norm group is corresponds to this subgroup. The following
theorem tells us this is the case:

Theorem. Let K be a local field. Then there is an isomorphism of posets{
open finite index
subgroups of K×

} {
finite abelian

extensions of L/K

}
H (Kab)ArtK(H)

N(L/K) L/K

.

In particular, for L/K and M/K finite abelian extensions, we have

N(LM/K) = N(L/K) ∩N(M/K),

N(L ∩M/K) = N(L/K)N(M/K).
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While proving this requires quite a bit of work, a small part of it follows from
local Artin reciprocity:

Theorem. Let L/K be a finite extension, and M/K abelian. Then N(L/K) ⊆
N(M/K) iff M ⊆ L.

Proof. By the previous theorem, we may wlog L/K abelian by replacing with
L ∩Kab. The ⇐ direction is clear by the last part of Artin reciprocity.

For the other direction, we assume that we have N(L/K) ⊆ N(M/K), and
let σ ∈ Gal(Kab/L). We want to show that σ|M = idM . This would then imply
that M is a subfield of L by Galois theory.

We know W (Kab/L) is dense in Gal(Kab/L). So it suffices to show this for
σ ∈W (Kab/L). Then we have

W (Kab/L) ∼= ArtK(N(L/K)) ⊆ ArtK(N(M/K)).

So we can find x ∈M× such that σ = ArtK(NM/K(x)). So σ|M = idM by local
Artin reciprocity.

Side note: Why is this called “class field theory”? Usually, we call the field
corresponding to the subgroup H the class field of H. Historically, the first type
of theorems like this are proved for number fields. The groups that appear on
the left would be different, but in some cases, they are the class group of the
number field.
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8 Lubin–Tate theory

For the rest of the course, we will indicate how one can explicitly construct the
field Kab and the map ArtK .

There are many ways we can approach local class field theory. The approach
we use, using Lubin–Tate theory, is the most accessible one. Another possible
approach is via Galois cohomology. This, however, relies on more advanced
machinery, namely Galois cohomology.

8.1 Motivating example

We will work out the details of local Artin reciprocity in the case of Qp as a
motivating example for the proof we are going to come up with later. Here we
will need the results of local class field theory to justify our claims, but this is
not circular since this is not really part of the proof.

Lemma. Let L/K be a finite abelian extension. Then we have

eL/K = (O×K : NL/K(O×L )).

Proof. Pick x ∈ L×, and w the valuation on L extending vK , and n = [L : K].
Then by construction of w, we know

vK(NL/K(x)) = nw(x) = fL/KvL(x).

So we have a surjection

K×

N(L/K)

Z
fL/KZ

vK .

The kernel of this map is equal to

O×KN(L/K)

N(L/K)
∼=

O×K
O×K ∩N(L/K)

=
O×K

NL/K(O×L )
.

So by local class field theory, we know

n = (K× : N(L/K)) = fL/K(O×K : NL/K(O×L )),

and this implies what we want.

Corollary. Let L/K be a finite abelian extension. Then L/K is unramified if
and only if NL/K(O×L ) = O×K .

Now we fix a uniformizer πK . Then we have a topological group isomorphism

K× ∼= 〈πK〉 × O×K .

Since we know that the finite abelian extensions correspond exactly to finite
index subgroups of K× by taking the norm groups, we want to understand
subgroups of K×. Now consider the subgroups of K× of the form

〈πmK 〉 × U
(n)
K .
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We know these form a basis of the topology of K×, so it follows that finite-index
open subgroups must contain one of these guys. So we can find the maximal
abelian extension as the union of all fields corresponding to these guys.

Since we know that N(LM/K) = N(L/K) ∩N(M/K), it suffices to further
specialize to the cases

〈πK〉 × U (n)
K

and
〈πmK 〉 × OK

separately. The second case is easy, because this corresponds to an unramified
extension by the above corollary, and unramified extensions are completely
characterized by the extension of the residue field. Note that the norm group and
the extension are both independent of the choice of uniformizer. The extensions
corresponding to the first case are much more difficult to construct, and they
depend on the choice of πK . We will get them from Lubin–Tate theory.

Lemma. Let K be a local field, and let Lm/K be the extension corresponding
to 〈πmK 〉 × OK . Let

L =
⋃
m

Lm.

Then we have
Kab = KurL,

Lemma. We have isomorphisms

W (Kab/K) ∼= W (KurL/K)
∼= W (Kur/K)×Gal(L/K)

∼= FrobZ
K ×Gal(L/K)

Proof. The first isomorphism follows from the previous lemma. The second
follows from the fact that Kur ∩ L = K as L is totally ramified. The last
isomorphism follows from the fact that TKur/K = Kur trivially, and then by

definition W (Kur/K) ∼= FrobZ
K .

Example. We consider the special case of K = Qp and πK = p. We let

Ln = Qp(ζpn),

where ζpn is the primitive pnth root of unity. Then by question 6 on example
sheet 2, we know this is a field with norm group

N(Qp(ζpn)/Qp) = 〈p〉 × (1 + pnZp) = 〈p〉 × U (n)
Qp ,

and thus this is a totally ramified extension of Qp.
We put

Qp(ζp∞) =

∞⋃
n=1

Qp(ζpn).

Then again this is totally ramified extension, since it is the nested union of
totally ramified extensions.
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Then we have

Gal(Qp(ζp∞)/Qp) ∼= lim←−
n

Gal(Qp(ζpn)/Qp)

= lim←−
n

(Z/pnZ)×

= Z×p .

Note that we are a bit sloppy in this deduction. While we know that it is true
that Z×p ∼= lim←−n(Z/pnZ)×, the inverse limit depends not only on the groups

(Z/pnZ)× themselves, but also on the maps we use to connect the groups together.
Fortunately, from the discussion below, we will see that the maps

Gal(Qp(ζpn)/Qp)→ Gal(Qp(ζpn−1)/Qp)

indeed correspond to the usual restriction maps

(Z/pnZ)× → (Z/pn−1Z)×.

It is a fact that this is the inverse of the Artin map of Qp restricted to Z×p .
Note that we have W (Qp(ζp∞)/Qp) = Gal(Qp(ζp∞)/Qp) because its maximal
unramified subextension is trivial.

We can trace through the above chains of isomorphisms to figure out what
the Artin map does. Let m = Z×p . Then we can write

m = a0 + a1p+ · · · ,

where ai ∈ {0, · · · , p− 1} and a0 6= 0. Now for each n, we know

m ≡ a0 + a1p+ · · ·+ an−1p
n−1 mod pn.

By the usual isomorphism Gal(Qp(ζpn)/Qp) ∼= Z/pnZ, we know m acts as

ζpn 7→ ζ
a0+a1p+...+an−1p

n−1

pn “=” ζmpn

on Qp(ζpn), where we abuse notation because taking ζpn to powers of p greater
than n gives 1. It can also be interpreted as (1 + λpn)m, where λpn = ζpn − 1 is
a uniformizer, which makes sense using binomial expansion.

So the above isomorphisms tells us that ArtQp restricted to Z×p acts on
Qp(ζp∞) as

ArtQp(m)(ζpn) ≡ σm−1(ζpn) = ζm
−1

pn .

The full Artin map can then be read off from the following diagram:

Q×p W (Qab
p /Qp)

〈p〉 × Z×p W (Qur
p /Qp)×Gal(Qp(ζp∞)/Qp)

∼=

ArtQp

restriction∼

where the bottom map sends

〈pn,m〉 7→ (FrobnQp , σm−1).
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In fact, we have

Theorem (Local Kronecker-Weber theorem).

Qab
p =

⋃
n∈Z≥1

Qp(ζn),

Qur
p =

⋃
n∈Z≥1

(n,p)=1

Qp(ζn).

Not a proof. We will comment on the proof of the generalized version later.

Remark. There is another normalization of the Artin map which sends a
uniformizer to the geometric Frobenius , defined to be the inverse of the arithmetic
Frobenius. With this convention, ArtQp(m)|Qp(ζp∞ ) is σm.

We can define higher ramification groups for general Galois extensions.

Definition (Higher ramification groups). Let K be a local field and L/K Galois.
We define, for s ∈ R≥−1

Gs(M/K) = {σ ∈ Gal(M/K) : σ|L ∈ Gs(L/K) for all finite

Galois subextension M/K}.

This definition makes sense, because the upper number behaves well when
we take quotients. This is one of the advantages of upper numbering. Note that
we can write the ramification group as the inverse limit

Gs(M/K) ∼= lim←−
L/K

Gs(L/K),

as in the case of the Galois group.

Example. Going back to the case of K = Qp. We write Qpn for the unramified
extension of degree n of Qp. By question 11 of example sheet 3, we know that

Gs(Qpn(ζpm)/Qp) =


Gal(Qpn(ζpm)/Qp) s = −1

Gal(Qpn(ζpm)/Qpn) −1 < s ≤ 0

Gal(Qpn(ζpm)/ζpk) k − 1 < s ≤ k ≤ m− 1

1 s > m− 1

,

which corresponds to

〈p〉 × U (0)

〈pn〉 × U (m)
s = −1

〈pn〉 × U (0)

〈pn〉 × U (m)
−1 < s ≤ 0

〈pn〉 × U (k)

〈pn〉 × U (m)
k − 1 < s ≤ k ≤ m− 1

1 s > m− 1

under the Artin map.
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By taking the limit as n,m→∞, we get

Theorem. We have

Gs(Qab
p /Qp) = ArtQp(1 + pkZp) = ArtQp(U (k)),

where k is chosen such that k − 1 < s ≤ k, k ∈ Z≥0.

Corollary. If L/Qp is a finite abelian extension, then

Gs(L/Qp) = ArtQp

(
N(L/Qp)(1 + pnZp)

N(L/Qp)

)
,

where n− 1 < s ≤ n.

Here ArtQp induces an isomorphism

Q×p
N(L/Qp)

→ Gal(L/Qp).

So it follows that L ⊆ Qp(ζpm) for some n if and only if Gs(L/Qp) = 1 for all
s > m− 1.

8.2 Formal groups

The proof of local Artin reciprocity will be done by constructing the analogous
versions of Ln for an arbitrary local field, and then proving that it works. To
do so, we will need the notion of a formal group. The idea of a formal group is
that a formal group is a rule that specifies how we should multiply two elements
via a power series over a ring R. Then if we have a complete R-module, then
the formal group will turn the R-module into an actual group. There is then a
natural notion of a formal module, which is a formal group F with an R-action.

At the end, we will pick R = OK . The idea is then that we can fix an
algebraic closure K̄, and then a formal OK -module will turn mK̄ into an actual
OK-module. Then if we adjoin the right elements of mK̄ to K, then we obtain
an extension of K with a natural OK action, and we can hope that this restricts
to field automorphisms when we restrict to the unit group.

Notation. Let R be a ring. We write

R[[x1, · · · , xn]] =

 ∑
k1,...,kn∈Z≥0

ak1,...,knx
k1
1 · · ·xknn : ak1,...,kn ∈ R


for the ring of formal power series in n variables over R.

Definition (Formal group). A (one-dimensional, commutative) formal group
over R is a power series F (X,Y ) ∈ R[X,Y ] such that

(i) F (X,Y ) ≡ X + Y mod (X2, XY, Y 2)

(ii) Commutativity: F (X,Y ) = F (Y,X)

(iii) Associativity: F (X,F (Y, Z)) = F (F (X,Y ), Z).
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This is most naturally understood from the point of view of algebraic geometry,
as a generalization of the Lie algebra over a Lie group. Instead of talking about
the tangent space of a group (the “first-order neighbourhood”), we talk about its
infinitesimal (formal) neighbourhood, which contains all higher-order information.
A lot of the seemingly-arbitrary compatibility conditions we later impose have
such geometric motivation that we unfortunately cannot go into.

Example. If F is a formal group over OK , where K is a complete valued field,
then F (x, y) converges for all x, y ∈ mK . So mK becomes a (semi)group under
the multiplication

(x, y) 7→ F (x, y) ∈ mk

Example. We can define

Ĝa(X,Y ) = X + Y.

This is called the formal additive group.
Similarly, we can have

Ĝm(X,Y ) = X + Y +XY.

This is called the formal multiplicative group. Note that

X + Y +XY = (1 +X)(1 + Y )− 1.

So if K is a complete valued field, then mK bijects with 1 + mk by sending
x 7→ 1 + x, and the rule sending (x, y) ∈ m2

K 7→ x + y + xy ∈ mK is just the
usual multiplication in 1 + mK transported to mK via the bijection above.

We can think of this as looking at the group in a neighbourhood of the
identity 1.

Note that we called this a formal group, rather than a formal semi-group. It
turns out that the existence of identity and inverses is automatic.

Lemma. Let R be a ring and F a formal group over R. Then

F (X, 0) = X.

Also, there exists a power series i(X) ∈ X ·R[[X]] such that

F (X, i(X)) = 0.

Proof. See example sheet 4.

The next thing to do is to define homomorphisms of formal groups.

Definition (Homomorphism of formal groups). Let R be a ring, and F,G be
formal groups over R. A homomorphism f : F → G is an element f ∈ R[[X]]
such that f(X) ≡ 0 mod X and

f(F (X,Y )) = G(f(X), f(Y )).

The endomorphisms f : F → F form a ring EndR(F ) with addition +F given by

(f +F g)(x) = F (f(x), g(x)).

and multiplication is given by composition.
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We can now define a formal module in the usual way, plus some compatibility
conditions.

Definition (Formal module). Let R be a ring. A formal R-module is a formal
group F over R with a ring homomorphism R→ EndR(F ), written, a 7→ [a]F ,
such that

[a]F (X) = aX mod X2.

Those were all general definitions. We now restrict to the case we really care
about. Let K be a local field, and q = |kK |. We let π ∈ OK be a uniformizer.

Definition (Lubin–Tate module). A Lubin–Tate module over OK with respect
to π is a formal OK-module F such that

[π]F (X) ≡ Xq mod π.

We can think of this condition of saying “uniformizer corresponds to the
Frobenius”.

Example. The formal group Ĝm is a Lubin–Tate Zp module with respect to p
given by the following formula: if a ∈ Zp, then we define

[a]Ĝm(X) = (1 +X)a − 1 =

∞∑
n=1

(
a

n

)
Xn.

The conditions
(1 +X)a − 1 ≡ aX mod X2

and
(1 +X)p − 1 ≡ Xp mod p

are clear.
We also have to check that a 7→ [a]F is a ring homomorphism. This follows

from the identities

((1 +X)a)b = (1 +X)ab, (1 +X)a(1 +X)b = (1 +X)ab,

which are on the second example sheet.

The objective of the remainder of the section is to show that all Lubin–Tate
modules are isomorphic.

Definition (Lubin–Tate series). A Lubin–Tate series for π is a power series
e(X) ∈ OK [[X]] such that

e(X) ≡ πX mod X2, e(X) ≡ Xq mod π.

We denote the set of Lubin–Tate series for π by Eπ.

Now by definition, if F is a Lubin–Tate OK module for π, then [π]F is a
Lubin–Tate series for π.

Definition (Lubin–Tate polynomial). A Lubin–Tate polynomial is a polynomial
of the form

uXq + π(aq−1X
q−1 + · · ·+ a2X

2) + πX

with u ∈ U (1)
K , and aq−1, · · · , a2 ∈ OK .

In particular, these are Lubin–Tate series.
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Example. Xq + πX is a Lubin–Tate polynomial.

Example. If K = Qp and π = p, then (1 +X)p− 1 is a Lubin–Tate polynomial.

The result that allows us to prove that all Lubin–Tate modules are isomorphic
is the following general result:

Lemma. Let e1, e2 ∈ Eπ and take a linear form

L(x1, · · · , xn) =

n∑
i=1

aiXi, ai ∈ OK .

Then there is a unique power series F (x1, · · · , xn) ∈ OK [[x1, · · · , xn]] such that

F (x1, · · · , xn) ≡ L(x1, · · · , xn) mod (x1, · · · , xn)2,

and
e1(F (x1, · · · , xn)) = F (e2(x1), e2(x2), · · · , e2(xn)).

For reasons of time, we will not prove this. We just build F by successive
approximation, which is not terribly enlightening.

Corollary. Let e ∈ Eπ be a Lubin–Tate series. Then there are unique power
series Fe(X,Y ) ∈ OK [[X,Y ]] such that

Fe(X,Y ) ≡ X + Y mod (X + Y )2

e(Fe(X,Y )) = Fe(e(X), e(Y ))

Corollary. Let e1, e2 ∈ Eπ be Lubin–Tate series and a ∈ OK . Then there exists
a unique power series [a]e1,e2 ∈ OK [[X]] such that

[a]e1,e2(X) ≡ aX mod X2

e1([a]e1,e2(X)) = [a]e1,e2(e2(X)).

To simplify notation, if e1 = e2 = e, we just write [a]e = [a]e,e.

We now state the theorem that classifies all Lubin–Tate modules in terms of
Lubin–Tate series.

Theorem. The Lubin–Tate OK modules for π are precisely the series Fe for
e ∈ Eπ with formal OK-module structure given by

a 7→ [a]e.

Moreover, if e1, e2 ∈ Eπ and a ∈ OK , then [a]e1,e2 is a homomorphism from
Fe2 → Fe1 .

If a ∈ O×K , then it is an isomorphism with inverse [a−1]e2,e1 .

So in some sense, there is only one Lubin–Tate module.

Proof sketch. If F is a Lubin–Tate OK-module for π, then e = [π]F ∈ Eπ by
definition, and F satisfies the properties that characterize the series Fe. So
F = Fe by uniqueness.

For the remaining parts, one has to verify the following for all e, e1, e2, e3 ∈ Eπ
and a, b ∈ OK .
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(i) Fe(X,Y ) = Fe(Y,X).

(ii) Fe(X,Fe(Y,Z)) = Fe(Fe(X,Y ), Z).

(iii) [a]e1,e2(Fe(X,Y )) = Fe1([a]e1,e2(X), [a]e1,e2(Y )).

(iv) [ab]e1,e3(X) = [a]e1,e2([b]e2,e3(X)).

(v) [a+ b]e1,e2(X) = [a]e1,e2(X) + [b]e1,e2(X).

(vi) [π]e(X) = e(X).

The proof is just repeating the word “uniqueness” ten times.

8.3 Lubin–Tate extensions

We now use the Lubin–Tate modules to do things. As before, we fixed an
algebraic closure K̄ of K. We let m̄ = mK̄ be the maximal ideal in OK̄ .

Proposition. If F is a formal OK-module, then m̄ becomes a (genuine) OK
module under the operations +F and ·

x+F y = F (x, y)

a · x = [a]F (x)

for all x, y ∈ m̄ and a ∈ OK .
We denote this m̄F .

This isn’t exactly immediate, because K̄ need not be complete. However,
this is not a problem as each multiplication given by F only involves finitely
many things (namely two of them).

Proof. If x, y ∈ m̄, then F (x, y) is a series in K(x, y) ⊆ K̄. Since K(x, y) is
a finite extension, we know it is complete. Since the terms in the sum have
absolute value < 1 and → 0, we know it converges to an element in mK(x,y) ⊆ m̄.
The rest then essentially follows from definition.

To prove local class field theory, we want to find elements with an UK/U
(n)
K

action for each n, or equivalently elements with an OK/O(n)
K action. Note that

the first quotient is a quotient of groups, while the second quotient is a quotient
of a ring by an ideal. So it is natural to consider the following elements:

Definition (πn-division points). Let F be a Lubin–Tate OK -module for π. Let
n ≥ 1. The group F (n) of πn-division points of F is defined to be

F (n) = {x ∈ m̄F | [πn]Fx = 0} = ker([πn]F ).

This is a group under the operation given by F , and is indeed an OK module.

Example. Let F = Ĝm,K = Qp and π = p. Then for x ∈ m̄Ĝm , we have

pn · x = (1 + x)p
n

− 1.

So we know
Ĝm(n) = {ζipn − 1 | i = 0, 1, · · · , pn − 1},

where ζpn ∈ Q̄p is the primitive pnth root of unity.

So Ĝm(n) generates Qp(ζpn).
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To prove this does what we want, we need the following lemma:

Lemma. Let e(X) = Xq + πX. We let

fn(X) = (e ◦ · · · ◦ e)︸ ︷︷ ︸
n times

(X).

Then fn has no repeated roots. Here we take f0 to be the identity function.

Proof. Let x ∈ K̄. We claim that if |fi(x)| < 1 for i = 0, · · · , n − 1, then
f ′n(X) 6= 0.

We proceed by induction on n.

(i) When n = 1, we assume |x| < 1. Then

f ′1(x) = e′(x) = qxq−1 + π = π
(

1 +
q

π
xq−1

)
6= 0,

since we know q
π has absolute value ≤ 1 (q vanishes in kK , so q/π lives in

OK), and xq−1 has absolute value < 1.

(ii) in the induction step, we have

f ′n+1(x) = (qfn(x)q−1 + π)f ′n(x) = π
(

1 +
q

π
fn(x)q−1

)
f ′n(x).

By induction hypothesis, we know f ′n(x) 6= 0, and by assumption |fn(x)| <
1. So the same argument works.

We now prove the lemma. We assume that fn(x) = 0. We want to show that
|fi(x)| < 1 for all i = 0, · · · , n− 1. By induction, we have

fn(x) = xq
n

+ πgn(x)

for some gn(x) ∈ OK [x]. It follows that if fn(x) = 0, then |x| < 1. So |fi(x)| < 1
for all i. So f ′n(x) 6= 0.

The point of the lemma is to prove the following proposition:

Proposition. F (n) is a free OK/πnOK module of rank 1. In particular, it has
qn elements.

Proof. By definition, we know

πn · F (n) = 0.

So F (n) is indeed an OK/πnOK-module.
To prove that it is free of rank 1, we note that all Lubin–Tate modules

for π are isomorphic. This implies that all the honest OK modules F (n) are
isomorphic. We choose F = Fe, where e = Xq + πX. Then F (n) consists
of the roots of the polynomial fn = en(X), which is of degree qn and has no
repeated roots. So |F (n)| = qn. To show that it is actually the right thing, if
λn ∈ F (n) \ F (n− 1), then we have a homomorphism

OK → F (n)
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given by A 7→ a · λn. Its kernel is πnOK by our choice of λn. By counting, we
get an OK-module isomorphism

OK
πnOK

→ F (n)

as desired.

Corollary. We have isomorphisms

OK
πnOK

∼= EndOK (F (n))

UK

U
(n)
K

∼= AutOK (F (n)).

Given a Lubin–Tate OK-module F for π, we consider

Ln,π = Ln = K(F (n)),

which is the field of πn division points of F . From the inclusions F (n) ⊆ F (n+1)
for all n, we obtain a corresponding inclusion of fields

Ln ⊆ Ln+1.

The field Ln depends only in π, and not on F . To see this, we let G be another
Lubin–Tate OK-module, and let f : F → G be an isomorphism. Then

G(n) = f(F (n)) ⊆ K(F (n))

since the coefficients of f lie in K. So we know

K(G(n)) ⊆ K(F (n)).

By symmetry, we must have equality.

Theorem. Ln/K is a totally ramified abelian extension of degree qn−1(q − 1)
with Galois group

Gal(Ln/K) ∼= AutOK (F (n)) ∼=
UK

U
(n)
K

.

Explicitly, for any σ ∈ Gal(Ln/K), there is a unique u ∈ UK/U (n)
K such that

σ(λ) = [u]F (λ)

for all λ ∈ F (n). Under this isomorphism, for m ≥ n, we have

Gal(Lm/Ln) ∼=
U

(n)
K

U
(m)
K

.

Moreover, if F = Fe, where

e(X) = Xq + π(aq−1π
q−1 + · · ·+ a2X

2) + πX,
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and λn ∈ F (n) \ F (n− 1), then λn is a uniformizer of Ln and

φn(X) =
en(X)

en−1(X)
= Xqn−1(q−1) + · · ·+ π

is the minimal polynomial of λn. In particular,

NLn/K(−λn) = π.

Proof. Consider a Lubin–Tate polynomial

e(X) = xq + π(aq−1X
q−1 + · · ·+ a2X

2) + πX.

We set F = Fe. Then

φn(X) =
en(X)

en−1(X)
= (en−1(X))q−1 + π(aq1e

n−1(X)q−2 + · · ·+ a2e
n−1(X)) + π

is an Eisenstein polynomial of degree qn−1(q − 1) by starting at it long enough.
So if λn ∈ F (n) \ F (n − 1), then λn is a root of φn(x), so K(λn)/K is totally
ramified of degree qn−1(q − 1), and λn is a uniformizer, and

NK(λn)/K(−λn) = π

as the norm is just the constant coefficient of the minimal polynomial.
Now let σ ∈ Gal(Ln/K). Then σ induces a permutation of F (n), as these

are the roots of en(X), which is in fact OK-linear, i.e.

σ(x) +F σ(y) = F (σ(x), σ(y)) = σ(F (x, y)) = σ(x+F y)

σ(a · x) = σ([a]F (x)) = [a]F (σ(x)) = a · σ(x)

for all x, y ∈ mLn and a ∈ OK .
So we have an injection of groups

Gal(Ln/K) ↪→ AutOK (F (n)) =
UK

U
(n)
K

But we know∣∣∣∣∣ UKU (n)
K

∣∣∣∣∣ = qn−1(q − 1) = [K(λn) : K] ≤ [Ln : K] = |Gal(Ln/K)|.

So we must have equality throughout, the above map is an isomorphism, and
K(λn) = Ln.

It is clear from the construction of the isomorphism that for m ≥ n, the
diagram

Gal(Lm/K) UK/U
(m)
K

Gal(Ln/K) UK/U
(n)
K

∼

restriction quotient

∼

commutes. So the isomorphism

Gal(Lm/Ln) ∼=
U

(m)
K

U
(n)
K

follows by looking at the kernels.
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Example. In the case where K = Qp and π = p, recall that

Ĝm(n) = {ζipn − 1 | i = 0, · · · , pn−1 − 1},

where ζpn is the principal pnth root of unity. The theorem then gives

Gal(Qp(ζpn)/Qp) ∼= (Z/pn)×

given by if a ∈ Z≥0 and (a, p) = 1, then

σa(ζipn − 1) = [a]Ĝm(n)(ζ
i
pn − 1) = (1 + (ζipn − 1))a − 1 = ζaipn − 1.

This agrees with the isomorphism we previously constructed.

Back to the general situation, setting

L∞ =

∞⋃
n=1

Ln,

we know L∞/K is Galois, and we have isomorphisms

Gal(L∞/K) lim←−Gal(Ln/K) lim←−n UK/U
(n)
K
∼= UK

σ (σ|Ln)n

∼ ∼

This map will be the inverse of the Artin map restricted to L∞.
To complete the proof of Artin reciprocity, we need to use the following

theorem without proof:

Theorem (Generalized local Kronecker-Weber theorem). We have

Kab = KurL∞

(for any π).

Comments on the proof. One can prove this from the Hasse-Arf theorem, which
states that in an abelian extension, the jumps in the upper ramification groups
occur only at integer values. This, together with the calculation of ramification
groups done later, easily implies the theorem. Essentially, L∞ maxed out all
possible jumps of the upper ramification groups. However, the Hasse-Arf theorem
is difficult to prove.

Another approach is to prove the existence of the Artin map using other
techniques (e.g. Galois cohomology). Consideration of the norm group (cf. the
next theorem) then implies the theorem. The content of this section then
becomes an explicit construction of a certain family of abelian extensions.

We can characterize the norm group by

Theorem. We have
N(Ln/K) = 〈π〉 × U (n)

k .

Comments on the proof. This can be done by defining Coleman operators , which
are power series representations of the norm. Alternatively, assuming the

description of the local Artin map given below and local Artin reciprocity, U
(n)
k

is in the kernel of Art|Ln , so 〈π〉 × U (n)
k ⊆ N(Ln/K). The result follows by

comparing order.

83



8 Lubin–Tate theory III Local Fields

We can then construct the Artin map as follows:

Theorem. Let K be a local field. Then we have an isomorphism Art : K× →
W (Kab/K) given by the composition

K× W (Kab/K)

〈π〉 × UK FrobZ
K ×Gal(L∞/K)

∼

Art

∼

where the bottom map is given by (πm, u) 7→ (FrobmK , σu−1), where

σu(λ) = [u]F (λ)

for all λ ∈
⋃∞
n=1 F (n).

The inverse shows up in the proof to make sure the map defined above is
independent of the choice of uniformizer. We will not prove this, nor that the
map obtained has the desired properties. Instead, we will end the course by
computing the higher ramification groups of these extensions.

Theorem. We have

Gs(Ln/K) =


Gal(Ln/K) −1 ≤ s ≤ 0

Gal(Ln/Lk) qk−1 − 1 < s ≤ qk − 1, 1 ≤ k ≤ n− 1

1 s > qn−1

Proof. The case for −1 ≤ s ≤ 0 is clear.
For 0 ≤ s ≤ 1 (which we may wlog is actually 1), we know that

Gal(Ln/Lk) ∼= U
(k)
K /U

(n)
K

under the isomorphism Gal(Ln/K) ∼= UK/U
(n)
K . On the other hand, we know

G1(Ln/K) is the Sylow p-subgroup of Gal(Ln/K). So we must have

G1(Ln/K) ∼= U
(1)
K /U

(n)
K .

So we know that G1(Ln/K) = Gal(Ln/L1). Thus we know that Gs(Ln/K) =
Gal(Ln/K) for 0 < s ≤ 1.

We now let σ = σu ∈ G1(Ln/K) and u ∈ U (1)
K /U

(n)
K . We write

u = 1 + επk

for some ε ∈ UK and some k = k(u) ≥ 1. Since σ is not the identity, we know
k < n. We claim that

iLn/K(σ) = vLn(σ(λ)− λ) = qk.

Indeed, we let λ ∈ F (n) \ F (n− 1), where F is a choice of Lubin–Tate module
for π. Then λ is a uniformizer of Ln and OLn = OK [λ]. We can compute

σu(λ) = [u]F (λ)

= [1 + επk]F (λ)

= F (λ, [επk]F (λ))
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Now we can write

[επk]F (λ) = [ε]F ([πk]F (λ)) ∈ F (n− k) \ F (n− k − 1),

since [ε]F is invertible, and applying [πn−k]F to [πk]F (λ) kills it, but applying
[πn−k−1]F gives [πn−1]F , which does not kill.

So we know [επk]F (λ) is a uniformizer of Ln−k. Since Ln/Ln−k is totally
ramified of degree qk, we can find ε0 ∈ O×Ln such that

[επk]F (λ) = ε0λ
qk

Recall that F (X, 0) = X and F (0, Y ) = Y . So we can write

F (X,Y ) = X + Y +XYG(X,Y ),

where G(X,Y ) ∈ OK [[X,Y ]]. So we have

σ(λ)− λ = F (λ, [επk]F (λ))− λ

= F (λ, ε0λ
qk)− λ

= λ+ ε0λ
qk + ε0λ

qk+1G(λ, ε0λ
qk)− λ

= ε0λ
qk + ε0λ

qk+1G(λ, ε0λ
qk).

In terms of valuation, the first term is the dominating term, and

iLn/K(σ) = vLn(σ(λ)− λ) = qk

So we know
iLn/K(σk) ≥ s+ 1⇔ qk(u) − 1 ≥ s.

So we know

Gs(Ln/K) = {σK ∈ G1(Ln/K) : qk(u) − 1 ≥ s} = Gal(Ln/Lk),

where qk−1 − 1 < s ≤ qk − 1 for k = 1, · · · , n− 1, and 1 if s > qn−1 = 1.

Corollary. We have

Gt(Ln/K) =


Gal(Ln/K) −1 ≤ t ≤ 0

Gal(Ln/Lk) k − 1 < t ≤ k, k = 1, · · · , n− 1

1 t > n− 1

In other words, we have

Gt(Ln/K) =

{
Gal(Ln/Ldte) −1 ≤ t ≤ n− 1

1 t > n− 1
,

where we set L0 = K.

Once again, the numbering is a bit more civilized in the upper numbering.
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Proof. We have to compute the integral of

1

(G0(Ln/K) : Gx(Ln/K)
.

We again plot this out

1
q−1

1
q(q−1)

1
q2(q−1)

q − 1 q2 − 1 q3 − 1

So by the same computation as the ones we did last time, we find that

ηLn/K(s) =


s −1 ≤ s ≤ 0

(k − 1) + s−(qk−1−1)
qk−1(q−1)

qk−1 − 1 ≤ s ≤ qk − 1, k = 1, · · · , n− 1

(n− 1) + s−(qn−1−1)
qn−1(q−1) s > qn−1 − 1.

Inverting this, we find that

ψLn/K =


t −1 ≤ t ≤ 0

qdte−1(q − 1)(t− (dte − 1)) + qdte−1 − 1 1 < t ≤ n− 1

qn−1(q − 1)(t− (n− 1)) + qn−1 − 1 t > n− 1

.

Then we have
Gt(Ln/K) = Gψ(Ln/K)(t)(Ln/K),

which gives the desired by the previous theorem.

So we know that

Art−1
K (Gt(Ln/K)) =

{
U
dte
K /U

(n)
K −1 ≤ t ≤ n

1 t ≥ n
.

Corollary. When t > −1, we have

Gt(Kab/K) = Gal(Kab/KurLdte),

and
Art−1

K (Gt(Kab/K)) = U (dte).

Proof. Recall the following fact from the examples class: If L/K is finite un-
ramified and M/K is finite totally ramified, then LM/L is totally ramified, and
Gal(LM/L) ∼= Gal(M/K) by restriction, and

Gt(LM/K) ∼= Gt(M/K).
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via this isomorphism (for t > −1).
Now let Km/K be the unramified extension of degree m. By the lemma and

the previous corollary, we have

Gt(KmLn/K) ∼= Gt(Ln/K) =

{
Gal(Ln/Ldte) −1 < t ≤ n
1 t ≥ n

=

{
Gal(KmLn/KmLdte) −1 < t ≤ n
1 t ≥ n

So we have

Gt(Kab/K) = Gt(KurL∞/K)

= lim←−
m,n

Gt(KmLn/K)

= lim←−
m,n
n≥dte

Gal(KmLn/KmLdte)

= Gal(KurL∞/K
urLdte)

= Gal(Kab/KurLdte),

and

Art−1
K (Gal(Kab/KurLdte)) = Art−1

K

 lim←−
m,n
n≥dte

Gal(KmLn/KmLdte)


= lim←−

m,n
n≥dte

Art−1
K

(
Gal(KmLn/KmLdte)

)

= lim←−
m,n
n≥dte

U
(dte)
K

U
(n)
K

= Udte.

Corollary. Let M/K be a finite abelian extension. Then we have an isomor-
phism

ArtK :
K×

N(M/K)
∼= Gal(M/K).

Moreover, for t > −1, we have

Gt(M/K) = ArtK

(
U

(dte)
K N(M/K)

N(M/K)

)
.

Proof. We have

Gt(M/K) =
Gt(Kab/K)G(Kab/M)

G(Kab/M)
= Art

(
U

(dte)
K N(M/K)

N(M/K)

)
.
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Index

C(Zp,Qp), 39
I-adic completion, 11
I-adic topology, 9
I-adically complete, 11
I-adically open, 9
Kur, 66
L/K, 52
N(L/K), 69

U
(s)
k , 51

W (M/K), 66
W (R), 35
ηL/K , 58
OK , 15
mK , 16
πn-division points, 79
ψL/K , 60
c0, 39
iL/K , 56
kK , 16
p-adic absolute value, 11
p-adic integers, 12
p-adic numbers, 12
sth ramification group, 52
x-adic topology, 9

abelian extension, 68
absolute ramification index, 36
absolute value, 4

archimedean, 5
non-archimedean, 5

absolute values
equivalence, 4

adjoint matrix, 7
adjugate matrix, 7
algebraic integer, 7
archimedean absolute value, 5
arithmetic Frobenius, 66

break points, 23

class field, 70
Coleman operators, 83

directed system, 64
discrete valuation ring, 29
discretely valued field, 27
DVF, 27

DVR, 29

Eisenstein criterion, 49
Eisenstein polynomial, 49
equal characteristic, 29
equivalence of norm, 19
equivalent absolute values, 4

formal additive group, 76
formal group, 75

homomorphism, 76
module, 77

formal Laurent series, 15
formal module, 77
formal multiplicative group, 76
fundamental theorem of Galois

theory, 65

Galois extension, 63
generalized local Kronecker-Weber

theorem, 83
geometric Frobenius, 74

Hasse-Arf theorem, 83
Hensel’s lemma, 16
Herbrand’s theorem, 58
Higher ramification groups, 74
higher unit groups, 51
homomorphism

formal group, 76

inertia degree, 43
inertia field, 52
inertia group, 52
integral element, 7
integrally closed, 8
inverse limit, 10, 64
inverse limit topology, 10
inverse system, 64

Krull topology, 63

length, 24
line segment, 24
local field, 27
Local Kronecker-Weber theorem, 74
local Kronecker-Weber theorem, 83
lower convex hull, 23
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lower convex set, 23
lower numbering of ramification

group, 60
Lubin–Tate module, 77
Lubin–Tate polynomial, 77
Lubin–Tate series, 77

Mahler coefficient, 40
Mahler’s theorem, 39
maximal ideal, 16
mixed characteristic, 29
module

formal group, 77
multiplicity, 24

Newton polygon, 23
non-archimedean absolute value, 5
norm

equivalent, 19
norm on vector space, 19
normal extension, 63
normalized valuation, 27

perfect ring, 29
primitive polynomial, 16
profinite groups, 63
projective limit, 10

ramification group, 52
lower numbering, 60
upper numbering, 60

ramification index, 43
rank, 43

residue field, 16
ring topology, 9

separable extension, 63
slope, 24
strict p-ring, 33
strong triangle inequality, 5

tame quotient, 55
Teichmüller lift, 30
Teichmüller map, 30
Teichmüller representative, 30
topological ring, 9
totally ramified extension, 43, 65
triangle inequality, 4
trivial absolute value, 4

ultrametric, 5
uniformizer, 27
unramified extension, 43, 65
upper numbering of ramification

group, 60

valuation, 15
normalized, 27

valuation ring, 7, 15
valued field, 4

discretely, 27

Weil group, 66
wild inertia group, 55
Witt vector, 35
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