
Part III — Hydrodynamic Stability

Definitions

Based on lectures by C. P. Caulfield
Notes taken by Dexter Chua

Michaelmas 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Developing an understanding by which “small” perturbations grow, saturate and
modify fluid flows is central to addressing many challenges of interest in fluid mechanics.
Furthermore, many applied mathematical tools of much broader relevance have been
developed to solve hydrodynamic stability problems, and hydrodynamic stability theory
remains an exceptionally active area of research, with several exciting new developments
being reported over the last few years.

In this course, an overview of some of these recent developments will be presented.
After an introduction to the general concepts of flow instability, presenting a range of
examples, the major content of this course will be focussed on the broad class of flow
instabilities where velocity “shear” and fluid inertia play key dynamical roles. Such
flows, typically characterised by sufficientlyhigh Reynolds number Ud/ν, where U and d
are characteristic velocity and length scales of the flow, and ν is the kinematic viscosity
of the fluid, are central to modelling flows in the environment and industry. They
typically demonstrate the key role played by the redistribution of vorticity within the
flow, and such vortical flow instabilities often trigger the complex, yet hugely important
process of “transition to turbulence”.

A hierarchy of mathematical approaches will be discussed to address a range of
“stability” problems, from more traditional concepts of “linear” infinitesimal normal
mode perturbation energy growth on laminar parallel shear flows to transient, inherently
nonlinear perturbation growth of general measures of perturbation magnitude over
finite time horizons where flow geometry and/or fluid properties play a dominant
role. The course will also discuss in detail physical interpretations of the various flow
instabilities considered, as well as the industrial and environmental application of the
results of the presented mathematical analyses

Pre-requisites

Elementary concepts from undergraduate real analysis. Some knowledge of complex

analysis would be advantageous (e.g. the level of IB Complex Analysis/Methods). No

knowledge of functional analysis is assumed.
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1 Linear stability analysis

1.1 Rayleigh–Taylor instability

1.2 Rayleigh–Bénard convection

1.3 Classical Kelvin–Helmholtz instability

1.4 Finite depth shear flow

1.5 Stratified flows
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2 Absolute and convective instabilities

Definition (Linear stability). The base flow of a system is linearly stable if

lim
t→∞

G(x, t) = 0

along all rays x
t = C.

A flow is unstable if it is not stable.

Definition (Linearly convectively unstable). An unstable flow is linearly con-
vectively unstable if limt→∞ G(x, t) = 0 along the ray x

t = 0.

Definition (Linearly absolutely unstable). An unstable flow is linearly absolutely
unstable if limt→∞ G(x, t) 6= 0 along the ray x

t = 0.

Definition (Global stability). A flow is globally stable if limt→∞ G(x, t) = 0 for
all x.

A flow is globally unstable if there is some x such that limt→∞ G(x, t)→∞.
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3 Transient growth

3.1 Motivation

3.2 A toy model

3.3 A general mathematical framework

Definition (Matrix norm). Let B be an n× n matrix. Then the matrix norm
is

‖B‖ = max
v 6=0

‖Bv‖
‖v‖

.

3.4 Orr-Sommerfeld and Squire equations

5



4 A variational point of view III Hydrodynamic Stability (Definitions)

4 A variational point of view
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