
Part III — Differential Geometry

Based on lectures by J. A. Ross
Notes taken by Dexter Chua

Michaelmas 2016

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

This course is intended as an introduction to modern differential geometry. It can be
taken with a view to further studies in Geometry and Topology and should also be
suitable as a supplementary course if your main interests are, for instance in Analysis
or Mathematical Physics. A tentative syllabus is as follows.

• Local Analysis and Differential Manifolds. Definition and examples of manifolds,
smooth maps. Tangent vectors and vector fields, tangent bundle. Geometric
consequences of the implicit function theorem, submanifolds. Lie Groups.

• Vector Bundles. Structure group. The example of Hopf bundle. Bundle mor-
phisms and automorphisms. Exterior algebra of differential forms. Tensors.
Symplectic forms. Orientability of manifolds. Partitions of unity and integration
on manifolds, Stokes Theorem; de Rham cohomology. Lie derivative of tensors.
Connections on vector bundles and covariant derivatives: covariant exterior
derivative, curvature. Bianchi identity.

• Riemannian Geometry. Connections on the tangent bundle, torsion. Bianchi’s
identities for torsion free connections. Riemannian metrics, Levi-Civita con-
nection, Christoffel symbols, geodesics. Riemannian curvature tensor and its
symmetries, second Bianchi identity, sectional curvatures.

Pre-requisites

An essential pre-requisite is a working knowledge of linear algebra (including bilinear

forms) and multivariate calculus (e.g. differentiation and Taylor’s theorem in several

variables). Exposure to some of the ideas of classical differential geometry might also

be useful.
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0 Introduction III Differential Geometry

0 Introduction

In differential geometry, the main object of study is a manifold. The motivation
is as follows — from IA, we know well how to do calculus on Rn. We can talk
about continuity, differentiable functions, derivatives etc. happily ever after.

However, sometimes, we want to do calculus on things other than Rn. Say,
we live on a sphere, namely the Earth. Does it make sense to “do calculus” on a
sphere? Surely it does.

The key insight is that these notions of differentiability, derivatives etc. are
local properties. To know if a function is differentiable at a point p, we only need
to know how the function behaves near p, and similarly such local information
tells us how to compute derivatives. The reason we can do calculus on a sphere
is because the sphere looks locally like Rn. Therefore, we can make sense of
calculus on a sphere.

Thus, what we want to do is to study calculus on things that look locally like
Rn, and these are known as manifolds. Most of the time, our definitions from
usual calculus on Rn transfer directly to manifolds. However, sometimes the
global properties of our manifold will give us some new exciting things.

In fact, we’ve already seen such things when we did IA Vector Calculus. If
we have a vector field R3 → R3 whose curl vanishes everywhere, then we know
it is the gradient of some function. However, if we consider such a vector field
on R3 \ {0} instead, then this is no longer true! Here the global topology of the
space gives rise to interesting phenomena we do not see at a local level.

When doing differential geometry, it is important to keep in mind that
what we’ve learnt in vector calculus is actually a mess. R3 has a lot of special
properties. Apart from being a topological space, it is also canonically a vector
space, and in fact an inner product space. When we did vector calculus, these
extra structure allowed us conflate many different concepts together. However,
when we pass on to manifolds, we no longer have these identifications, and we
have to be more careful.
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1 Manifolds III Differential Geometry

1 Manifolds

1.1 Manifolds

As mentioned in the introduction, manifolds are spaces that look locally like Rn.
This local identification with Rn is done via a chart.

Many sources start off with a topological space and then add extra structure
to it, but we will be different and start with a bare set.

Definition (Chart). A chart (U,ϕ) on a setM is a bijection ϕ : U → ϕ(U) ⊆ Rn,
where U ⊆M and ϕ(U) is open.

A chart (U,ϕ) is centered at p for p ∈ U if ϕ(p) = 0.

Note that we do not require U to be open in M , or ϕ to be a homeomorphism,
because these concepts do not make sense! M is just a set, not a topological
space.

p U

ϕ(p)

ϕ

With a chart, we can talk about things like continuity, differentiability by
identifying U with ϕ(U):

Definition (Smooth function). Let (U,ϕ) be a chart on M and f : M → R.
We say f is smooth or C∞ at p ∈ U if f ◦ ϕ−1 : ϕ(U)→ R is smooth at ϕ(p) in
the usual sense.

Rn ⊇ ϕ(U) U Rϕ−1 f

p U

ϕ(p)
f ◦ ϕ−1

R

f
ϕ
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1 Manifolds III Differential Geometry

We can define all other notions such as continuity, differentiability, twice differ-
entiability etc. similarly.

This definition has a problem that some points might not be in the chart, and
we don’t know how to determine if a function is, say, smooth at the point. The
solution is easy — we just take many charts that together cover M . However,
we have the problem that a function might be smooth at a point relative to some
chart, but not relative to some other chart. The solution is to require the charts
to be compatible in some sense.

Definition (Atlas). An atlas on a set M is a collection of charts {(Uα, ϕα)} on
M such that

(i) M =
⋃
α Uα.

(ii) For all α, β, we have ϕα(Uα∩Uβ) is open in Rn, and the transition function

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ)

is smooth (in the usual sense).

Uβ Uα

ϕβ ϕα

ϕαϕ
−1
β

Lemma. If (Uα, ϕα) and (Uβ , ϕβ) are charts in some atlas, and f : M → R,
then f ◦ϕ−1

α is smooth at ϕα(p) if and only if f ◦ϕ−1
β is smooth at ϕβ(p) for all

p ∈ Uα ∩ Uβ .

Proof. We have
f ◦ ϕ−1

β = f ◦ ϕ−1
α ◦ (ϕα ◦ ϕ−1

β ).

So we know that if we have an atlas on a set, then the notion of smoothness
does not depend on the chart.

Example. Consider the sphere

S2 = {(x1, x2, x3) :
∑

x2
i = 1} ⊆ R3.

We let
U+

1 = S2 ∩ {x1 > 0}, U−1 = S2 ∩ {x1 < 0}, · · ·
We then let

ϕ+
1 : U+

1 → R2

(x1, x2, x3) 7→ (x2, x3).

It is easy to show that this gives a bijection to the open disk in R2. We similarly
define the other ϕ±i . These then give us an atlas of S2.
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1 Manifolds III Differential Geometry

Definition (Equivalent atlases). Two atlases A1 andA2 are equivalent ifA1∪A2

is an atlas.

Then equivalent atlases determine the same smoothness, continuity etc.
information.

Definition (Differentiable structure). A differentiable structure on M is a choice
of equivalence class of atlases.

We want to define a manifold to be a set with a differentiable structure.
However, it turns out we can find some really horrendous sets that have differential
structures.

Example. Consider the line with two origins given by taking R×{0}∪R×{1}
and then quotienting by

(x, 0) ∼ (x, 1) for x 6= 0.

Then the inclusions of the two copies of R gives us an atlas of the space.

The problem with this space is that it is not Hausdorff, which is bad. However,
that is not actually true, because M is not a topological space, so it doesn’t
make sense to ask if it is Hausdorff. So we want to define a topology on M , and
then impose some topological conditions on our manifolds.

It turns out the smooth structure already gives us a topology:

Exercise. An atlas determines an topology on M be saying V ⊆M is open iff
ϕ(U ∩ V ) is open in Rn for all charts (U,ϕ) in the atlas. Equivalent atlases give
the same topology.

We now get to the definition of a manifold.

Definition (Manifold). A manifold is a set M with a choice of differentiable
structure whose topology is

(i) Hausdorff, i.e. for all x, y ∈M , there are open neighbourhoods Ux, Uy ⊆M
with x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅.

(ii) Second countable, i.e. there exists a countable collection (Un)n∈N of open
sets in M such that for all V ⊆M open, and p ∈ V , there is some n such
that p ∈ Un ⊆ V .

The second countability condition is a rather technical condition that we
wouldn’t really use much. This, for example, excludes the long line.

Note that we will often refer to a manifold simply as M , where the differen-
tiable structure is understood from context. By a chart on M , we mean one in
some atlas in the equivalence class of atlases.

Definition (Local coordinates). Let M be a manifold, and ϕ : U → ϕ(U) a
chart of M . We can write

ϕ = (x1, · · · , xn)

where each xi : U → R. We call these the local coordinates.
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1 Manifolds III Differential Geometry

So a point p ∈ U can be represented by local coordinates

(x1(p), · · · , xn(p)) ∈ Rn.

By abuse of notation, if f : M → R, we confuse f |U and f ◦ ϕ−1 : ϕ(U) → R.
So we write f(x1, · · · , xn) to mean f(p), where ϕ(p) = (x1, · · · , xn) ∈ ϕ(U).

U M R

ϕ(U)

ι

ϕ

f

f |U

Of course, we can similarly define C0, C1, C2, · · · manifolds, or analytic manifolds.
We can also model manifolds on other spaces, e.g. Cn, where we get complex
manifolds, or on infinite-dimensional spaces.

Example.

(i) Generalizing the example of the sphere, the n-dimensional sphere Sn =
{(x0, · · · , xn) ∈ Rn+1 :

∑
x2
i = 1} is a manifold.

(ii) If M is open in Rn, then the inclusion map ϕ : M → Rn given by ϕ(p) = p
is a chart forming an atlas. So M is a manifold. In particular, Rn is
a manifold, with its “standard” differentiable structure. We will always
assume Rn is given this structure, unless otherwise specified.

(iii) M(n, n), the set of all n × n matrices is also a manifold, by the usual

bijection with Rn2

. Then GLn ⊆M(n, n) is open, and thus also a manifold.

(iv) The set RPn, the set of one-dimensional subspaces of Rn+1 is a manifold.
We can define charts as follows: we let Ui to be the lines spanned by a
vector of the form (v0, v1, · · · , vi−1, 1, vi+1, · · · , vn) ∈ Rn+1.

We define the map ϕi : Ui → Rn ∼= {x ∈ Rn+1 : xi = 1} that sends
ϕ(L) = (v0, · · · , 1, · · · , vn), where L is spanned by (v0, · · · , 1, · · · , vn). It
is an easy exercise to show that this defines a chart.

Note that when we defined a chart, we talked about charts as maps U → Rn.
We did not mention whether n is fixed, or whether it is allowed to vary. It turns
out it cannot vary, as long as the space is connected.

Lemma. Let M be a manifold, and ϕ1 : U1 → Rn and ϕ2 : U2 → Rm be charts.
If U1 ∩ U2 6= ∅, then n = m.

Proof. We know
ϕ1ϕ

−1
2 : ϕ2(U1 ∩ U2)→ ϕ1(U1 ∩ U2)

is a smooth map with inverse ϕ2ϕ
−1
1 . So the derivative

D(ϕ1ϕ
−1
2 )(ϕ2(p)) : Rm → Rn

is a linear isomorphism, whenever p ∈ U1 ∩ U2. So n = m.

Definition (Dimension). If p ∈M , we say M has dimension n at p if for one
(thus all) charts ϕ : U → Rm with p ∈ U , we have m = n. We say M has
dimension n if it has dimension n at all points.
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1.2 Smooth functions and derivatives

From now on, M and N will be manifolds. As usual, we would like to talk about
maps between manifolds. What does it mean for such a map to be smooth? In
the case of a function M → R, we had to check it on each chart of M . Now that
we have functions M → N , we need to check it on charts of both N and M .

Definition (Smooth function). A function f : M → N is smooth at a point
p ∈M if there are charts (U,ϕ) for M and (V, ξ) for N with p ∈ U and f(p) ∈ V
such that ξ ◦ f ◦ ϕ−1 : ϕ(U)→ ξ(V ) is smooth at ϕ(p).

A function is smooth if it is smooth at all points p ∈M .
A diffeomorphism is a smooth f with a smooth inverse.
We write C∞(M,N) for the space of smooth maps f : M → N . We write

C∞(M) for C∞(M,R), and this has the additional structure of an algebra, i.e.
a vector space with multiplication.

ϕ ξ

f

ξ ◦ f ◦ ϕ−1

Equivalently, f is smooth at p if ξ ◦f ◦ϕ−1 is smooth at ϕ(p) for any such charts
(U,ϕ) and (V, ξ).

Example. Let ϕ : U → Rn be a chart. Then ϕ : U → ϕ(U) is a diffeomorphism.

Definition (Curve). A curve is a smooth map I →M , where I is a non-empty
open interval.

To discuss derivatives, we first look at the case where U ⊆ Rn is open.
Suppose f : U → R is smooth. If p ∈ U and v ∈ Rn, recall that the directional
derivative is defined by

Df |p(v) = lim
t→0

f(p+ tv)− f(p)

t
.

If v = ei = (0, · · · , 0, 1, 0, · · · , 0), then we write

Df |p(ei) =
∂f

∂xi

∣∣∣∣
p

.

Also, we know Df |p : Rn → R is a linear map (by definition of smooth).
Note that here p and v are both vectors, but they play different roles — p

is an element in the domain U , while v is an arbitrary vector in Rn. Even if v

8
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is enormous, by taking a small enough t, we find that p+ tv will eventually be
inside U .

If we have a general manifold, we can still talk about the p. However, we
don’t have anything that plays the role of a vector. Our first goal is to define
the tangent space to a manifold that captures where the “directions” live.

An obvious way to do so would be to use a curve. Suppose γ : I →M is a
curve, with γ(0) = p ∈ U ⊆M , and f : U → R is smooth. We can then take the
derivative of f along γ as before. We let

X(f) =
d

dt

∣∣∣∣
t=0

f(γ(t)).

It is an exercise to see that X : C∞(U)→ R is a linear map, and it satisfies the
Leibniz rule

X(fg) = f(p)X(g) + g(p)X(f).

We denote X by γ̇(0). We might think of defining the tangent space as curves
up to some equivalence relation, but if we do this, there is no obvious vector
space on it. The trick is to instead define a vector by the derivative X induces.
This then has an obvious vector space structure.

Definition (Derivation). A derivation on an open subset U ⊆M at p ∈ U is a
linear map X : C∞(U)→ R satisfying the Leibniz rule

X(fg) = f(p)X(g) + g(p)X(f).

Definition (Tangent space). Let p ∈ U ⊆ M , where U is open. The tangent
space of M at p is the vector space

TpM = { derivations on U at p } ≡ Derp(C
∞(U)).

The subscript p tells us the point at which we are taking the tangent space.

Why is this the “right” definition? There are two things we would want to
be true:

(i) The definition doesn’t actually depend on U .

(ii) This definition agrees with the usual definition of tangent vectors in Rn.

We will do the first part at the end by bump functions, and will do the second
part now. Note that it follows from the second part that every tangent vector
comes from the derivative of a path, because this is certainly true for the usual
definition of tangent vectors in Rn (take a straight line), and this is a completely
local problem.

Example. Let U ⊆ Rn be open, and let p ∈ U . Then we have tangent vectors

∂

∂xi

∣∣∣∣
p

∈ TpRn, i = 1, . . . , n.

These correspond to the canonical basis vectors in Rn.

Lemma. ∂
∂x1

∣∣∣
p
, · · · , ∂

∂xn

∣∣∣
p

is a basis of TpRn. So these are all the derivations.

9
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The idea of the proof is to show that a derivation can only depend on the
first order derivatives of a function, and all possibilities will be covered by the
∂
∂xi

.

Proof. Independence is clear as

∂xj
∂xi

= δij .

We need to show spanning. For notational convenience, we wlog take p = 0. Let
X ∈ T0Rn.

We first show that if g ∈ C∞(U) is the constant function g = 1, then
X(g) = 0. Indeed, we have

X(g) = X(g2) = g(0)X(g) +X(g)g(0) = 2X(g).

Thus, if h is any constant function, say, c, then X(h) = X(cg) = cX(g). So the
derivative of any constant function vanishes.

In general, let f ∈ C∞(U). By Taylor’s theorem, we have

f(x1, · · · , xn) = f(0) +

n∑
i=1

∂f

∂xi

∣∣∣∣
0

xi + ε,

where ε is a sum of terms of the form xixjh with h ∈ C∞(U).
We set λi = X(xi) ∈ R. We first claim that X(ε) = 0. Indeed, we have

X(xixjh) = xi(0)X(xjh) + (xjh)(0)X(xi) = 0.

So we have

X(f) =

n∑
i=1

λi
∂f

∂xi

∣∣∣∣
0

.

So we have

X =

n∑
i=1

λi
∂

∂xi

∣∣∣∣
0

.

Given this definition of a tangent vector, we have a rather silly and tautological
definition of the derivative of a smooth function.

Definition (Derivative). Suppose F ∈ C∞(M,N), say F (p) = q. We define
DF |p : TpM → TqN by

DF |p(X)(g) = X(g ◦ F )

for X ∈ TpM and g ∈ C∞(V ) with q ∈ V ⊆ N .
This is a linear map called the derivative of F at p.

M N

R

F

g◦F
g

With a silly definition of a derivative comes a silly definition of the chain
rule.
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Proposition (Chain rule). Let M,N,P be manifolds, and F ∈ C∞(M,N),
G ∈ C∞(N,P ), and p ∈M, q = F (p). Then we have

D(G ◦ F )|p = DG|q ◦DF |p.

Proof. Let h ∈ C∞(P ) and X ∈ TpM . We have

DG|q(DF |p(X))(h) = DF |p(X)(h ◦G) = X(h ◦G ◦F ) = D(G ◦F )|p(X)(h).

Note that this does not provide a new, easy proof of the chain rule. Indeed,
to come this far into the course, we have used the actual chain rule something
like ten thousand times.

Corollary. If F is a diffeomorphism, then DF |p is a linear isomorphism, and
(DF |p)−1 = D(F−1)|F (p).

In the special case where the domain is R, there is a canonical choice of
tangent vector at each point, namely 1.

Definition (Derivative). Let γ : R→M be a smooth function. Then we write

dγ

dt
(t) = γ̇(t) = Dγ|t(1).

We now go back to understanding what TpM is if p ∈ M . We let p ∈ U
where (U,ϕ) is a chart. Then if q = ϕ(p), the map Dϕ|p : TpM → TqRn is a
linear isomorphism.

Definition ( ∂
∂xi

). Given a chart ϕ : U → Rn with ϕ = (x1, · · · , xn), we define

∂

∂xi

∣∣∣∣
p

= (Dϕ|p)−1

(
∂

∂xi

∣∣∣∣
ϕ(p)

)
∈ TpM.

So ∂
∂x1

∣∣∣
p
, · · · , ∂

∂xn

∣∣∣
p

is a basis for TpM .

Recall that if f : U → R is smooth, then we can write f(x1, · · · , xn). Then
we have

∂

∂xi

∣∣∣∣
p

(f) =
∂f

∂xi

∣∣∣∣
ϕ(p)

.

So we have a consistent notation.
Now, how does this basis change when we change coordinates? Suppose we

also have coordinates y1, · · · , yn near p given by some other chart. We then have
∂
∂yi

∣∣∣
p
∈ TpM . So we have

∂

∂yi

∣∣∣∣
p

=

n∑
j=1

αj
∂

∂xj

∣∣∣∣
p

for some αj . To figure out what they are, we apply them to the function xk. So
we have

∂

∂yi

∣∣∣∣
p

(xk) =
∂xk
∂yi

(p) = αk.
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So we obtain
∂

∂yi

∣∣∣∣
p

=

n∑
j=1

∂xj
∂yi

(p)
∂

∂xj

∣∣∣∣
p

.

This is the usual change-of-coordinate formula!
Now let F ∈ C∞(M,N), (U,ϕ) be a chart on M containing p with coordinates

x1, · · · , xn, and (V, ξ) a chart on N containing q = F (p) with coordinates
y1, · · · , ym. By abuse of notation, we confuse F and ξ ◦ F ◦ ϕ−1. So we write
F = (F1, · · · , Fm) with Fi = Fi(x1, · · · , xn) : U → R.

As before, we have a basis

∂

∂x1

∣∣∣∣
p

, · · · , ∂

∂xn

∣∣∣∣
p

for TpM,

∂

∂y1

∣∣∣∣
q

, · · · , ∂

∂ym

∣∣∣∣
q

for TqN.

Lemma. We have

DF |p

(
∂

∂xi

∣∣∣∣
p

)
=

m∑
j=1

∂Fj
∂xi

(p)
∂

∂yj

∣∣∣∣
q

.

In other words, DF |p has matrix representation(
∂Fj
∂xi

(p)

)
ij

.

Proof. We let

DF |p

(
∂

∂xi

∣∣∣∣
p

)
=

m∑
j=1

λj
∂

∂yj

∣∣∣∣
q

.

for some λj . We apply this to the local function yk to obtain

λk =

 m∑
j=1

λj
∂

∂yj

∣∣∣∣
q

 (yk)

= DFp

(
∂

∂xi

∣∣∣∣
p

)
(yk)

=
∂

∂xi

∣∣∣∣
p

(yk ◦ F )

=
∂

∂xi

∣∣∣∣
p

(Fk)

=
∂Fk
∂xi

(p).

Example. Let f : C∞(U) where U ⊆ M is an open set containing p. Then
Df |p : TpM → Tf(p)R ∼= R is a linear map. So Df |p is an element in the dual
space (TpM)∗, called the differential of f at p, and is denoted df |p. Then we
have

df |p(X) = X(f).

(this can, e.g. be checked in local coordinates)
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1.3 Bump functions and partitions of unity

Recall that there is one thing we swept under the carpet — to define the tangent
space, we needed to pick an open set U . Ways to deal with this can be found in
the example sheet, but there are two general approaches — one is to talk about
germs of functions, where we consider all open neighbourhoods, and identify two
functions if they agree on some open neighbourhood of the point. The other way
is to realize that we can “extend” any function on U ⊆M to a function on the
whole of M , using bump functions.

In general, we want a function that looks like this:

Lemma. Suppose W ⊆M is a coordinate chart with p ∈W . Then there is an
open neighbourhood V of p such that V̄ ⊆W and an X ∈ C∞(M,R) such that
X = 1 on V and X = 0 on M \W .

Proof. Suppose we have coordinates x1, · · · , xn on W . We wlog suppose these
are defined for all |x| < 3.

We define α, β, γ : R→ R by

α(t) =

{
e−t

−2

t > 0

0 t ≤ 0
.

We now let

β(t) =
α(t)

α(t) + α(1− t)
.

13
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Then we let
γ(t) = β(t+ 2)β(2− t).

Finally, we let
X(x1, · · · , xn) = γ(x1) · · · γ(xn).

on W . We let
V = {x : |xi| < 1}.

Extending X to be identically 0 on M \W to get the desired smooth function
(up to some constant).

Lemma. Let p ∈ W ⊆ U and W,U open. Let f1, f2 ∈ C∞(U) be such that
f1 = f2 on W . If X ∈ Derp(C

∞(U)), then we have X(f1) = X(f2)

Proof. Set h = f1 − f2. We can wlog assume that W is a coordinate chart. We
pick a bump function χ ∈ C∞(U) that vanishes outside W . Then χh = 0. Then
we have

0 = X(χh) = χ(p)X(h) + h(p)X(χ) = X(h) + 0 = X(f1)−X(f2).

While we’re doing boring technical work, we might as well do the other one,
known as a partition of unity. The idea is as follows — suppose we want to
construct a global structure on our manifold, say a (smoothly varying) inner
product for each tangent space TpM . We know how to do this if M = Rn,
because there is a canonical choice of inner product at each point in Rn. We
somehow want to patch all of these together.

In general, there are two ways we can do the patching. The easy case is that
not only is there a choice on Rn, but there is a unique choice. In this case, just
doing it on each chart suffices, because they must agree on the intersection by
uniqueness.

However, this is obviously not the case for us, because a vector space can
have many distinct inner products. So we need some way to add them up.

Definition (Partition of unity). Let {Uα} be an open cover of a manifold M . A
partition of unity subordinate to {Uα} is a collection ϕα ∈ C∞(M,R) such that

(i) 0 ≤ ϕα ≤ 1

(ii) supp(ϕα) ⊆ Uα

(iii) For all p ∈M , all but finitely many ϕα(p) are zero.

(iv)
∑
α ϕα = 1.

14
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Note that by (iii), the final sum is actually a finite sum, so we don’t have to
worry about convergence issues.

Now if we have such a partition of unity, we can pick an inner product on
each Uα, say qα( · , · ), and then we can define an inner product on the whole
space by

q(vp, wp) =
∑
α

ϕα(p)qα(vp, wp),

where vp, wp ∈ TpM are tangent vectors. Note that this makes sense. While
each qα is not defined everywhere, we know ϕα(p) is non-zero only when qα is
defined at p, and we are also only taking a finite sum.

The important result is the following:

Theorem. Given any {Uα} open cover, there exists a partition of unity subor-
dinate to {Uα}.

Proof. We will only do the case where M is compact. Given p ∈M , there exists
a coordinate chart p ∈ Vp and α(p) such that Vp ⊆ Uα(p). We pick a bump
function χp ∈ C∞(M,R) such that χp = 1 on a neighbourhood Wp ⊆ Vp of p.
Then supp(χp) ⊆ Uα(p).

Now by compactness, there are some p1, · · · , pN such that M is covered by
Wp1 ∪ · · · ∪WpN . Now let

ϕ̃α =
∑

i:α(pi)=α

χpi .

Then by construction, we have

supp(ϕ̃α) ⊆ Uα.

Also, by construction, we know
∑
α ϕ̃α > 0. Finally, we let

ϕα =
ϕ̃α∑
β ϕ̃β

.

The general proof will need the fact that the space is second-countable.
We will actually not need this until quite later on in the course, but we might

as well do all the boring technical bits all together.

1.4 Submanifolds

You have a manifold, and a subset of it is a manifold, so you call it a submanifold.

Definition (Embedded submanifold). Let M be a manifold with dimM = n,
and S be a submanifold of M . We say S is an embedded submanifold if for all
p ∈ S, there are coordinates x1, · · · , xn on some chart U ⊆M containing p such
that

S ∩ U = {xk+1 = xk+2 = · · · = xn = 0}

for some k. Such coordinates are known as slice coordinates for S.

This is a rather technical condition, rather than “a subset that is also a
manifold under the inherited smooth structure”. The two definitions are indeed
equivalent, but picking this formulation makes it easier to prove things about it.

15
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Lemma. If S is an embedded submanifold of M , then there exists a unique
differential structure on S such that the inclusion map ι : S ↪→ M is smooth,
and S inherits the subspace topology.

Proof. Basically if x1, · · · , xn is a slice chart for S in M , then x1, · · · , xk will be
coordinates on S.

More precisely, let π : Rn → Rk be the projection map

π(x1, · · · , xn) = (x1, · · · , xk).

Given a slice chart (U,ϕ) for S in M , consider ϕ̃ : S∩U → Rk by ϕ̃ = π◦ϕ. This
is smooth and bijective, and is so a chart on S. These cover S by assumption.
So we only have to check that the transition functions are smooth.

Given another slice chart (V, ξ) for S in M , we let ξ̃ = π ◦ ξ, and check that

ξ̃ ◦ ϕ̃−1 = π ◦ ξ ◦ ϕ−1 ◦ j,

where j : Rk → Rn is given by j(x1, · · · , xk) = (x1, · · · , xk, 0, · · · , 0).
From this characterization, by looking at local charts, it is clear that S has

the subspace topology. It is then easy to see that the embedded submanifold is
Hausdorff and second-countable, since these properties are preserved by taking
subspaces.

We can also check easily that ι : S ↪→ M is smooth, and this is the only
differential structure with this property.

It is also obvious from the slice charts that:

Proposition. Let S be an embedded submanifold. Then the derivative of the
inclusion map ι : S ↪→M is injective.

Sometimes, we like to think of a subobject not as a subset, but as the inclusion
map ι : S ↪→ M instead. However, when we are doing topology, there is this
funny problem that a continuous bijection need not be a homeomorphism. So if
we define submanifolds via inclusions maps, we get a weaker notion known as an
immersed submanifold.

Definition (Immersed submanifold). Let S,M be manifolds, and ι : S ↪→ M
be a smooth injective map with Dι|p : TpS → TpM injective for all p ∈ S. Then
we call (ι, S) an immersed submanifold. By abuse of notation, we identify S and
ι(S).

Example. If we map R into R2 via the following figure of eight (where the arrow
heads denote the “end points” of R), then this gives an immersed submanifold
that is not an embedded submanifold.

Example. Consider the line R, and define the map f : R → T 2 = R2/Z2 by
f(x) = αx, where α is some irrational number. Then this map gives an immersed
submanifold of T 2, but is not an embedded submanifold, since R certainly does
not have the subspace topology from T 2.
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How do we construct submanifolds? The definition is rather difficult to work
with. It is not immediately clear whether

Sn = {x ∈ Rn+1 : |x| ≤ 1} ⊆ Rn+1

is an embedded submanifold, even though it feels like it should be.
More generally, if M,N are manifolds, F ∈ C∞(M,N) and c ∈ N , under

what circumstances will F−1(c) be an embedded submanifold of M? The answer
is that c has to be a regular value.

Definition (Regular value). Let F ∈ C∞(M,N) and c ∈ N . Let S = F−1(c).
We say c is a regular value if for all p ∈ S, the map DF |p : TpM → TcN is
surjective.

Proposition. Let F ∈ C∞(M,N), and let c ∈ N . Suppose c is a regular value.
Then S = F−1(c) is an embedded submanifold of dimension dimM − dimN .

Proof. We let n = dimM and m = dimN . Notice that for the map DF to be
surjective, we must have n ≥ m.

Let p ∈ S, so F (p) = c. We want to find a slice coordinate for S near p.
Since the problem is local, by restricting to local coordinate charts, we may wlog
assume N = Rm, M = Rn and c = p = 0.

Thus, we have a smooth map F : Rn → Rm with surjective derivative at 0.
Then the derivative is (

∂Fj
∂xi

∣∣∣∣
0

)
i=1,...,n; j=1,...,m

,

which by assumption has rank m. We reorder the xi so that the first m columns
are independent. Then the m×m matrix

R =

(
∂Fj
∂xi

∣∣∣∣
0

)
i,j=1,...,m

is non-singular. We consider the map

α(x1, · · · , xn) = (F1, · · · , Fm, xm+1, · · · , xn).

We then obtain

Dα|0 =

(
R ∗
0 I

)
,

and this is non-singular. By the inverse function theorem, α is a local diffeomor-
phism. So there is an open W ⊆ Rn containing 0 such that α|W : W → α(W ) is
smooth with smooth inverse. We claim that α is a slice chart of S in Rn.

Since it is a smooth diffeomorphism, it is certainly a chart. Moreover, by
construction, the points in S are exactly those whose image under F have the
first m coordinates vanish. So this is the desired slice chart.

Example. We want to show that Sn is a manifold. Let F : Rn+1 → R be
defined by

F (x0, · · · , xn) =
∑

x2
i .

Then F−1(1) = Sn. We find that

DF |p = 2(x0, · · · , xn) 6= 0

when p ∈ Sn. So Sn is a manifold.
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Example. Consider the orthogonal group. We let Mn
∼= Rn2

be the space of
all n× n matrices with the obvious smooth structure. We define

N = {A ∈Mn : AT = A}.

Since this is a linear subspace, it is also a manifold. We define

F : Mn → N

A 7→ AAT .

Then we have
O(n) = F−1(I) = {A : AAT = I}.

We compute the derivative by looking at

F (A+H) = (A+H)(A+H)T = AAT +HAT +AHT +HHT .

So we have
DF |A(H) = HAT +AHT .

Now if A ∈ O(n), then we have

DF |A(HA) = HAAT +AATHT = H +HT

for any H. Since every symmetric matrix is of the form H + HT , we know
DF |A : TAMn → TF (A)N is surjective. So O(n) is a manifold.
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2 Vector fields

2.1 The tangent bundle

Recall that we had the notion of a tangent vector. If we have a curve γ : I →M ,
then we would like to think that the derivative γ̇ “varies smoothly” with time.
However, we cannot really do that yet, since for different t, the value of γ̇ lies in
different vector spaces, and there isn’t a way of comparing them.

More generally, given a “vector field” f : p 7→ vp ∈ TpM for each p ∈M , how
do we ask if this is a smooth function?

One way to solve this is to pick local coordinates x1, · · · , xn on U ⊆M . We
can then write

vp =
∑
i

αi(p)
∂

∂xi

∣∣∣∣
p

.

Since αi(p) ∈ R, we can say vp varies smoothly if the functions αi(p) are smooth.
We then proceed to check that this does not depend on coordinates etc.

However, there is a more direct approach. We simply turn

TM =
⋃
p∈M

TpM

into a manifold. There is then a natural map π : TM →M sending vp ∈ TpM
to p for each p ∈M , and this is smooth. We can then define the smoothness of
f using the usual notion of smoothness of maps between manifolds.

Assuming that we have successfully constructed a sensible TM , we can define:

Definition (Vector field). A vector field on some U ⊆ M is a smooth map
X : U → TM such that for all p ∈ U , we have

X(p) ∈ TpM.

In other words, we have π ◦X = id.

Definition (Vect(U)). Let Vect(U) denote the set of all vector fields on U . Let
X,Y ∈ Vect(U), and f ∈ C∞(U). Then we can define

(X + Y )(p) = X(p) + Y (p), (fX)(p) = f(p)X(p).

Then we have X + Y, fX ∈ Vect(U). So Vect(U) is a C∞(U) module.
Moreover, if V ⊆ U ⊆M and X ∈ Vect(U), then X|V ∈ Vect(V ).
Conversely, if {Vi} is a cover of U , and Xi ∈ Vect(Vi) are such that they

agree on intersections, then they patch together to give an element of Vect(U).
So we say that Vect is a sheaf of C∞(M) modules.

Now we properly define the manifold structure on the tangent bundle.

Definition (Tangent bundle). Let M be a manifold, and

TM =
⋃
p∈M

TpM.

There is a natural projection map π : TM →M sending vp ∈ TpM to p.
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Let x1, · · · , xn be coordinates on a chart (U,ϕ). Then for any p ∈ U and
vp ∈ TpM , there are some α1, · · · , αn ∈ R such that

vp =

n∑
i=1

αi
∂

∂xi

∣∣∣∣
p

.

This gives a bijection

π−1(U)→ ϕ(U)× Rn

vp 7→ (x1(p), · · · , xn(p), α1, · · · , αn),

These charts make TM into a manifold of dimension 2 dimM , called the tangent
bundle of M .

Lemma. The charts actually make TM into a manifold.

Proof. If (V, ξ) is another chart on M with coordinates y1, · · · , yn, then

∂

∂xi

∣∣∣∣
p

=

n∑
j=1

∂yj
∂xi

(p)
∂

∂yj

∣∣∣∣
p

.

So we have ξ̃ ◦ ϕ̃−1 : ϕ(U ∩ V )× Rn → ξ(U ∩ V )× Rn given by

ξ̃ ◦ ϕ̃−1(x1, · · · , xn, α1, · · · , αn) =

(
y1, · · · , yn,

n∑
i=1

αi
∂y1

∂xi
, · · · ,

n∑
i=1

αi
∂yn
∂xi

)
,

and is smooth (and in fact fiberwise linear).
It is easy to check that TM is Hausdorff and second countable as M is.

There are a few remarks to make about this.

(i) The projection map π : TM →M is smooth.

(ii) If U ⊆M is open, recall that

Vect(U) = {smooth X : U → TM | X(p) ∈ TpM for all p ∈ U}.

We write Xp for X(p). Now suppose further that U is a coordinate chart,
then we can write any function X : U → TM such that Xp ∈ TpM
(uniquely) as

Xp =

n∑
i=1

αi(p)
∂

∂xi

∣∣∣∣
p

Then X is smooth iff all αi are smooth.

(iii) If F ∈ C∞(M,N), then DF : TM → TN given by DF (vp) = DF |p(vp) is
smooth. This is nice, since we can easily talk about higher derivatives, by
taking the derivative of the derivative map.

(iv) If F ∈ C∞(M,N) and X is a vector field on M , then we cannot obtain a
vector field on N by DF (X), since F might not be injective. If F (p1) =
F (p2), we need not have DF (X(p1)) = DF (X(p2)).
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However, there is a weaker notion of being F -related.

Definition (F -related). Let M,N be manifolds, and X ∈ Vect(M), Y ∈
Vect(N) and F ∈ C∞(M,N). We say they are F -related if

Yq = DF |p(Xp)

for all p ∈M and F (p) = q. In other words, if the following diagram commutes:

TM TN

M N

DF

X

F

Y .

So what does Vect(M) look like? Recall that a vector is defined to be a
derivation. So perhaps a vector field is also a derivation of some sort.

Definition (Der(C∞(M))). Let Der(C∞(M)) be the set of all R-linear maps
X : C∞(M)→ C∞(M) that satisfy

X (fg) = fX (g) + X (f)g.

This is an R-vector space, and in fact a C∞(M) module.

Given X ∈ Vect(M), we get a derivation X ∈ Der(C∞(M)) by setting

X (f)(p) = Xp(f).

It is an exercise to show that X (f) is smooth and satisfies the Leibniz rule.
Similar to the case of vectors, we want to show that all derivations come from
vector fields.

Lemma. The map X 7→ X is an R-linear isomorphism

Γ : Vect(M)→ Der(C∞(M)).

Proof. Suppose that α is a derivation. If p ∈M , we define

Xp(f) = α(f)(p)

for all f ∈ C∞(M). This is certainly a linear map, and we have

Xp(fg) = α(fg)(p) = (fα(g) + gα(f))(p) = f(p)Xp(g) + g(p)Xp(f).

So Xp ∈ TpM . We just need to check that the map M → TM sending p 7→ Xp

is smooth. Locally on M , we have coordinates x1, · · · , xn, and we can write

Xp =

n∑
i=1

αi(p)
∂

∂xi

∣∣∣∣
p

.

We want to show that αi : U → R are smooth.
We pick a bump function ϕ that is identically 1 near p, with suppϕ ⊆ U .

Consider the function ϕxj ∈ C∞(M). We can then consider

α(ϕxj)(p) = Xp(ϕxj).

As ϕxj is just xj near p, by properties of derivations, we know this is just equal
to αj . So we have

α(ϕxj) = αj .

So αj is smooth.
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From now on, we confuse X and X , i.e. we think of any X ∈ Vect(M) as a
derivation of C∞(M).

Note that the product of two vector fields (i.e. the composition of derivations)
is not a vector field. We can compute

XY (fg) = X(Y (fg))

= X(fY (g) + gY (f))

= X(f)Y (g) + fXY (g) +X(g)Y (f) + gXY (f).

So this is not a derivation, because we have the cross terms X(f)Y (g). However,
what we do have is that XY − Y X is a derivation.

Definition (Lie bracket). If X,Y ∈ Vect(M), then the Lie bracket [X,Y ] is
(the vector field corresponding to) the derivation XY − Y X ∈ Vect(M).

So Vect(M) becomes what is known as a Lie algebra.

Definition (Lie algebra). A Lie algebra is a vector space V with a bracket
[ · , · ] : V × V → V such that

(i) [ · , · ] is bilinear.

(ii) [ · , · ] is antisymmetric, i.e. [X,Y ] = −[Y,X].

(iii) The Jacobi identity holds

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

It is a (painful) exercise to show that the Lie bracket does satisfy the Jacobi
identity.

The definition of the Lie algebra might seem a bit weird. Later it will come
up in many different guises and hopefully it might become more clear.

2.2 Flows

What can we do with vector fields? In physics, we can imagine a manifold as all
of space, and perhaps a vector field specifies the velocity a particle should have
at that point. Now if you actually drop a particle into that space, the particle
will move according to the velocity specified. So the vector field generates a flow
of the particle. These trajectories are known as integral curves.

Definition (Integral curve). Let X ∈ Vect(M). An integral curve of X is a
smooth γ : I →M such that I is an open interval in R and

γ̇(t) = Xγ(t).

Example. Take M = R2, and let

X = x
∂

∂y
− y ∂

∂x
.

The field looks like this:
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We would expect the integral curves to be circles. Indeed, suppose γ : I → R2 is
an integral curve. Write γ = (γ1, γ2). Then the definition requires

γ′1(t)
∂

∂x
+ γ′2(t)

∂

∂y
= γ1(t)

∂

∂y
− γ2(t)

∂

∂x
.

So the equation is

γ′1(t) = −γ2(t)

γ′2(t) = γ1(t).

For example, if our starting point is p = (1, 0), then we have

γ1(t) = cos t, γ2(t) = sin t.

We see that to find an integral curve, all we are doing is just solving ordinary
differential equations. We know that all ODEs have smooth and unique solutions,
and they have all the nice properties we can hope for. So we are going to get nice
corresponding results for integral solutions. However, sometimes funny things
happen.

Example. Take M = R, and

X = x2 d

dx
.

Then if γ is an integral curve, it must satisfy:

γ′(t) = γ(t)2.

This means that the solution is of the form

γ(t) =
1

C − t

for C a constant. For example, if we want γ(0) = 1
2 , then we have

γ(t) =
1

2− t
.

The solution to this ODE is defined only for t < 2, so we can only have
I = (−∞, 2) at best.
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We are going to prove that integral curves always exist. To do so, we need
to borrow some powerful theorems from ODE theory:

Theorem (Fundamental theorem on ODEs). Let U ⊆ Rn be open and α : U →
Rn smooth. Pick t0 ∈ R.

Consider the ODE

γ̇i(t) = αi(γ(t))

γi(t0) = ci,

where c = (c1, · · · , cn) ∈ Rn.
Then there exists an open interval I containing t0 and an open U0 ⊆ U such

that for every c ∈ U0, there is a smooth solution γc : I → U satisfying the ODE.
Moreover, any two solutions agree on a common domain, and the function

Θ : I × U0 → U defined by Θ(t, c) = γc(t) is smooth (in both variables).

Theorem (Existence of integral curves). Let X ∈ Vect(M) and p ∈M . Then
there exists some open interval I ⊆ R with 0 ∈ I and an integral curve γ : I →M
for X with γ(0) = p.

Moreover, if γ̃ : Ĩ →M is another integral curve for X, and γ̃(0) = p, then
γ̃ = γ on I ∩ Ĩ.

Proof. Pick local coordinates for M centered at p in an open neighbourhood U .
So locally we write

X =

n∑
i=1

αi
∂

∂xi
,

where αi ∈ C∞(U). We want to find γ = (γ1, · · · , γn) : I → U such that

n∑
i=1

γ′i(t)
∂

∂xi

∣∣∣∣
γ(t)

=

n∑
i=1

αi(γ(t))
∂

∂xi

∣∣∣∣
γ(t)

, γi(0) = 0.

Since the ∂
∂xi

form a basis, this is equivalent to saying

γi(t) = αi(γ(t)), γi(0) = 0

for all i and t ∈ I.
By the general theory of ordinary differential equations, there is an interval

I and a solution γ, and any two solutions agree on their common domain.
However, we need to do a bit more for uniqueness, since all we know is that

there is a unique integral curve lying in this particular chart. It might be that
there are integral curves that do wild things when they leave the chart.

So suppose γ : I → M and γ̃ : Ĩ → M are both integral curves passing
through the same point, i.e. γ(0) = γ̃(0) = p.

We let
J = {t ∈ I ∩ Ĩ : γ(t) = γ̃(t)}.

This is non-empty since 0 ∈ J , and J is closed since γ and γ̃ are continuous. To
show it is all of I ∩ Ĩ, we only have to show it is open, since I ∩ Ĩ is connected.

So let t0 ∈ J , and consider q = γ(t0). Then γ and γ̃ are integral curves of X
passing through q. So by the first part, they agree on some neighbourhood of t0.
So J is open. So done.

24



2 Vector fields III Differential Geometry

Definition (Maximal integral curve). Let p ∈M , and X ∈ Vect(M). Let Ip be
the union of all I such that there is an integral curve γ : I →M with γ(0) = p.
Then there exists a unique integral curve γ : Ip → M , known as the maximal
integral curve.

Note that Ip does depend on the point.

Example. Consider the vector field

X =
∂

∂x

on R2 \ {0}. Then for any point p = (x, y), if y 6= 0, we have Ip = R, but if
y = 0 and x < 0, then Ip = (−∞,−x). Similarly, if y = 0 and x > 0, then
Ip = (−x,∞).

Definition (Complete vector field). A vector field is complete if Ip = R for all
p ∈M .

Given a complete vector field, we obtain a flow map as follows:

Theorem. Let M be a manifold and X a complete vector field on M . Define
Θt : R×M →M by

Θt(p) = γp(t),

where γp is the maximal integral curve of X through p with γ(0) = p. Then Θ
is a function smooth in p and t, and

Θ0 = id, Θt ◦Θs = Θs+t

Proof. This follows from uniqueness of integral curves and smooth dependence
on initial conditions of ODEs.

In particular, since Θt ◦Θ−t = Θ0 = id, we know

Θ−1
t = Θ−t.

So Θt is a diffeomorphism.
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More algebraically, if we write Diff(M) for the diffeomorphisms M → M ,
then

R→ Diff(M)

t 7→ Θt

is a homomorphism of groups. We call this a one-parameter subgroup of diffeo-
morphisms.

What happens when we relax the completeness assumption? Everything is
essentially the same whenever things are defined, but we have to take care of
the domains of definition.

Theorem. Let M be a manifold, and X ∈ Vect(M). Define

D = {(t, p) ∈ R×M : t ∈ Ip}.

In other words, this is the set of all (t, p) such that γp(t) exists. We set

Θt(p) = Θ(t, p) = γp(t)

for all (t, p) ∈ D. Then

(i) D is open and Θ : D →M is smooth

(ii) Θ(0, p) = p for all p ∈M .

(iii) If (t, p) ∈ D and (t,Θ(s, p)) ∈ D, then (s+ t, p) ∈ D and Θ(t,Θ(s, p)) =
Θ(t+ s, p).

(iv) For any t ∈ R, the set Mt : {p ∈M : (t, p) ∈ D} is open in M , and

Θt : Mt →M−t

is a diffeomorphism with inverse Θ−t.

This is really annoying. We now prove the following useful result that saves
us from worrying about these problems in nice cases:

Proposition. Let M be a compact manifold. Then any X ∈ Vect(M) is
complete.

Proof. Recall that
D = {(t, p) : Θt(p) is defined}

is open. So given p ∈M , there is some open neighbourhood U ⊆M of p and an
ε > 0 such that (−ε, ε) × U ⊆ D. By compactness, we can find finitely many
such U that cover M , and find a small ε such that (−ε, ε)×M ⊆ D.

In other words, we know Θt(p) exists and p ∈ M and |t| < ε. Also, we
know Θt ◦Θs = Θt+s whenever |t|, |s| < ε, and in particular Θt+s is defined. So
ΘNt = (Θt)

N is defined for all N and |t| < ε, so Θt is defined for all t.
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2.3 Lie derivative

We now want to look at the concept of a Lie derivative. If we have a function
f defined on all of M , and we have a vector field X, then we might want to
ask what the derivative of f in the direction of X is at each point. If f is a
real-valued function, then this is by definition X(f). If f is more complicated,
then this wouldn’t work, but we can still differentiate things along X using the
flows.

Notation. Let F : M →M be a diffeomorphism, and g ∈ C∞(M). We write

F ∗g = g ◦ F ∈ C∞(M).

We now define the Lie derivative of a function, i.e. the derivative of a function
f in the direction of a vector field X. Of course, we can obtain this by just
applying X(f), but we want to make a definition that we can generalize.

Definition (Lie derivative of a function). Let X be a complete vector field, and
Θ be its flow. We define the Lie derivative of g along X by

LX(g) =
d

dt

∣∣∣∣
t=0

Θ∗t g.

Here this is defined pointwise, i.e. for all p ∈M , we define

LX(g)(p) =
d

dt

∣∣∣∣
t=0

Θ∗t (g)(p).

Lemma. LX(g) = X(g). In particular, LX(g) ∈ C∞(M,R).

Proof.

LX(g)(p) =
d

dt

∣∣∣∣
t=0

Θ∗t (g)(p)

=
d

dt

∣∣∣∣
t=0

g(Θt(p))

= dg|p(X(p))

= X(g)(p).

So this is quite boring. However, we can do something more exciting by
differentiating vector fields.

Notation. Let Y ∈ Vect(M), and F : M → M be a diffeomorphism. Then
DF−1|F (p) : TF (p)M → TpM . So we can write

F ∗(Y )|p = DF−1|F (p)(YF (p)) ∈ TpM.

Then F ∗(Y ) ∈ Vect(M). If g ∈ C∞(M), then

F ∗(Y )|p(g) = YF (p)(g ◦ F−1).

Alternatively, we have

F ∗(Y )|p(g ◦ F ) = YF (p)(g).

Removing the p’s, we have

F ∗(Y )(g ◦ F ) = (Y (g)) ◦ F.
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Definition (Lie derivative of a vector field). Let X ∈ Vect(M) be complete,
and Y ∈ Vect(M) be a vector field. Then the Lie derivative is given pointwise
by

LX(Y ) =
d

dt

∣∣∣∣
t=0

Θ∗t (Y ).

Lemma. We have
LXY = [X,Y ].

Proof. Let g ∈ C∞(M,R). Then we have

Θ∗t (Y )(g ◦Θt) = Y (g) ◦Θt.

We now look at

Θ∗t (Y )(g)− Y (g)

t
=

Θ∗t (Y )(g)−Θ∗t (Y )(g ◦Θt)

t︸ ︷︷ ︸
αt

+
Y (g) ◦Θt − Y (g)

t︸ ︷︷ ︸
βt

.

We have
lim
t→0

βt = LX(Y (g)) = XY (g)

by the previous lemma, and we have

lim
t→0

αt = lim
t→0

(Θ∗t (Y ))

(
g − g ◦Θt

t

)
= Y (−LX(g)) = −Y X(g).

Corollary. Let X,Y ∈ Vect(M) and f ∈ C∞(M,R). Then

(i) LX(fY ) = LX(f)Y + fLXY = X(f)Y + fLXY

(ii) LXY = −LYX

(iii) LX [Y, Z] = [LXY,Z] + [Y,LXZ].

Proof. Immediate from the properties of the Lie bracket.
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3 Lie groups

We now have a short digression to Lie groups. Lie groups are manifolds with
a group structure. They have an extraordinary amount of symmetry, since
multiplication with any element of the group induces a diffeomorphism of the Lie
group, and this action of the Lie group on itself is free and transitive. Effectively,
this means that any two points on the Lie group, as a manifold, are “the same”.

As a consequence, a lot of the study of a Lie group reduces to studying
an infinitesimal neighbourhood of the identity, which in turn tells us about
infinitesimal neighbourhoods of all points on the manifold. This is known as the
Lie algebra.

We are not going to go deep into the theory of Lie groups, as our main focus
is on differential geometry. However, we will state a few key results about Lie
groups.

Definition (Lie group). A Lie group is a manifold G with a group structure
such that multiplication m : G × G → G and inverse i : G → G are smooth
maps.

Example. GLn(R) and GLn(C) are Lie groups.

Example. Mn(R) under addition is also a Lie group.

Example. O(n) is a Lie group.

Notation. Let G be a Lie group and g ∈ G. We write Lg : G → G for the
diffeomorphism

Lg(h) = gh.

This innocent-seeming translation map is what makes Lie groups nice. Given
any local information near an element g, we can transfer it to local information
near h by applying the diffeomorphism Lhg−1 . In particular, the diffeomorphism
Lg : G → G induces a linear isomorphism DLg|e : TeG → TgG, so we have a
canonical identification of all tangent spaces.

Definition (Left invariant vector field). Let X ∈ Vect(G) be a vector field.
This is left invariant if

DLg|h(Xh) = Xgh

for all g, h ∈ G.
We write VectL(G) for the collection of all left invariant vector fields.

Using the fact that for a diffeomorphism F , we have

F ∗[X,Y ] = [F ∗X,F ∗Y ],

it follows that VectL(G) is a Lie subalgebra of Vect(G).
If we have a left invariant vector field, then we obtain a tangent vector at

the identity. On the other hand, if we have a tangent vector at the identity, the
definition of a left invariant vector field tells us how we can extend this to a left
invariant vector field. One would expect this to give us an isomorphism between
TeG and VectL(G), but we have to be slightly more careful and check that the
induced vector field is indeed a vector field.
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Lemma. Given ξ ∈ TeG, we let

Xξ|g = DLg|e(ξ) ∈ Tg(G).

Then the map TeG→ VectL(G) by X 7→ Xξ is an isomorphism of vector spaces.

Proof. The inverse is given by X 7→ X|e. The only thing to check is that Xξ

actually is a left invariant vector field. The left invariant part follows from

DLh|g(Xξ|g) = DLh|g(DLg|e(ξ)) = DLhg|e(ξ) = Xξ|hg.

To check that Xξ is smooth, suppose f ∈ C∞(U,R), where U is open and
contains e. We let γ : (−ε, ε)→ U be smooth with γ̇(0) = ξ. So

Xξf |g = DLg(ξ)(f) = ξ(f ◦ Lg) =
d

dt

∣∣∣∣
t=0

(f ◦ Lg ◦ γ)

But as (t, g) 7→ f ◦ Lg ◦ γ(t) is smooth, it follows that Xξf is smooth. So

Xξ ∈ VectL(G).

Thus, instead of talking about VectL(G), we talk about TeG, because it
seems less scary. This isomorphism gives TeG the structure of a Lie algebra.

Definition (Lie algebra of a Lie group). Let G be a Lie group. The Lie algebra
g of G is the Lie algebra TeG whose Lie bracket is induced by that of the
isomorphism with VectL(G). So

[ξ, η] = [Xξ, Xη]|e.

We also write Lie(G) for g.

In general, if a Lie group is written in some capital letter, say G, then the
Lie algebra is written in the same letter but in lower case fraktur.

Note that dim g = dimG is finite.

Lemma. Let G be an abelian Lie group. Then the bracket of g vanishes.

Example. For any vector space V and v ∈ V , we have TvV ∼= V . So V as a
Lie group has Lie algebra V itself. The commutator vanishes because the group
is commutative.

Example. Note that G = GLn(R) is an open subset of Mn, so it is a manifold.
It is then a Lie group under multiplication. Then we have

gln(R) = Lie(GLn(R)) = TIGLn(R) = TIMn
∼= Mn.

If A,B ∈ GLn(R), then
LA(B) = AB.

So
DLA|B(H) = AH

as LA is linear.
We claim that under the identification, if ξ, η ∈ gln(R) = Mn, then

[ξ, η] = ξη − ηξ.
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Indeed, on G, we have global coordinates U ji : GLn(R)→ R where

U ji (A) = Aji ,

where A = (Aji ) ∈ GLn(R).
Under this chart, we have

Xξ|A = LA(ξ) =
∑
i,j

(Aξ)ij
∂

∂U ij

∣∣∣∣∣
A

=
∑
i,j,k

Aikξ
k
j

∂

∂U ij

∣∣∣∣∣
A

So we have

Xξ =
∑
i,j,k

U ikξ
k
j

∂

∂U ij
.

So we have

[Xξ, Xη] =

∑
i,j,k

U ikξ
k
j

∂

∂U ij
,
∑
p,r,q

Upq η
q
r

∂

∂Upr

 .
We now use the fact that

∂

∂U ij
Upq = δipδjq.

We then expand

[Xξ, Xη] =
∑
i,j,k,r

(U ijξ
j
kη
k
r − U ijξ

j
kξ
k
r )

∂

∂U ir
.

So we have
[Xξ, Xη] = Xξη−ηξ.

Definition (Lie group homomorphisms). Let G,H be Lie groups. A Lie group
homomorphism is a smooth map that is also a homomorphism.

Definition (Lie algebra homomorphism). Let g, h be Lie algebras. Then a Lie
algebra homomorphism is a linear map β : g→ h such that

β[ξ, η] = [β(ξ), β(η)]

for all ξ, η ∈ g.

Proposition. Let G be a Lie group and ξ ∈ g. Then the integral curve γ for Xξ

through e ∈ G exists for all time, and γ : R→ G is a Lie group homomorphism.

The idea is that once we have a small integral curve, we can use the Lie
group structure to copy the curve to patch together a long integral curve.

Proof. Let γ : I → G be a maximal integral curve of Xξ, say (−ε, ε) ∈ I. We fix
a t0 with |t0| < ε. Consider g0 = γ(t0).

We let
γ̃(t) = Lg0(γ(t))

for |t| < ε.
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We claim that γ̃ is an integral curve of Xξ with γ̃(0) = g0. Indeed, we have

˙̃γ|t =
d

dt
Lg0γ(t) = DLg0 γ̇(t) = DLg0Xξ|γ(t) = Xξ|g0·γ(t) = Xξ|γ̃(t).

By patching these together, we know (t0 − ε, t0 + ε) ⊆ I. Since we have a fixed
ε that works for all t0, it follows that I = R.

The fact that this is a Lie group homomorphism follows from general proper-
ties of flow maps.

Example. Let G = GLn. If ξ ∈ gln, we set

eξ =
∑
k≥0

1

k!
ξk.

We set F (t) = etξ. We observe that this is in GLn since etξ has an inverse e−tξ

(alternatively, det(etξ) = etr(tξ) 6= 0). Then

F ′(t) =
d

dt

∑
k

1

k!
tkξk = etξξ = Letξξ = LF (t)ξ.

Also, F (0) = I. So F (t) is an integral curve.

Definition (Exponential map). The exponential map of a Lie group G is exp :
g→ G given by

exp(ξ) = γξ(1),

where γξ is the integral curve of Xξ through e ∈ G.

So in the case of G = GLn, the exponential map is the exponential map.

Proposition.

(i) exp is a smooth map.

(ii) If F (t) = exp(tξ), then F : R → G is a Lie group homomorphism and
DF |0

(
d
dt

)
= ξ.

(iii) The derivative
D exp : T0g ∼= g→ TeG ∼= g

is the identity map.

(iv) exp is a local diffeomorphism around 0 ∈ g, i.e. there exists an open U ⊆ g
containing 0 such that exp : U → exp(U) is a diffeomorphism.

(v) exp is natural, i.e. if f : G→ H is a Lie group homomorphism, then the
diagram

g G

h H

exp

Df |e f

exp

commutes.

Proof.
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(i) This is the smoothness of ODEs with respect to parameters

(ii) Exercise.

(iii) If ξ ∈ g, we let σ(t) = tξ. So σ̇(0) = ξ ∈ T0g ∼= g. So

D exp |0(ξ) = D exp |0(σ̇(0)) =
d

dt

∣∣∣∣
t=0

exp(σ(t)) =
d

dt

∣∣∣∣
t=0

exp(tξ) = Xξ|e = ξ.

(iv) Follows from above by inverse function theorem.

(v) Exercise.

Definition (Lie subgroup). A Lie subgroup of G is a subgroup H with a smooth
structure on H making H an immersed submanifold.

Certainly, if H ⊆ G is a Lie subgroup, then h ⊆ g is a Lie subalgebra.

Theorem. If h ⊆ g is a subalgebra, then there exists a unique connected Lie
subgroup H ⊆ G such that Lie(H) = h.

Theorem. Let g be a finite-dimensional Lie algebra. Then there exists a (unique)
simply-connected Lie group G with Lie algebra g.

Theorem. Let G,H be Lie groups with G simply connected. Then every Lie
algebra homomorphism g→ h lifts to a Lie group homomorphism G→ H.
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4 Vector bundles

Recall that we had the tangent bundle of a manifold. The tangent bundle gives
us a vector space at each point in space, namely the tangent space. In general,
a vector bundle is a vector space attached to each point in our manifold (in a
smoothly-varying way), which is what we are going to study in this chapter.

Before we start, we have a look at tensor products. These will provide us a
way of constructing new vector spaces from old ones.

4.1 Tensors

The tensor product is a very important concept in Linear Algebra. It is something
that is taught in no undergraduate courses and assumed knowledge in all graduate
courses. For the benefit of the students, we will give a brief introduction to
tensor products.

A motivation for tensors comes from the study of bilinear maps. A bilinear
map is a function that takes in two vectors and returns a number, and this is
linear in both variables. An example is the inner product, and another example
is the volume form, which tells us the volume of a parallelepiped spanned by the
two vectors.

Definition (Bilinear map). Let U, V,W be vector spaces. We define Bilin(V ×
W,U) to be the functions V ×W → U that are bilinear, i.e.

α(λ1v1 + λ2v2, w) = λ1α(v1, w) + λ2α(v2, w)

α(v, λ1w1 + λ2w2) = λ1α(v, w1) + λ2α(v, w2).

It is important that a bilinear map is not a linear map. This is bad. We
spent so much time studying linear maps, and we now have to go back to our
linear algebra book and rewrite everything to talk about bilinear maps as well.
But bilinear maps are not enough. We want to do them for multi-linear maps!
But linear maps were already complicated enough, so this must be much worse.
We want to die.

Tensors are a trick to turn the study of bilinear maps to linear maps (from a
different space).

Definition (Tensor product). A tensor product of two vector spaces V,W is
a vector space V ⊗W and a bilinear map π : V ×W → V ⊗W such that a
bilinear map from V ×W is “the same as” a linear map from V ⊗W . More
precisely, given any bilinear map α : V ×W → U , we can find a unique linear
map α̃ : V ⊗W → U such that the following diagram commutes:

V ×W

V ⊗W U

απ

α̃

So we have
Bilin(V ×W,U) ∼= Hom(V ⊗W,U).

Given v ∈ V and w ∈W , we obtain π(v, w) ∈ V ⊗W , called the tensor product
of v and w, written v ⊗ w.
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We say V ⊗W represents bilinear maps from V ×W .
It is important to note that not all elements of V ⊗W are of the form v ⊗w.
Now the key thing we want to prove is the existence and uniqueness of tensor

products.

Lemma. Tensor products exist (and are unique up to isomorphism) for all pairs
of finite-dimensional vector spaces.

Proof. We can construct V ⊗W = Bilin(V ×W,R)∗. The verification is left as
an exercise on the example sheet.

We now write down some basic properties of tensor products.

Proposition. Given maps f : V → W and g : V ′ → W ′, we obtain a map
f ⊗ g : V ⊗ V ′ →W ⊗W ′ given by the bilinear map

(f ⊗ g)(v, w) = f(v)⊗ g(w).

Lemma. Given v, vi ∈ V and w,wi ∈W and λi ∈ R, we have

(λ1v1 + λ2v2)⊗ w = λ1(v1 ⊗ w) + λ2(v2 ⊗ w)

v ⊗ (λ1w1 + λ2w2) = λ1(v ⊗ w1) + λ2(v ⊗ w2).

Proof. Immediate from the definition of bilinear map.

Lemma. If v1, · · · , vn is a basis for V , and w1, · · · , wm is a basis for W , then

{vi ⊗ wj : i = 1, · · · , n; j = 1, · · · ,m}

is a basis for V ⊗W . In particular, dimV ⊗W = dimV × dimW .

Proof. We have V ⊗W = Bilin(V ×W,R)∗. We let αpq : V ×W → R be given
by

αpq

(∑
aivi,

∑
bjwj

)
= apbq.

Then αpq ∈ Bilin(V ×W,R), and (vi ⊗ wj) are dual to αpq. So it suffices to
show that αpq are a basis. It is clear that they are independent, and any bilinear
map can be written as

α =
∑

cpqαpq,

where
cpq = α(vp, wq).

So done.

Proposition. For any vector spaces V,W,U , we have (natural) isomorphisms

(i) V ⊗W ∼= W ⊗ V

(ii) (V ⊗W )⊗ U ∼= V ⊗ (W ⊗ U)

(iii) (V ⊗W )∗ ∼= V ∗ ⊗W ∗
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Definition (Covariant tensor). A covariant tensor of rank k on V is an element
of

α ∈ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k times

,

i.e. α is a multilinear map V × · · · × V → R.

Example. A covariant 1-tensor is an α ∈ V ∗, i.e. a linear map α : V → R.
A covariant 2-tensor is a β ∈ V ∗ ⊗ V ∗, i.e. a bilinear map V × V → R, e.g.

an inner product.

Example. If α, β ∈ V ∗, then α⊗ β ∈ V ∗ ⊗ V ∗ is the covariant 2-tensor given
by

(α⊗ b)(v, w) = α(v)β(w).

More generally, if α is a rank k tensor and β is a rank ` tensor, then α⊗ β is a
rank k + ` tensor.

Definition (Tensor). A tensor of type (k, `) is an element in

T k` (V ) = V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k times

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
` times

.

We are interested in alternating bilinear maps, i.e. α(v, w) = −α(w, v), or
equivalently, α(v, v) = 0 (if the characteristic is not 2).

Definition (Exterior product). Consider

T (V ) =
⊗
k≥0

V ⊗k

as an algebra (with multiplication given by the tensor product) (with V ⊗0 = R).
We let I(V ) be the ideal (as algebras!) generated by {v ⊗ v : v ∈ V } ⊆ T (V ).
We define

Λ(V ) = T (V )/I(V ),

with a projection map π : T (V )→ Λ(V ). This is known as the exterior algebra.
We let

Λk(V ) = π(V ⊗k),

the k-th exterior product of V .
We write a ∧ b for π(α⊗ β).

The idea is that ΛpV is the dual of the space of alternating multilinear maps
V × V → R.

Lemma.

(i) If α ∈ ΛpV and β ∈ ΛqV , then α ∧ β = (−1)pqβ ∧ α.

(ii) If dimV = n and p > n, then we have

dim Λ0V = 1, dim ΛnV = 1, ΛpV = {0}.

(iii) The multilinear map det : V × · · · × V → R spans ΛnV .
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(iv) If v1, · · · , vn is a basis for V , then

{vi1 ∧ · · · ∧ vip : i1 < · · · < ip}

is a basis for ΛpV .

Proof.

(i) We clearly have v ∧ v = 0. So

v ∧ w = −w ∧ v

Then

(v1 ∧ · · · ∧ vp) ∧ (w1 ∧ · · · ∧ wq) = (−1)pqw1 ∧ · · · ∧ wq ∧ v1 ∧ · · · ∧ vp

since we have pq swaps. Since

{vi1 ∧ · · · ∧ vip : i1, · · · , ip ∈ {1, · · · , n}} ⊆ ΛpV

spans ΛpV (by the corresponding result for tensor products), the result
follows from linearity.

(ii) Exercise.

(iii) The det map is non-zero. So it follows from the above.

(iv) We know that

{vi1 ∧ · · · ∧ vip : i1, · · · , ip ∈ {1, · · · , n}} ⊆ ΛpV

spans, but they are not independent since there is a lot of redundancy (e.g.
v1 ∧ v2 = −v2 ∧ v1). By requiring i1 < · · · < ip, then we obtain a unique
copy for combination.

To check independence, we write I = (i1, · · · , ip) and let vI = vi1 ∧· · ·∧vip .
Then suppose ∑

I

aIvI = 0

for aI ∈ R. For each I, we let J be the multi-index J = {1, · · · , n} \ I. So
if I 6= I ′, then vI′ ∧ vJ = 0. So wedging with vJ gives∑

I′

αI′vI′ ∧ vJ = aIvI ∧ vJ = 0.

So aI = 0. So done by (ii).

If F : V → W is a linear map, then we get an induced linear map ΛpF :
ΛpV → ΛpW in the obvious way, making the following diagram commute:

V ⊗p W⊗p

ΛpV ΛpW

F⊗p

π π

ΛpF

More concretely, we have

ΛpF (v1 ∧ · · · ∧ vp) = F (v1) ∧ · · · ∧ F (vp).
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Lemma. Let F : V → V be a linear map. Then ΛnF : ΛnV → ΛnV is
multiplication by detF .

Proof. Let v1, · · · , vn be a basis. Then ΛnV is spanned by v1 ∧ · · · ∧ vn. So we
have

(ΛnF )(v1 ∧ · · · ∧ vn) = λ v1 ∧ · · · ∧ vn
for some λ. Write

F (vi) =
∑
j

Ajivj

for some Aji ∈ R, i.e. A is the matrix representation of F . Then we have

(ΛnF )(v1 ∧ · · · ∧ vn) =

(∑
j

Aj1vj

)
∧ · · · ∧

(∑
j

Ajnvj

)
.

If we expand the thing on the right, a lot of things die. The only things that
live are those where we get each of vi once in the wedges in some order. Then
this becomes∑

σ∈Sn

ε(σ)(Aσ(1),1 · · ·Aσ(n),n)v1 ∧ · · · ∧ vn = det(F ) v1 ∧ · · · ∧ vn,

where ε(σ) is the sign of the permutation, which comes from rearranging the vi
to the right order.

4.2 Vector bundles

Our aim is to consider spaces TpM ⊗ TpM, . . . ,ΛrTpM etc as p varies, i.e. con-
struct a “tensor bundle” for these tensor products, similar to how we constructed
the tangent bundle. Thus, we need to come up with a general notion of vector
bundle.

Definition (Vector bundle). A vector bundle of rank r on M is a smooth
manifold E with a smooth π : E →M such that

(i) For each p ∈M , the fiber π−1(p) = Ep is an r-dimensional vector space,

(ii) For all p ∈M , there is an open U ⊆M containing p and a diffeomorphism

t : E|U = π−1(U)→ U × Rr

such that
E|U U × Rr

U

t

π
p1

commutes, and the induced map Eq → {q} × Rr is a linear isomorphism
for all q ∈ U .

We call t a trivialization of E over U ; call E the total space; call M the
base space; and call π the projection. Also, for each q ∈ M , the vector
space Eq = π−1({q}) is called the fiber over q.
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Note that the vector space structure on Ep is part of the data of a vector bundle.

Alternatively, t can be given by collections of smooth maps s1, · · · , sr : U → E
with the property that for each q ∈ U , the vectors s1(q), · · · , sr(q) form a basis
for Eq. Indeed, given such s1, · · · , sr, we can define t by

t(vq) = (q, α1, · · · , αr),

where vq ∈ Eq and the αi are chosen such that

vq =

r∑
i=1

αisi(q).

The s1, · · · , sr are known as a frame for E over U .

Example (Tangent bundle). The bundle TM →M is a vector bundle. Given
any point p, find some coordinate charts around p with coordinates x1, · · · , xn.
Then we get a frame ∂

∂xi
, giving trivializations of TM over U . So TM is a vector

bundle.

Definition (Section). A (smooth) section of a vector bundle E →M over some
open U ⊆ M is a smooth s : U → E such that s(p) ∈ Ep for all p ∈ U , that is
π ◦ s = id. We write C∞(U,E) for the set of smooth sections of E over U .

Example. Vect(M) = C∞(M,TM).

Definition (Transition function). Suppose that tα : E|Uα → Uα × Rr and
tβ : E|Uβ → Uβ × Rr are trivializations of E. Then

tα ◦ t−1
β : (Uα ∩ Uβ)× Rr → (Uα ∩ Uβ)× Rr

is fiberwise linear, i.e.

tα ◦ t−1
β (q, v) = (q, ϕαβ(q)v),

where ϕαβ(q) is in GLr(R).
In fact, ϕαβ : Uα ∩ Uβ → GLr(R) is smooth. Then ϕαβ is known as the

transition function from β to α.

Proposition. We have the following equalities whenever everything is defined:

(i) ϕαα = id

(ii) ϕαβ = ϕ−1
βα

(iii) ϕαβϕβγ = ϕαγ , where ϕαβϕβγ is pointwise matrix multiplication.

These are known as the cocycle conditions.

We now consider general constructions that allow us to construct new vector
bundles from old ones.
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Proposition (Vector bundle construction). Suppose that for each p ∈M , we
have a vector space Ep. We set

E =
⋃
p

Ep

We let π : E →M be given by π(vp) = p for vp ∈ Ep. Suppose there is an open
cover {Uα} of open sets of M such that for each α, we have maps

tα : E|Uα = π−1(Uα)→ Uα × Rr

over Uα that induce fiberwise linear isomorphisms. Suppose the transition
functions ϕαβ are smooth. Then there exists a unique smooth structure on E
making π : E →M a vector bundle such that the tα are trivializations for E.

Proof. The same as the case for the tangent bundle.

In particular, we can use this to perform the following constructions:

Definition (Direct sum of vector bundles). Let E, Ẽ be vector bundles on
M . Suppose tα : E|Uα ∼= Uα × Rr is a trivialization for E over Uα, and
t̃α : Ẽ|Uα ∼= Uα × Rr̃ is a trivialization for Ẽ over Uα.

We let ϕαβ be transition functions for {tα} and ϕ̃αβ be transition functions
for {t̃α}.

Define
E ⊕ Ẽ =

⋃
p

Ep ⊕ Ẽp,

and define

Tα : (E ⊕ Ẽ)|Uα = E|Uα ⊕ Ẽ|Uα → Uα × (Rr ⊕ Rr̃) = Uα × Rr+r̃

be the fiberwise direct sum of the two trivializations. Then Tα clearly gives a
linear isomorphism (E ⊕ Ẽ)p ∼= Rr+r̃, and the transition function for Tα is

Tα ◦ T−1
β = ϕαβ ⊕ ϕ̃αβ ,

which is clearly smooth. So this makes E ⊕ Ẽ into a vector bundle.

In terms of frames, if {s1, · · · , sr} is a frame for E and {s̃1, · · · , s̃r̃} is a frame
for Ẽ over some U ⊆M , then

{si ⊕ 0, 0⊕ s̃j : i = 1, · · · , r; j = 1, · · · , r̃}

is a frame for E ⊕ Ẽ.

Definition (Tensor product of vector bundles). Given two vector bundles E, Ẽ
over M , we can construct E ⊗ Ẽ similarly with fibers (E ⊗ Ẽ)|p = E|p ⊗ Ẽ|p.

Similarly, we can construct the alternating product of vector bundles ΛnE.
Finally, we have the dual vector bundle.
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Definition (Dual vector bundle). Given a vector bundle E →M , we define the
dual vector bundle by

E∗ =
⋃
p∈M

(Ep)
∗.

Suppose again that tα : E|Uα → Uα × Rr is a local trivialization. Taking the
dual of this map gives

t∗α : Uα × (Rr)∗ → E|∗Uα .
since taking the dual reverses the direction of the map. We pick an isomorphism
(Rr)∗ → Rr once and for all, and then reverse the above isomorphism to get a
map

E|∗Uα → Uα × Rr.
This gives a local trivialization.

If {s1, · · · , sr} is a frame for E over U , then {s∗1, · · · , s∗r} is a frame for E∗

over U , where {s∗1(p), · · · , s∗r(p)} is a dual basis to {s1(p), · · · , sr(p)}.

Definition (Cotangent bundle). The cotangent bundle of a manifold M is

T ∗M = (TM)∗.

In local coordinate charts, we have a frame ∂
∂x1

, · · · , ∂
∂xn

of TM over U . The
dual frame is written as dx1, · · · ,dxn. In other words, we have

dxi|p ∈ (TpM)∗

and

dxi|p

(
∂

∂xj

∣∣∣∣
p

)
= δij .

Recall the previously, given a function f ∈ C∞(U,R), we defined df as the
differential of f given by

df |p = Df |p : TpM → Tf(p)R ∼= R.

Thinking of xi as a function on a coordinate chart U , we have

Dxi|p

(
∂

∂xj

∣∣∣∣
p

)
=

∂

∂xj
(xi) = δij

for all i, j. So the two definitions of dxi agree.
We can now take powers of this to get more interesting things.

Definition (p-form). A p-form on a manifold M over U is a smooth section of
ΛpT ∗M , i.e. an element in C∞(U,ΛpT ∗M).

Example. A 1-form is an element of T ∗M . It is locally of the form

α1dx1 + · · ·+ αndxn

for some smooth functions α1, · · · , αn.
Similarly, if ω is a p-form, then locally, it is of the form

ω =
∑
I

ωIdxI ,

where I = (i1, · · · , ip) with i1 < · · · < ip, and dxI = dxi1 ∧ · · · ∧ dxip .
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It is important to note that these representations only work locally.

Definition (Tensors on manifolds). Let M be a manifold. We define

T k` M = T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
k times

⊗TM ⊗ · · · ⊗ TM︸ ︷︷ ︸
` times

.

A tensor of type (k, `) is an element of

C∞(M,T k` M).

The convention when k = ` = 0 is to set T 0
0M = M × R.

In local coordinates, we can write a (k, `) tensor ω as

ω =
∑

αj1,...,jki1,...,i`
dxj1 ⊗ · · · ⊗ dxjk ⊗

∂

∂xi1
⊗ · · · ⊗ ∂

∂xi`
,

where the α are smooth functions.

Example. A tensor of type (0, 1) is a vector field.
A tensor of type (1, 0) is a 1-form.
A tensor of type (0, 0) is a real-valued function.

Definition (Riemannian metric). A Riemannian metric on M is a (2, 0)-tensor
g such that for all p, the bilinear map gp : TpM × TpM → R is symmetric and
positive definite, i.e. an inner product.

Given such a g and vp ∈ TpM , we write ‖vp‖ for
√
gp(vp, vp).

Using these, we can work with things like length:

Definition (Length of curve). Let γ : I →M be a curve. The length of γ is

`(γ) =

∫
I

‖γ̇(t)‖ dt.

Finally, we will talk about morphisms between vector bundles.

Definition (Vector bundle morphisms). Let E → M and E′ → M ′ be vector
bundles. A bundle morphism from E to E′ is a pair of smooth maps (F : E →
E′, f : M →M ′) such that the following diagram commutes:

E E′

M M ′

F

f

.

i.e. such that Fp : Ep → E′f(p) is linear for each p.

Example. Let E = TM and E′ = TM ′. If f : M →M ′ is smooth, then (Df, f)
is a bundle morphism.

Definition (Bundle morphism over M). Given two bundles E,E′ over the same
base M , a bundle morphism over M is a bundle morphism E → E′ of the form
(F, idM ).
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Example. Given a Riemannian metric g, we get a bundle morphism TM →
T ∗M over M by

v 7→ F (v) = g(v,−).

Since each g(v,−) is an isomorphism, we have a canonical bundle isomorphism
TM ∼= T ∗M .

Note that the isomorphism between TM and T ∗M requires the existence of
a Riemannian metric.
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5 Differential forms and de Rham cohomology

5.1 Differential forms

We are now going to restrict our focus to a special kind of tensors, known as
differential forms. Recall that in Rn (as a vector space), an alternating n-linear
map tells us the signed volume of the parallelepiped spanned by n vectors.
In general, a differential p-form is an alternating p-linear map on the tangent
space at each point, so it tells us the volume of an “infinitesimal p-dimensional
parallelepiped”.

In fact, we will later see than on an (oriented) p-dimensional manifold, we
can integrate a p-form on the manifold to obtain the “volume” of the manifold.

Definition (Differential form). We write

Ωp(M) = C∞(M,ΛpT ∗M) = {p-forms on M}.

An element of Ωp(M) is known as a differential p-form.
In particular, we have

Ω0(M) = C∞(M,R).

In local coordinates x1, · · · , xn on U we can write ω ∈ Ωp(M) as

ω =
∑

i1<...<ip

ωi1,...,ipdxi1 ∧ · · · ∧ dxip

for some smooth functions ωi1,...,ip .
We are usually lazy and just write

ω =
∑
I

ωIdxI .

Example. A 0-form is a smooth function.

Example. A 1-form is a section of T ∗M . If ω ∈ Ω1(M) and X ∈ Vect(M),
then ω(X) ∈ C∞(M,R).

For example, if f is a smooth function on M , then df ∈ Ω1(M) with

df(X) = X(f)

for all X ∈ Vect(M).
Locally, we can write

df =

n∑
i=1

ai dxi.

To work out what the ai’s are, we just hit this with the ∂
∂xj

. So we have

aj = df

(
∂

∂xj

)
=

∂f

∂xj
.

So we have

df =

n∑
i=1

∂f

∂xi
dxi.

This is essentially just the gradient of a function!
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Example. If dimM = n, and ω ∈ Ωn(M), then locally we can write

ω = g dx1 ∧ · · · ∧ dxn.

for some smooth function g. This is an alternating form that assigns a real
number to n tangent vectors. So it measures volume!

If y1, · · · , yn is any other coordinates, then

dxi =
∑ ∂xi

∂yj
dyj .

So we have

ω = g det

(
∂xi
∂yj

)
i,j

dy1 ∧ · · · ∧ dyn.

Now a motivating question is this — given an ω ∈ Ω1(M), can we find some
f ∈ Ω0(M) such that ω = df?

More concretely, let U ⊆ R2 be open, and let x, y be the coordinates. Let

ω = a dx+ b dy

If we have w = df for some f , then we have

a =
∂f

∂x
, b =

∂f

∂y
.

So the symmetry of partial derivatives tells us that

∂a

∂y
=
∂b

∂x
. (∗)

So this equation (∗) is a necessary condition to solve ω = df . Is it sufficient?
To begin with, we want to find a better way to express (∗) without resorting

to local coordinates, and it turns out this construction will be very useful later
on.

Theorem (Exterior derivative). There exists a unique linear map

d = dM,p : Ωp(M)→ Ωp+1(M)

such that

(i) On Ω0(M) this is as previously defined, i.e.

df(X) = X(f) for all X ∈ Vect(M).

(ii) We have
d ◦ d = 0 : Ωp(M)→ Ωp+2(M).

(iii) It satisfies the Leibniz rule

d(ω ∧ σ) = dω ∧ σ + (−1)pω ∧ dσ.

It follows from these assumptions that
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(iv) d acts locally, i.e. if ω, ω′ ∈ Ωp(M) satisfy ω|U = ω′|U for some U ⊆ M
open, then dω|U = dω′|U .

(v) We have
d(ω|U ) = (dω)|U

for all U ⊆M .

What do the three rules tell us? The first rule tells us this is a generalization
of what we previously had. The second rule will turn out to be a fancy way of
saying partial derivatives commute. The final Leibniz rule tells us this d is some
sort of derivative.

Example. If we have
ω = a dx+ b dy,

then we have

dω = da ∧ dx+ a d(dx) + db ∧ dy + b d(dy)

= da ∧ dx+ db ∧ dy

=

(
∂a

∂x
dx+

∂a

∂y
dy

)
∧ dx+

(
∂b

∂x
dx+

∂b

∂y
dy

)
∧ dy

=

(
∂b

∂x
− ∂a

∂y

)
dx ∧ dy.

So the condition (∗) says dω = 0.

We now rephrase our motivating question — if ω ∈ Ω1(M) satisfies dω = 0,
can we find some f such that ω = df for some f ∈ Ω0(M)? Now this has the
obvious generalization — given any p-form ω, if dω = 0, can we find some σ
such that ω = dσ?

Example. In R3, we have coordinates x, y, z. We have seen that for f ∈ Ω0(R3),
we have

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

Now if
ω = P dx+Q dy +R dz ∈ Ω1(R3),

then we have

d(P dx) = dP ∧ dx+ P ddx

=

(
∂P

∂x
dx+

∂P

∂y
dy +

∂P

∂z
dz

)
∧ dx

= −∂P
∂y

dx ∧ dy − ∂P

∂z
dx ∧ dz.

So we have

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy +

(
∂R

∂x
− ∂P

∂z

)
dx ∧ dz +

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz.

This is just the curl! So d2 = 0 just says that curl ◦ grad = 0.
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Proof. The above computations suggest that in local coordinates, the axioms
already tell use completely how d works. So we just work locally and see that
they match up globally.

Suppose M is covered by a single chart with coordinates x1, · · · , xn. We
define d : Ω0(M)→ Ω1(M) as required by (i). For p > 0, we define

d

 ∑
i1<...<ip

ωi1,...,ip dxi1 ∧ · · · ∧ dxip

 =
∑

dωi1,...,ip ∧ dxi1 ∧ · · · ∧ dxip .

Then (i) is clear. For (iii), we suppose

ω = f dxI ∈ Ωp(M)

σ = g dxJ ∈ Ωq(M).

We then have

d(ω ∧ σ) = d(fg dxI ∧ dxJ)

= d(fg) ∧ dxI ∧ dxJ

= g df ∧ dxI ∧ dxJ + f dg ∧ dxI ∧ dxJ

= g df ∧ dxI ∧ dxJ + f(−1)p dxI ∧ (dg ∧ dxJ)

= (dω) ∧ σ + (−1)pω ∧ dσ.

So done. Finally, for (ii), if f ∈ Ω0(M), then

d2f = d

(∑
i

∂f

∂xi
dxi

)
=
∑
i,j

∂2f

∂xi∂xj
dxj ∧ dxi = 0,

since partial derivatives commute. Then for general forms, we have

d2ω = d2
(∑

ωI dxI

)
= d

(∑
dωI ∧ dxI

)
= d

(∑
dωI ∧ dxi1 ∧ · · · ∧ dxip

)
= 0

using Leibniz rule. So this works.
Certainly this has the extra properties. To claim uniqueness, if ∂ : Ωp(M)→

Ωp+1(M) satisfies the above properties, then

∂ω = ∂
(∑

ωIdxI

)
=
∑

∂ωI ∧ dxI + ωI ∧ ∂dxI

=
∑

dωI ∧ dxI ,

using the fact that ∂ = d on Ω0(M) and induction.
Finally, if M is covered by charts, we can define d : Ωp(M)→ Ωp+1(M) by

defining it to be the d above on any single chart. Then uniqueness implies this is
well-defined. This gives existence of d, but doesn’t immediately give uniqueness,
since we only proved local uniqueness.
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So suppose ∂ : Ωp(M)→ Ωp+1(M) again satisfies the three properties. We
claim that ∂ is local. We let ω, ω′ ∈ Ωp(M) be such that ω|U = ω′|U for some
U ⊆ M open. Let x ∈ U , and pick a bump function χ ∈ C∞(M) such that
χ ≡ 1 on some neighbourhood W of x, and supp(χ) ⊆ U . Then we have

χ · (ω − ω′) = 0.

We then apply ∂ to get

0 = ∂(χ · (ω − ω′)) = dχ ∧ (ω − ω′) + χ(∂ω − ∂ω′).

But χ ≡ 1 on W . So dχ vanishes on W . So we must have

∂ω|W − ∂ω′|W = 0.

So ∂ω = ∂ω′ on W .
Finally, to show that ∂ = d, if ω ∈ Ωp(M), we take the same χ as before,

and then on x, we have

∂ω = ∂
(
χ
∑

ωI dxI

)
= ∂χ

∑
ωI dxI + χ

∑
∂ωI ∧ dxI

= χ
∑

dωI ∧ dxI

= dω.

So we get uniqueness. Since x was arbitrary, we have ∂ = d.

One useful example of a differential form is a symplectic form.

Definition (Non-degenerate form). A 2-form ω ∈ Ω2(M) is non-degenerate if
ω(Xp, Xp) = 0 implies Xp = 0.

As in the case of an inner product, such an ω gives us an isomorphism
TpM → T ∗pM by

α(Xp)(Yp) = ω(Xp, Yp).

Definition (Symplectic form). A symplectic form is a non-degenerate 2-form ω
such that dω = 0.

Why did we work with covectors rather than vectors when defining differential
forms? It happens that differential forms have nicer properties. If we have some
F ∈ C∞(M,N) and g ∈ Ω0(N) = C∞(N,R), then we can form the pullback

F ∗g = g ◦ F ∈ Ω0(M).

More generally, for x ∈M , we have a map

DF |x : TxM → TF (x)N.

This does not allow us to pushforward a vector field on M to a vector field of N ,
as the map F might not be injective. However, we can use its dual

(DF |x)∗ : T ∗F (x)N → T ∗xM

to pull forms back.
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Definition (Pullback of differential form). Let ω ∈ Ωp(N) and F ∈ C∞(M,N).
We define the pullback of ω along F to be

F ∗ω|x = Λp(DF |x)∗(ω|F (x)).

In other words, for v1, · · · , vp ∈ TxM , we have

(F ∗ω|x)(v1, · · · , vp) = ω|F (x)(DF |x(v1), · · · ,DF |x(vp)).

Lemma. Let F ∈ C∞(M,N). Let F ∗ be the associated pullback map. Then

(i) F ∗ is a linear map Ωp(N)→ Ωp(M).

(ii) F ∗(ω ∧ σ) = F ∗ω ∧ F ∗σ.

(iii) If G ∈ C∞(N,P ), then (G ◦ F )∗ = F ∗ ◦G∗.

(iv) We have dF ∗ = F ∗d.

Proof. All but (iv) are clear. We first check that this holds for 0 forms. If
g ∈ Ω0(N), then we have

(F ∗dg)|x(v) = dg|F (x)(DF |x(v))

= DF |x(v)(g)

= v(g ◦ F )

= d(g ◦ F )(v)

= d(F ∗g)(v).

So we are done.
Then the general result follows from (i) and (ii). Indeed, in local coordinates

y1, · · · , yn, if

ω =
∑

ωi1,...,ip dyi1 ∧ · · · ∧ dyip ,

then we have

F ∗ω =
∑

(F ∗ωi1,...,ip)(F ∗dyi1 ∧ · · · ∧ dyip).

Then we have

dF ∗ω = F ∗dω =
∑

(F ∗dωi1,...,ip)(F ∗dyi1 ∧ · · · ∧ dyip).

5.2 De Rham cohomology

We now get to answer our original motivating question — given an ω ∈ Ωp(M)
with dω = 0, does it follow that there is some σ ∈ Ωp−1(M) such that ω = dσ?

The answer is “not necessarily”. In fact, the extent to which this fails tells
us something interesting about the topology of the manifold. We are going to
define certain vector spaces Hp

dR(M) for each p, such that this vanishes if and
only if all p forms ω with dω = 0 are of the form dθ. Afterwards, we will come
up with techniques to compute this Hp

dR(M), and then we can show that certain
spaces have vanishing Hp

dR(M).
We start with some definitions.

49



5 Differential forms and de Rham cohomology III Differential Geometry

Definition (Closed form). A p-form ω ∈ Ωp(M) is closed if dω = 0.

Definition (Exact form). A p-form ω ∈ Ωp(M) is exact if there is some σ ∈
Ωp−1(M) such that ω = dσ.

We know that every exact form is closed. However, in general, not every
closed form is exact. The extent to which this fails is given by the de Rham
cohomology.

Definition (de Rham cohomology). The pth de Rham cohomology is given by
the R-vector space

Hp
dR(M) =

ker d : Ωp(M)→ Ωp+1(M)

im d : Ωp−1(M)→ Ωp(M)
=

closed forms

exact forms
.

In particular, we have

H0
dR(M) = ker d : Ω0(M)→ Ω1(M).

We could tautologically say that if dω = 0, then ω is exact iff it vanishes
in Hp

dR(M). But this is as useful as saying “Let S be the set of solutions to
this differential equation. Then the differential equation has a solution iff S
is non-empty”. So we want to study the properties of Hp

dR and find ways of
computing them.

Proposition.

(i) Let M have k connected components. Then

H0
dR(M) = Rk.

(ii) If p > dimM , then Hp
dR(M) = 0.

(iii) If F ∈ C∞(M,N), then this induces a map F ∗ : Hp
dR(N) → Hp

dR(M)
given by

F ∗[ω] = [F ∗ω].

(iv) (F ◦G)∗ = G∗ ◦ F ∗.

(v) If F : M → N is a diffeomorphism, then F ∗ : Hp
dR(N) → Hp

dR(M) is an
isomorphism.

Proof.

(i) We have

H0
dR(M) = {f ∈ C∞(M,R) : df = 0}

= {locally constant functions f}
= Rnumber of connected components.

(ii) If p > dimM , then all p-forms are trivial.
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(iii) We first show that F ∗ω indeed represents some member of Hp
dR(M). Let

[ω] ∈ Hp
dR(N). Then dω = 0. So

d(F ∗ω) = F ∗(dω) = 0.

So [F ∗ω] ∈ Hp
dR(M). So this map makes sense.

To see it is well-defined, if [ω] = [ω′], then ω − ω′ = dσ for some σ. So
F ∗ω − F ∗ω′ = d(F ∗σ). So [F ∗ω] = [F ∗ω′].

(iv) Follows from the corresponding fact for pullback of differential forms.

(v) If F−1 is an inverse to F , then (F−1)∗ is an inverse to F ∗ by above.

It turns out that de Rham cohomology satisfies a stronger property of being
homotopy invariant. To make sense of that, we need to define what it means to
be homotopy invariant.

Definition (Smooth homotopy). Let F0, F1 : M → N be smooth maps. A
smooth homotopy from F0 to F1 is a smooth map F : [0, 1]×M → N such that

F0(x) = F (0, x), F1(x) = F (1, x).

If such a map exists, we say F0 and F1 are homotopic.

Note that here F is defined on [0, 1] ×M , which is not a manifold. So we
need to be slightly annoying and say that F is smooth if it can be extended to a
smooth function I ×M → N for I ⊇ [0, 1] open.

We can now state what it means for the de Rham cohomology to be homotopy
invariant.

Theorem (Homotopy invariance). Let F0, F1 be homotopic maps. Then F ∗0 =
F ∗1 : Hp

dR(N)→ Hp
dR(M).

Proof. Let F : [0, 1]×M → N be the homotopy, and

Ft(x) = F (t, x).

We denote the exterior derivative on M by dM (and similarly dN ), and that on
[0, 1]×M by d.

Let ω ∈ Ωp(N) be such that dNω = 0. We let t be the coordinate on [0, 1].
We write

F ∗ω = σ + dt ∧ γ,

where σ = σ(t) ∈ Ωp(M) and γ = γ(t) ∈ Ωp−1(M). We claim that

σ(t) = F ∗t ω.

Indeed, we let ι : {t} ×M → [0, 1]×M be the inclusion. Then we have

F ∗t ω|{t}×M = (F ◦ ι)∗ω = ι∗F ∗ω

= ι∗(σ + dt ∧ γ)

= ι∗σ + ι∗dt ∧ ι∗γ
= ι∗σ,
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using the fact that ι∗dt = 0. As dNω = 0, we have

0 = F ∗dNω

= dF ∗ω

= d(σ + dt ∧ γ)

= dM (σ) + (−1)p
∂σ

∂t
∧ dt+ dt ∧ dMγ

= dMσ + (−1)p
∂σ

∂t
∧ dt+ (−1)p−1dMγ ∧ dt.

Looking at the dt components, we have

∂σ

∂t
= dMγ.

So we have

F ∗1 ω − F ∗0 ω = σ(1)− σ(0) =

∫ 1

0

∂σ

∂t
dt =

∫ 1

0

dMγ dt = dM

∫ 1

0

γ(t) dt.

So we know that
[F ∗1 ω] = [F ∗0 ω].

So done.

Example. Suppose U ⊆ Rn is an open “star-shaped” subset, i.e. there is some
x0 ∈ U such that for any x ∈ U and t ∈ [0, 1], we have

tx+ (1− t)x0 ∈ U.

x0

x

We define Ft : U → U by

Ft(x) = tx+ (1− t)x0.

Then F is a smooth homotopy from the identity map to F0, the constant map
to x0. We clearly have F ∗1 being the identity map, and F ∗0 is the zero map on
Hp

dR(U) for all p ≥ 1. So we have

Hp
dR(U) =

{
0 p ≥ 1

R p = 0
.

Corollary (Poincaré lemma). Let U ⊆ Rn be open and star-shaped. Suppose
ω ∈ Ωp(U) is such that dω = 0. Then there is some σ ∈ Ωp−1(M) such that
ω = dσ.

52



5 Differential forms and de Rham cohomology III Differential Geometry

Proof. Hp
dR(U) = 0 for p ≥ 1.

More generally, we have the following notion.

Definition (Smooth homotopy equivalence). We say two manifolds M,N are
smoothly homotopy equivalent if there are smooth maps F : M → N and
G : N →M such that both F ◦G and G ◦ F are homotopic to the identity.

Corollary. If M and N are smoothly homotopy equivalent, then Hp
dR(M) ∼=

Hp
dR(N).

Note that by approximation, it can be shown that if M and N are homotopy
equivalent as topological spaces (i.e. the same definition where we drop the word
“smooth”), then they are in fact smoothly homotopy equivalent. So the de Rham
cohomology depends only on the homotopy type of the underlying topological
space.

5.3 Homological algebra and Mayer-Vietoris theorem

The main theorem we will have for computing de Rham cohomology will be the
Mayer-Vietoris theorem. Proving this involves quite a lot of setting up and hard
work. In particular, we need to define some notions from homological algebra to
even state Mayer-Vietoris theorem.

The actual proof will be divided into two parts. The first part is a purely
algebraic result known as the snake lemma, and the second part is a differential-
geometric part that proves that we satisfy the hypothesis of the snake lemma.

We will not prove the snake lemma, whose proof can be found in standard
algebraic topology texts (perhaps with arrows the wrong way round).

We start with some definitions.

Definition (Cochain complex and exact sequence). A sequence of vector spaces
and linear maps

· · · V p−1 V p V p+1 · · ·dp−1 dp

is a cochain complex if dp ◦ dp−1 = 0 for all p ∈ Z. Usually we have V p = 0 for
p < 0 and we do not write them out. Keeping these negative degree V p rather
than throwing them away completely helps us state our theorems more nicely,
so that we don’t have to view V 0 as a special case when we state our theorems.

It is exact at p if ker dp = im dp−1, and exact if it is exact at every p.

There are, of course, chain complexes as well, but we will not need them for
this course.

Example. The de Rham complex

Ω0(M) Ω1(M) Ω2(M) · · ·d d

is a cochain complex as d2 = 0. It is exact at p iff Hp
dR(M) = {0}.

Example. If we have an exact sequence such that dimV p < ∞ for all p and
are zero for all but finitely many p, then∑

p

(−1)p dimV p = 0.
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Definition (Cohomology). Let

V · = · · · V p−1 V p V p+1 · · ·dp−1 dp

be a cochain complex. The cohomology of V · at p is given by

Hp(V ·) =
ker dp

im dp−1
.

Example. The cohomology of the de Rham complex is the de Rham cohomology.

We can define maps between cochain complexes:

Definition (Cochain map). Let V · and W · be cochain complexes. A cochain
map V · → W · is a collection of maps fp : V p → W p such that the following
diagram commutes for all p:

V p W p

V p+1 W p+1

fp

dp dp

fp+1

Proposition. A cochain map induces a well-defined homomorphism on the
cohomology groups.

Definition (Short exact sequence). A short exact sequence is an exact sequence
of the form

0 V 1 V 2 V 3 0α β
.

This implies that α is injective, β is surjective, and im(α) = ker(β). By the
rank-nullity theorem, we know

dimV 2 = rank(β) + null(β) = dimV 3 + dimV 1.

We can now state the main technical lemma, which we shall not prove.

Theorem (Snake lemma). Suppose we have a short exact sequence of complexes

0 A· B· C· 0i q
,

i.e. the i, q are cochain maps and we have a short exact sequence

0 Ap Bp Cp 0ip qp

,

for each p.
Then there are maps

δ : Hp(C·)→ Hp+1(A·)
such that there is a long exact sequence

· · · Hp(A·) Hp(B·) Hp(C·)

Hp+1(A·) Hp+1(B·) Hp+1(C·) · · ·

i∗ q∗

δ

i∗ q∗

.
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Using this, we can prove the Mayer-Vietoris theorem.

Theorem (Mayer-Vietoris theorem). Let M be a manifold, and M = U ∪ V ,
where U, V are open. We denote the inclusion maps as follows:

U ∩ V U

V M

i1

i2 j1

j2

Then there exists a natural linear map

δ : Hp
dR(U ∩ V )→ Hp+1

dR (M)

such that the following sequence is exact:

Hp
dR(M) Hp

dR(U)⊕Hp
dR(V ) Hp

dR(U ∩ V )

Hp+1
dR (M) Hp+1

dR (U)⊕Hp+1
dR (V ) · · ·

j∗1⊕j
∗
2 i∗1−i

∗
2

δ
j∗1⊕j

∗
2 i∗1−i

∗
2

Before we prove the theorem, we do a simple example.

Example. Consider M = S1. We can cut the circle up:

U

V

Here we have

S1 = {(x, y) : x2 + y2 = 1}
U = S1 ∩ {y > −ε}
V = S1 ∩ {y < ε}.

As U, V are diffeomorphic to intervals, hence contractible, and U ∩V is diffeomor-
phic to the disjoint union of two intervals, we know their de Rham cohomology.

0 H0
dR(S1) H0

dR(U)⊕H0
dR(V ) H0

dR(U ∩ V )

H1
dR(S1) H1

dR(U)⊕H1
dR(V ) · · ·

We can fill in the things we already know to get

0 R R⊕ R R⊕ R

H1
dR(S1) 0 · · ·
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By adding the degrees alternatingly, we know that

dimH1
dR(S1) = 1.

So
H1

dR(S1) ∼= R.

Now we prove Mayer-Vietoris.

Proof of Mayer-Vietoris. By the snake lemma, it suffices to prove that the
following sequence is exact for all p:

0 Ωp(U ∪ V ) Ωp(U)⊕ Ωp(V ) Ωp(U ∩ V ) 0
j∗1⊕j

∗
2 i∗1−i

∗
2

It is clear that the two maps compose to 0, and the first map is injective. By
counting dimensions, it suffices to show that i∗1 − i∗2 is surjective.

Indeed, let {ϕU , ϕV } be partitions of unity subordinate to {U, V }. Let
ω ∈ Ωp(U ∩ V ). We set σU ∈ Ωp(U) to be

σU =

{
ϕV ω on U ∩ V
0 on U \ suppϕV

.

Similarly, we define σV ∈ Ωp(V ) by

σV =

{
−ϕUω on U ∩ V
0 on V \ suppϕU

.

Then we have
i∗1σU − i∗2σV = (ϕV ω + ϕUω)|U∩V = ω.

So i∗1 − i∗2 is surjective.
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6 Integration

As promised, we will be able to integrate differential forms on manifolds. However,
there is a slight catch. We said that differential forms give us the signed volume of
an infinitesimal parallelepiped, and we can integrate these infinitesimal volumes
up to get the whole volume of the manifold. However, there is no canonical
choice of the sign of the volume, so we do not, in general, get a well-defined
volume.

In order to fix this issue, our manifold needs to have an orientation.

6.1 Orientation

We start with the notion of an orientation of a vector space. After we have one,
we can define an orientation of a manifold to be a smooth choice of orientation
for each tangent space.

Informally, an orientation on a vector space V is a choice of a collection of
ordered bases that we declare to be “oriented”. If (e1, · · · , en) is an oriented
basis, then changing the sign of one of the ei changes orientation, while scaling
by a positive multiple does not. Similarly, swapping two elements in the basis
will induce a change in orientation.

To encode this information, we come up with some alternating form ω ∈
Λn(V ∗). We can then say a basis e1, · · · , en is oriented if ω(e1, · · · , en) is positive.

Definition (Orientation of vector space). Let V be a vector space with dimV =
n. An orientation is an equivalence class of elements ω ∈ Λn(V ∗), where we say
ω ∼ ω′ iff ω = λω′ for some λ > 0. A basis (e1, · · · , en) is oriented if

ω(e1, · · · , en) > 0.

By convention, if V = {0}, an orientation is just a choice of number in {±1}.

Suppose we have picked an oriented basis e1, · · · , en. If we have any other
basis ẽ1, · · · , ẽn, we write

ei =
∑
j

Bij ẽj .

Then we have
ω(ẽ1, · · · , ẽn) = detB ω(e1, · · · , en).

So ẽ1, · · · , ẽn is oriented iff detB > 0.
We now generalize this to manifolds, where we try to orient the tangent

bundle smoothly.

Definition (Orientation of a manifold). An orientation of a manifold M is
defined to be an equivalence class of elements ω ∈ Ωn(M) that are nowhere
vanishing, under the equivalence relation ω ∼ ω′ if there is some smooth f :
M → R>0 such that ω = fω′.

Definition (Orientable manifold). A manifold is orientable if it has some
orientation.

If M is a connected, orientable manifold, then it has precisely two possible
orientations.

57



6 Integration III Differential Geometry

Definition (Oriented manifold). An oriented manifold is a manifold with a
choice of orientation.

Definition (Oriented coordinates). Let M be an oriented manifold. We say
coordinates x1, · · · , xn on a chart U are oriented coordinates if

∂

∂x1

∣∣∣∣
p

, · · · , ∂

∂xn

∣∣∣∣
p

is an oriented basis for TpM for all p ∈ U .

Note that we can always find enough oriented coordinates. Given any
connected chart, either the chart is oriented, or −x1, · · · , xn is oriented. So any
oriented M is covered by oriented charts.

Now by the previous discussion, we know that if x1, · · · , xn and y1, · · · , yn
are oriented charts, then the transition maps for the tangent space all have
positive determinant.

Example. Rn is always assumed to have the standard orientation given by
dx1 ∧ · · · ∧ dxn.

Definition (Orientation-preserving diffeomorphism). Let M,N be oriented
manifolds, and F ∈ C∞(M,N) be a diffeomorphism. We say F preserves
orientation if DF |p : TpM → TF (p)N takes an oriented basis to an oriented
basis.

Alternatively, this says the pullback of the orientation on N is the orientation
on M (up to equivalence).

6.2 Integration

The idea is that to define integration, we fist understand how we can integrate
on Rn, and then patch them up using partitions of unity.

We are going to allow ourselves to integrate on rather general domains.

Definition (Domain of integration). Let D ⊆ Rn. We say D is a domain of
integration if D is bounded and ∂D has measure zero.

Since D can be an arbitrary subset, we define an n-form on D to be some
ω ∈ Ωn(U) for some open U containing D.

Definition (Integration on Rn). Let D be a compact domain of integration,
and

ω = f dx1 ∧ · · · ∧ dxn

be an n-form on D. Then we define∫
D

ω =

∫
D

f(x1, · · · , xn) dx1 · · · dxn.

In general, let U ⊆ Rn and let ω ∈ Ωn(Rn) have compact support. We define∫
U

ω =

∫
D

ω

for some D ⊆ U containing suppω.
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Note that we do not directly say we integrate it on suppω, since suppω need
not have a nice boundary.

Now if we want to integrate on a manifold, we need to patch things up, and
to do so, we need to know how these things behave when we change coordinates.

Definition (Smooth function). Let D ⊆ Rn and f : D → Rm. We say f is
smooth if it is a restriction of some smooth function f̃ : U → Rm where U ⊇ D.

Lemma. Let F : D → E be a smooth map between domains of integration in
Rn, and assume that F |D̊ : D̊ → E̊ is an orientation-preserving diffeomorphism.
Then ∫

E

ω =

∫
D

F ∗ω.

This is exactly what we want.

Proof. Suppose we have coordinates x1, · · · , xn on D and y1, · · · , yn on E. Write

ω = f dy1 ∧ · · · ∧ dyn.

Then we have ∫
E

ω =

∫
E

f dy1 · · · dyn

=

∫
D

(f ◦ F ) |det DF | dx1 · · · dxn

=

∫
D

(f ◦ F ) det DF dx1 · · · dxn

=

∫
D

F ∗ω.

Here we used the fact that |det DF | = det DF because F is orientation-preserving.

We can now define integration over manifolds.

Definition (Integration on manifolds). Let M be an oriented manifold. Let
ω ∈ Ωn(M). Suppose that supp(ω) is a compact subset of some oriented chart
(U,ϕ). We set ∫

M

ω =

∫
ϕ(U)

(ϕ−1)∗ω.

By the previous lemma, this does not depend on the oriented chart (U,ϕ).
If ω ∈ Ωn(M) is a general form with compact support, we do the following:

cover the support by finitely many oriented charts {Uα}α=1,...,m. Let {χα} be a
partition of unity subordinate to {Uα}. We then set∫

M

ω =
∑
α

∫
Uα

χαω.

It is clear that we have

Lemma. This is well-defined, i.e. it is independent of cover and partition of
unity.
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We will not bother to go through the technicalities of proving this properly.
Note that it is possible to define this for non-smooth forms, or not-everywhere-

defined form, or with non-compact support etc, but we will not do it here.
Theoretically, our definition is perfectly fine and easy to work with. However,

it is absolutely useless for computations, and there is no hope you can evaluate
that directly.

Now how would we normally integrate things? In IA Vector Calculus, we
probably did something like this — if we want to integrate something over a
sphere, we cut the sphere up into the Northern and Southern hemisphere. We
have coordinates for each of the hemispheres, so we integrate each hemisphere
separately, and then add the result up.

This is all well, except we have actually missed out the equator in this
process. But that doesn’t really matter, because the equator has measure zero,
and doesn’t contribute to the integral.

We now try to formalize our above approach. The below definition is not
standard:

Definition (Parametrization). Let M be either an oriented manifold of dimen-
sion n, or a domain of integration in Rn. By a parametrization of M we mean a
decomposition

M = S1 ∪ · · · ∪ Sn,

with smooth maps Fi : Di → Si, where Di is a compact domain of integration,
such that

(i) Fi|D̊i : D̊i → S̊i is an orientation-preserving diffeomorphism

(ii) ∂Si has measure zero (if M is a manifold, this means ϕ(∂Si ∩ U) for all
charts (U,ϕ)).

(iii) For i 6= j, Si intersects Sj only in their common boundary.

Theorem. Given a parametrization {Si} of M and an ω ∈ Ωn(M) with compact
support, we have ∫

M

ω =
∑
i

∫
Di

F ∗i ω.

Proof. By using partitions of unity, we may consider the case where ω has
support in a single chart, and thus we may wlog assume we are working on Rn,
and then the result is obvious.

There is a problem — in all our lives, we’ve been integrating functions, not
forms. If we have a function f : R→ R, then we can take the integral∫

f dx.

Now of course, we are not actually integrating f . We are integrating the
differential form f dx. Why we seem like we are integrating functions is because
we have a background form dx. So if we have a manifold M with a “background”
n-form ω ∈ Ωn(M), then we can integrate f ∈ C∞(M,R) by∫

M

fω.
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In general, a manifold does not come with such a canonical background form.
However, in some cases, it does.

Lemma. Let M be an oriented manifold, and g a Riemannian metric on M .
Then there is a unique ω ∈ Ωn(M) such that for all p, if e1, · · · , en is an oriented
orthonormal basis of TpM , then

ω(e1, · · · , en) = 1.

We call this the Riemannian volume form, written dVg.

Note that dVg is a notation. It is not the exterior derivative of some mysterious
object Vg.

Proof. Uniqueness is clear, since if ω′ is another, then ωp = λω′p for some λ, and
evaluating on an orthonormal basis shows that λ = 1.

To see existence, let σ be any nowhere vanishing n-form giving the orientation
of M . On a small set U , pick a frame s1, · · · , sn for TM |U and apply the Gram-
Schmidt process to obtain an orthonormal frame e1, · · · , en, which we may wlog
assume is oriented. Then we set

f = σ(e1, · · · , en),

which is non-vanishing because σ is nowhere vanishing. Then set

ω =
σ

f
.

This proves existence locally, and can be patched together globally by uniqueness.

6.3 Stokes Theorem

Recall from, say, IA Vector Calculus that Stokes’ theorem relates an integral on
a manifold to a integral on its boundary. However, our manifolds do not have
boundaries! So we can’t talk about Stokes’ theorem! So we now want to define
what it means to be a manifold with boundary.

Definition (Manifold with boundary). Let

Hn = {(x1, · · · , xn) ∈ Rn : xn ≥ 0}.

A chart-with-boundary on a set M is a bijection ϕ : U → ϕ(U) for some U ⊆M
such that ϕ(U) ⊆ Hn is open. Note that this image may or may not hit the
boundary of Hn. So a “normal” chart is also a chart with boundary.

An atlas-with-boundary on M is a cover by charts-with-boundary (Uα, ϕα)
such that the transition maps

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

are smooth (in the usual sense) for all α, β.
A manifold-with-boundary is a set M with an (equivalence class of) atlas

with boundary whose induced topology is Hausdorff and second-countable.
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Note that a manifold with boundary is not a manifold, but a manifold is a
manifold with boundary. We will often be lazy and drop the “with boundary”
descriptions.

Definition (Boundary point). If M is a manifold with boundary and p ∈ M ,
then we say p is a boundary point if ϕ(p) ∈ ∂Hn for some (hence any) chart-
with-boundary (U,ϕ) containing p. We let ∂M be the set of boundary points
and Int(M) = M \ ∂M .

Note that these are not the topological notions of boundary and interior.

Proposition. Let M be a manifold with boundary. Then Int(M) and ∂M are
naturally manifolds, with

dim ∂M = dim IntM − 1.

Example. The solid ball B1(0) is a manifold with boundary, whose interior is
B1(0) and boundary is Sn−1.

Note that the product of manifolds with boundary is not a manifold with
boundary. For example, the interval [0, 1] is a manifold with boundary, but [0, 1]2

has corners. This is bad. We can develop the theory of manifolds with corners,
but that is more subtle. We will not talk about them.

Everything we did for manifolds can be done for manifolds with boundary,
e.g. smooth functions, tangent spaces, tangent bundles etc. Note in particular
the definition of the tangent space as derivations still works word-for-word.

Lemma. Let p ∈ ∂M , say p ∈ U ⊆M where (U,ϕ) is a chart (with boundary).
Then

∂

∂x1

∣∣∣∣
p

, · · · , ∂

∂xn

∣∣∣∣
p

is a basis for TpM . In particular, dimTpM = n.

Proof. Since this is a local thing, it suffices to prove it for M = Hn. We write
C∞(H,R) for the functions f : Hn → Rn that extend smoothly to an open
neighbourhood of Hn. We fix a ∈ ∂Hn. Then by definition, we have

TaHn = Dera(C∞(Hn,R)).

We let i∗ : TaHn → TaRn be given by

i∗(X)(g) = X(g|Hn)

We claim that i∗ is an isomorphism. For injectivity, suppose i∗(X) = 0. If
f ∈ C∞(Hn), then f extends to a smooth g on some neighbourhood U of Hn.
Then

X(f) = X(g|Hn) = i∗(X)(g) = 0.

So X(f) = 0 for all f . Then X = 0. So i∗ is injective.
To see surjectivity, let Y ∈ TaRn, and let X ∈ TaHn be defined by

X(f) = Y (g),
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where g ∈ C∞(Hn,R) is any extension of f to U . To see this is well-defined, we
let

Y =

n∑
i=1

αi
∂

∂xi

∣∣∣∣
a

.

Then

Y (g) =

n∑
i=1

αi
∂g

∂xi
(a),

which only depends on g|Hn , i.e. f . So X is a well-defined element of TaHn, and
i∗(X) = Y by construction. So done.

Now we want to see how orientations behave. We can define them in exactly
the same way as manifolds, and everything works. However, something interesting
happens. If a manifold with boundary has an orientation, this naturally induces
an orientation of the boundary.

Definition (Outward/Inward pointing). Let p ∈ ∂M . We then have an inclusion
Tp∂M ⊆ TpM . If Xp ∈ TpM , then in a chart, we can write

Xp =

n∑
i=1

ai
∂

∂xi
,

where ai ∈ R and ∂
∂x1

, · · · , ∂
∂xn−1

are a basis for Tp∂M . We say Xp is outward

pointing if an < 0, and inward pointing if an > 0.

Definition (Induced orientation). Let M be an oriented manifold with boundary.
We say a basis e1, · · · , en−1 is an oriented basis for Tp∂M if (Xp, e1, · · · , en−1)
is an oriented basis for TpM , where Xp is any outward pointing element in TpM .
This orientation is known as the induced orientation.

It is an exercise to see that these notions are all well-defined and do not
depend on the basis.

Example. We have an isomorphism

∂Hn ∼= Rn−1

(x1, · · · , xn−1, 0) 7→ (x1, · · · , xn−1).

So

− ∂

∂xn

∣∣∣∣
∂Hn

is an outward pointing vector. So we know x1, · · · , xn−1 is an oriented chart for
∂Hn iff

− ∂

∂xn
,
∂

∂x1
, · · · , ∂

∂xn−1

is oriented, which is true iff n is even.

Example. If n = 1, say M = [a, b] ⊆ R with a < b, then {a, b}, then Tp∂M =
{0}. So an orientation of ∂M is a choice of numbers ±1 attached to each point.
The convention is that if M is in the standard orientation induced by M ⊆ R,
then the orientation is obtained by giving +1 to b and −1 to a.
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Finally, we get to Stokes’ theorem.

Theorem (Stokes’ theorem). Let M be an oriented manifold with boundary of
dimension n. Then if ω ∈ Ωn−1(M) has compact support, then∫

M

dω =

∫
∂M

ω.

In particular, if M has no boundary, then∫
M

dω = 0

Note that this makes sense. dω is an n-form on M , so we can integrate it.
On the right hand side, what we really doing is integrating the restriction of ω
to ∂M , i.e. the (n − 1)-form i∗ω, where i : ∂M → M is the inclusion, so that
i∗ω ∈ Ωn−1(∂M).

Note that if M = [a, b], then this is just the usual fundamental theorem of
calculus.

The hard part of the proof is keeping track of the signs.

Proof. We first do the case where M = Hn. Then we have

ω =

n∑
i=1

ωi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

where ωi is compactly supported, and the hat denotes omission. So we have

dω =
∑
i

dωi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=
∑
i

∂ωi
∂xi

dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=
∑
i

(−1)i−1 ∂ωi
∂xi

dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn

Let’s say

supp(ω) = {xj ∈ [−R,R] : j = 1, · · · , n− 1;xn ∈ [0, R]} = A.

Then suppose i 6= n. Then we have∫
Hn

∂ωi
∂xi

dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn

=

∫
A

∂ωi
∂xi

dx1 · · · dxn

=

∫ R

−R

∫ R

−R
· · ·
∫ R

−R

∫ R

0

∂ωi
∂xi

dx1 · · · dxn

By Fubini’s theorem, we can integrate this in any order. We integrate with
respect to dxi first. So this is

= ±
∫ R

−R
· · ·
∫ R

−R

∫ R

0

(∫ R

−R

∂ωi
∂xi

dxi

)
dx1 · · · d̂xi · · · dxn
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By the fundamental theorem of calculus, the inner integral is

ω(x1, · · · , xi−1, R, xi+1, · · · , xn)−ω(x1, · · · , xi−1,−R, xi+1, · · · , xn) = 0−0 = 0.

So the integral vanishes. So we are only left with the i = n term. So we have∫
Hn

dω = (−1)n−1

∫
A

∂ωn
∂xn

dx1 · · · dxn

= (−1)n−1

∫ R

−R
· · ·
∫ R

−R

(∫ R

0

∂ωn
∂xn

dxn

)
dx1 · · · dxn−1

Now that integral is just

ωn(x1, · · · , xn−1, R)− ωn(x1, · · · , xn−1, 0) = −ωn(x1, · · · , xn−1, 0).

So this becomes

= (−1)n
∫ R

−R
· · ·
∫ R

−R
ωn(x1, · · · , xn−1, 0) dx1 · · · dxn−1.

Next we see that
i∗ω = ωndx1 ∧ · · · ∧ dxn−1,

as i∗(dxn) = 0. So we have∫
∂Hn

i∗ω = ±
∫
A∩∂Hn

ω(x1, · · · , xn−1, 0) dx1 · · · dxn.

Here the sign is a plus iff x1, · · · , xn−1 are an oriented coordinate for ∂Hn, i.e.
n is even. So this is∫

∂Hn
ω = (−1)n

∫ R

−R
· · ·
∫ R

−R
ωn(x1, · · · , xn−1, 0) dx1 · · · dxn−1 =

∫
Hn

dω.

Now for a general manifold M , suppose first that ω ∈ Ωn−1(M) is compactly
supported in a single oriented chart (U,ϕ). Then the result is true by working
in local coordinates. More explicitly, we have∫

M

dω =

∫
Hn

(ϕ−1)∗dω =

∫
Hn

d((ϕ−1)∗ω) =

∫
∂Hn

(ϕ−1)∗ω =

∫
∂M

ω.

Finally, for a general ω, we just cover M by oriented charts (U,ϕα), and use a
partition of unity χα subordinate to {Uα}. So we have

ω =
∑

χαω.

Then

dω =
∑

(dχα)ω +
∑

χαdω = d
(∑

χα

)
ω +

∑
χαdω =

∑
χαdω,

using the fact that
∑
χα is constant, hence its derivative vanishes. So we have∫

M

dω =
∑
α

∫
M

χαdω =
∑
α

∫
∂M

χαω =

∫
∂M

ω.

65



6 Integration III Differential Geometry

Then all the things likes Green’s theorem and divergence theorem follow from
this.

Example. Let M be a manifold without boundary with a symplectic form
ω ∈ Ω2(M) that is closed and positive definite. Then by basic Linear algebra we
know ∫

M

ωn 6= 0.

Since ω is closed, it is an element [ω] ∈ H2
dR(M). Does this vanish? If ω = dτ ,

then we have
d(τ ∧ ω ∧ · · · ∧ ω) = ωn.

So we have ∫
M

ωn =

∫
M

d(τ ∧ ω ∧ · · · ∧ ω) = 0

by Stokes’ theorem. This is a contradiction. So [ω] is non-zero in H2
dR(M).

66
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7 De Rham’s theorem*

In the whole section, M will be a compact manifold.

Theorem (de Rham’s theorem). There exists a natural isomorphism

Hp
dR(M) ∼= Hp(M,R),

where Hp(M,R) is the singular cohomology of M , and this is in fact an iso-
morphism of rings, where Hp

dR(M) has the product given by the wedge, and
Hp(M,R) has the cup product.

Recall that singular cohomology is defined as follow:

Definition (Singular p-complex). Let M be a manifold. Then a singular p-
simplex is a continuous map

σ : ∆p →M,

where

∆p =

{
p∑
i=0

tiei :
∑

tI = 1

}
⊆ Rn+1.

We define

Cp(M) = {formal sums
∑

aiσi : ai ∈ R, σi a singular p simplex}.

We define

C∞p (m) = {formal sums
∑

aiσi : ai ∈ R, σi a smooth singular p simplex}.

Definition (Boundary map). The boundary map

∂ : Cp(M)→ Cp−1(M)

is the linear map such that if σ : ∆p →M is a p simplex, then

∂σ =
∑

(−1)iσ ◦ Fi,p,

where Fi,p maps ∆p−1 affine linearly to the face of ∆p opposite the ith vertex.
We similarly have

∂ : C∞p (M)→ C∞p−1(M).

We can then define singular homology

Definition (Singular homology). The singular homology of M is

Hp(M,R) =
ker ∂ : Cp(M)→ Cp−1(M)

im ∂ : Cp+1(M)→ Cp(M)
.

The smooth singular homology is the same thing with Cp(M) replaced with
C∞p (M).
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7 De Rham’s theorem* III Differential Geometry

H∞p has the same properties as Hp, e.g. functoriality, (smooth) homotopy
invariance, Mayer-Vietoris etc with no change in proof.

Any smooth p-simplex σ is also continuous, giving a natural inclusion

i : C∞p (M)→ Cp(M),

which obviously commutes with ∂, giving

i∗ : H∞p (M)→ Hp(M).

Theorem. The map i∗ : H∞p (M)→ Hp(M) is an isomorphism.

There are three ways we can prove this. We will give the ideas for these
proofs:

(i) We can show that any continuous map F : M → N between manifolds is
homotopic to a smooth one. But this is painful to prove.

(ii) What we really care about is maps σ : ∆p →M , and we can barycentrically
subdivide the simplex so that it only lies in a single chart, and then it is
easy to do smooth approximation.

(iii) As Hp and H∞p have enough properties in common, in particular they
both have Mayer-Vietoris and agree on convex sets, this implies they are
the same. We will not spell out this proof, because we are going to do this
to prove that de Rham cohomology is the same as singular cohomology

Since we are working with R, we can cheat and define singular cohomology
in a simple way:

Definition (Singular cohomology). The singular cohomology of M is defined as

Hp(M,R) = Hom(Hp(M,R),R).

Similarly, the smooth singular cohomology is

Hp
∞(M,R) = Hom(H∞p (M,R),R).

This is a bad definition in general! It just happens to work for singular
cohomology with coefficients in R, and we are not too bothered to write dowm
the proper definition.

Our goal is now to describe an isomorphism

Hp
dR(M) ∼= Hp

∞(M,R).

The map itself is given as follows:
Suppose [w] ∈ Hp

dR(M), so ω ∈ Ωp(M) with dω = 0. Suppose that σ : ∆p→
M is smooth with ∂σ = 0. We can then define

I([ω]) =

∫
∆p

σ∗ω ∈ R.

Note that we have not defined what
∫

∆p means, because ∆p is not even a
manifold with boundary — it has corners. We can develop an analogous theory
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of integration on manifolds with corners, but we can also be lazy, and just
integrate over

∆×p = ∆p \ {codimension 2 faces}.

Now ω|∆∗p does not have compact support, but has the property that it is the
restriction of a (unique) p-form on ∆p, so in particular it is bounded. So the
integral is finite.

Now in general, if τ =
∑
aiσi ∈ Cp(M), we define

I([ω])(τ) =
∑

ai

∫
∆p

σ∗i ω ∈ R.

Now Stokes theorem tell us ∫
∂σ

ω =

∫
σ

dω.

So we have

Lemma. I is a well-defined map Hp
dR(M)→ Hp

∞(M,R).

Proof. If [ω] = [ω′], then ω − ω′ = dα. Then let σ ∈ Hp
∞(M,R). Then∫

σ

(ω − ω′) =

∫
σ

dα =

∫
∂σ

α = 0,

since ∂σ = 0.
On the other hand, if [σ] = [σ′], then σ − σ = ∂β for some β. Then we have∫

σ−σ′
ω =

∫
∂β

ω =

∫
β

dω = 0.

So this is well-defined.

Lemma. I is functorial and commutes with the boundary map of Mayer-Vietoris.
In other words, if F : M → N is smooth, then the diagram

Hp
dR(M) Hp

dR(N)

Hp
∞(M) Hp

∞(N)

F∗

I I

F∗

.

And if M = U ∪ V and U, V are open, then the diagram

Hp
dR(U ∩ V ) Hp+1

dR (U ∪ V )

Hp
∞(U ∩ V,R) Hp(U ∪ V,R)

δ

I I

δ

also commutes. Note that the other parts of the Mayer-Vietoris sequence
commute because they are induced by maps of manifolds.

Proof. Trace through the definitions.

69
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Proposition. Let U ⊆ Rn is convex, then

U : Hp
dR(U)→ Hp

∞(U,R)

is an isomorphism for all p.

Proof. If p > 0, then both sides vanish. Otherwise, we check manually that
I : H0

dR(U)→ H0
∞(U,R) is an isomorphism.

These two are enough to prove that the two cohomologies agree — we can
cover any manifold by convex subsets of Rn, and then use Mayer-Vietoris to
patch them up.

We make the following definition:

Definition (de Rham).

(i) We say a manifold M is de Rham if I is an isomorphism.

(ii) We say an open cover {Uα} of M is de Rham if Uα1
∩ · · · ∩Uαp is de Rham

for all α1, · · · , αp.

(iii) A de Rham basis is a de Rham cover that is a basis for the topology on M .

Our plan is to inductively show that everything is indeed de Rham.
We have already seen that if U ⊆ Rn is convex, then it is de Rham, and a

countable disjoint union of de Rham manifolds is de Rham.
The key proposition is the following:

Proposition. Suppose {U, V } is a de Rham cover of U ∪ V . Then U ∪ V is de
Rham.

Proof. We use the five lemma! We write the Mayer-Vietoris sequence that is
impossible to fit within the margins:

Hp
dR(U)⊕Hp

dR(V ) Hp
dR(U ∪ V ) Hp+1

dR (U ∩ V ) Hp
dR(U)⊕Hp+1

dR (V ) Hp+1
dR (U ∪ V )

Hp
∞(U)⊕Hp

∞(V ) Hp
∞(U ∪ V ) Hp+1

∞ (U ∩ V ) Hp
∞(U)⊕Hp+1

∞ (V ) Hp+1
∞ (U ∪ V )

I⊕I I I I⊕I I

This huge thing commutes, and all but the middle map are isomorphisms. So by
the five lemma, the middle map is also an isomorphism. So done.

Corollary. If U1, · · · , Uk is a finite de Rham cover of U1 ∪ · · · ∪ Uk = N , then
M is de Rham.

Proof. By induction on k.

Proposition. The disjoint union of de Rham spaces is de Rham.

Proof. Let Ai be de Rham. Then we have

Hp
dR

(∐
Ai

)
∼=
∏

Hp
dR(Ai) ∼=

∏
Hp
∞(Ai) ∼= Hp

∞

(∐
Ai

)
.
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Lemma. Let M be a manifold. If it has a de Rham basis, then it is de Rham.

Proof sketch. Let f : M → R be an “exhaustion function”, i.e. f−1([−∞, c]) for
all c ∈ R. This is guaranteed to exist for any manifold. We let

Am = {q ∈M : f(q) ∈ [m,m+ 1]}.

We let

A′m =

{
q ∈M : f(q) ∈

[
m− 1

2
,m+

3

2

]}
.

Given any q ∈ Am, there is some Uα(q) ⊆ A′m in the de Rham basis containing q.
As Am is compact, we can cover it by a finite number of such Uαi , with each
Uαi ⊆ A′m. Let

Bm = Uα1
∪ · · · ∪ Uαr .

Since Bm has a finite de Rham cover, so it is de Rham. Observe that if
Bm ∩Bm̃ 6= ∅, then M̃ ∈ {m,m− 1,m+ 1}. We let

U =
⋃

m even

Bm, V =
⋃

m odd

Bm.

Then this is a countable union of de Rham spaces, and is thus de Rham. Similarly,
U ∩ V is de Rham. So M = U ∪ V is de Rham.

Theorem. Any manifold has a de Rham basis.

Proof. If U ⊆ Rn is open, then it is de Rham, since there is a basis of convex
sets {Uα} (e.g. take open balls). So they form a de Rham basis.

Finally, M has a basis of subsets diffeomorphic to open subsets of Rn. So it
is de Rham.
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8 Connections

8.1 Basic properties of connections

Imagine we are moving in a manifold M along a path γ : I →M . We already
know what “velocity” means. We simply have to take the derivative of the path
γ (and pick the canonical tangent vector 1 ∈ TpI) to obtain a path γ : I → TM .
Can we make sense of our acceleration? We can certainly iterate the procedure,
treating TM as just any other manifold, and obtain a path γ : I → TTM . But
this is not too satisfactory, because TTM is a rather complicated thing. We
would want to use the extra structure we know about TM , namely each fiber is
a vector space, to obtain something nicer, perhaps an acceleration that again
lives in TM .

We could try the naive definition

d

dt
= lim
h→0

γ(t+ h)− γ(t)

h
,

but this doesn’t make sense, because γ(t+ h) and γ(t) live in different vector
spaces.

The problem is solved by the notion of a connection. There are (at least) two
ways we can think of a connection — on the one hand, it is a specification of
how we can take derivatives of sections, so by definition this solves our problem.
On the other hand, we can view it as telling us how to compare infinitesimally
close vectors. Here we will define it the first way.

Notation. Let E be a vector bundle on M . Then we write

Ωp(E) = Ω0(E ⊗ Λp(T ∗M)).

So an element in Ωp(E) takes in p tangent vectors and outputs a vector in E.

Definition (Connection). Let E be a vector bundle on M . A connection on E
is a linear map

dE : Ω0(E)→ Ω1(E)

such that
dE(fs) = df ⊗ s+ fdEs

for all f ∈ C∞(M) and s ∈ Ω0(E).
A connection on TM is called a linear or Koszul connection.

Given a connection dE on a vector bundle, we can use it to take derivatives
of sections. Let s ∈ Ω0(E) be a section of E, and X ∈ Vect(M). We want to
use the connection to define the derivative of s in the direction of X. This is
easy. We define ∇X : Ω0(E)→ Ω0(E) by

∇X(s) = 〈dE(s), X〉 ∈ Ω0(E),

where the brackets denote applying dE(s) : TM → E to X. Often we just call
∇X the connection.

Proposition. For any X, ∇X is linear in s over R, and linear in X over C∞(M).
Moreover,

∇X(fs) = f∇X(s) +X(f)s

for f ∈ C∞(M) and s ∈ Ω0(E).
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This doesn’t really solve our problem, though. The above lets us differentiate
sections of the whole bundle E along an everywhere-defined vector field. However,
what we want is to differentiate a path in E along a vector field defined on that
path only.

Definition (Vector field along curve). Let γ : I →M be a curve. A vector field
along γ is a smooth V : I → TM such that

V (t) ∈ Tγ(t)M

for all t ∈ I. We write

J(γ) = {vector fields along γ}.

The next thing we want to prove is that we can indeed differentiate these
things.

Lemma. Given a linear connection ∇ and a path γ : I → M , there exists a
unique map Dt : J(γ)→ J(γ) such that

(i) Dt(fV ) = ḟV + fDtV for all f ∈ C∞(I)

(ii) If U is an open neighbourhood of im(γ) and Ṽ is a vector field on U such
that Ṽ |γ(t) = Vt for all t ∈ I, then

Dt(V )|t = ∇γ̇(0)Ṽ .

We call Dt the covariant derivative along γ.

In general, when we have some notion on Rn that involves derivatives and
we want to transfer to general manifolds with connection, all we do is to replace
the usual derivative with the covariant derivative, and we will usually get the
right generalization, because this is the only way we can differentiate things on
a manifold.

Before we prove the lemma, we need to prove something about the locality
of connections:

Lemma. Given a connection ∇ and vector fields X,Y ∈ Vect(M), the quantity
∇XY |p depends only on the values of Y near p and the value of X at p.

Proof. It is clear from definition that this only depends on the value of X at p.
To show that it only depends on the values of Y near p, by linearity, we just

have to show that if Y = 0 in a neighbourhood U of p, then ∇XY |p = 0. To do
so, we pick a bump function χ that is identically 1 near p, then supp(X) ⊆ U .
Then χY = 0. So we have

0 = ∇X(χY ) = χ∇X(Y ) +X(χ)Y.

Evaluating at p, we find that X(χ)Y vanishes since χ is constant near p. So
∇X(Y ) = 0.

We now prove the existence and uniqueness of the covariant derivative.
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Proof of previous lemma. We first prove uniqueness.
By a similar bump function argument, we know that DtV |t0 depends only

on values of V (t) near t0. Suppose that locally on a chart, we have

V (t) =
∑
j

Vj(t)
∂

∂xj

∣∣∣∣
γ(t)

for some Vj : I → R. Then we must have

DtV |t0 =
∑
j

V̇j(t)
∂

∂xj

∣∣∣∣
γ(t0)

+
∑
j

Vj(t0)∇γ̇(t0)
∂

∂xj

by the Leibniz rule and the second property. But every term above is uniquely
determined. So it follows that DtV must be given by this formula.

To show existence, note that the above formula works locally, and then they
patch because of uniqueness.

Proposition. Any vector bundle admits a connection.

Proof. Cover M by Uα such that E|Uα is trivial. This is easy to do locally, and
then we can patch them up with partitions of unity.

Note that a connection is not a tensor, since it is not linear over C∞(M).
However, if dE and d̃E are connections, then

(dE − d̃E)(fs) = df ⊗ s+ fdEs− (df ⊗ s+ f d̃ES) = f(dE − d̃E)(s).

So the difference is linear. Recall from sheet 2 that if E,E′ are vector bundles
and

α : Ω0(E)→ Ω0(E′)

is a map such that
α(fs) = fα(s)

for all s ∈ Ω0(E) and f ∈ C∞(M), then there exists a unique bundle morphism
ξ : E → E′ such that

α(s)|p = ξ(s(p)).

Applying this to α = dE − d̃E : Ω0(E) → Ω1(E) = Ω0(E ⊗ T ∗M), we know
there is a unique bundle map

ξ : E → E ⊗ T ∗M

such that
dE(s)|p = d̃E(s)|p + ξ(s(p)).

So we can think of dE − d̃E as a bundle morphism

E → E ⊗ T ∗M.

In other words, we have

dE − d̃E ∈ Ω0(E ⊗ E∗ ⊗ T ∗M) = Ω1(End(E)).

The conclusion is that the set of all connections on E is an affine space modelled
on Ω1(End(E)).
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Induced connections

In many cases, having a connection on a vector bundle allows us to differentiate
many more things. Here we will note a few.

Proposition. The map dE extends uniquely to dE : Ωp(E) → Ωp+1(E) such
that dE is linear and

dE(w ⊗ s) = dω ⊗ s+ (−1)pω ∧ dEs,

for s ∈ Ω0(E) and ω ∈ Ωp(M). Here ω ∧ dEs means we take the wedge on the
form part of dEs. More generally, we have a wedge product

Ωp(M)× Ωq(E)→ Ωp+q(E)

(α, β ⊗ s) 7→ (α ∧ β)⊗ s.

More generally, the extension satisfies

dE(ω ∧ ξ) = dω ∧ ξ + (−1)qω ∧ dEξ,

where ξ ∈ Ωp(E) and ω ∈ Ωq(M).

Proof. The formula given already uniquely specifies the extension, since every
form is locally a sum of things of the form ω ⊗ s. To see this is well-defined, we
need to check that

dE((fω)⊗ s) = dE(ω ⊗ (fs)),

and this follows from just writing the terms out using the Leibniz rule. The
second part follows similarly by writing things out for ξ = η ⊗ s.

Definition (Induced connection on tensor product). Let E,F be vector bundles
with connections dE , dF respectively. The induced connection is the connection
dE⊗F on E ⊗ F given by

dE⊗F (s⊗ t) = dEs⊗ t+ s⊗ dF t

for s ∈ Ω0(E) and t ∈ Ω0(F ), and then extending linearly.

Definition (Induced connection on dual bundle). Let E be a vector bundle
with connection dE . Then there is an induced connection dE∗ on E∗ given by
requiring

d〈s, ξ〉 = 〈dEs, ξ〉+ 〈s,dE∗ξ〉,

for s ∈ Ω0(E) and ξ ∈ Ω0(E∗). Here 〈 · , · 〉 denotes the natural pairing Ω0(E)×
Ω0(E∗)→ C∞(M,R).

So once we have a connection on E, we have an induced connection on all
tensor products of it.

Christoffel symbols

We also have a local description of the connection, known as the Christoffel
symbols.
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Say we have a frame e1, · · · , er for E over U ⊆ M . Then any section
s ∈ Ω0(E|U ) is uniquely of the form

s = siei,

where si ∈ C∞(U,R) and we have implicit summation over repeated indices (as
we will in the whole section).

Given a connection dE , we write

dEei = Θj
i ⊗ ej ,

where Θj
i ∈ Ω1(U). Then we have

dEs = dEs
iei = dsi ⊗ ei + sidEei = (dsj + Θj

is
i)⊗ ej .

We can write s = (s1, · · · , sr). Then we have

dEs = ds + Θs,

where the final multiplication is matrix multiplication.
It is common to write

dE = d + Θ,

where Θ is a matrix of 1-forms. It is a good idea to just view this just as a
formal equation, rather than something that actually makes mathematical sense.

Now in particular, if we have a linear connection ∇ on TM and coordinates
x1, · · · , xn on U ⊆M , then we have a frame for TM |U given by ∂1, · · · , ∂n. So
we again have

dE∂i = Θk
i ⊗ ∂k.

where Θk
i ∈ Ω1(U). But we don’t just have a frame for the tangent bundle, but

also the cotangent bundle. So in these coordinates, we can write

Θk
i = Γk`i dx`,

where Γk`i ∈ C∞(U). These Γk`i are known as the Christoffel symbols.
In this notation, we have

∇∂j∂i = 〈dE∂i, ∂j〉
= 〈Γk`i dx` ⊗ ∂k, ∂j〉
= Γkji∂k.

8.2 Geodesics and parallel transport

One thing we can do with a connection is to define a geodesic as a path with
“no acceleration”.

Definition (Geodesic). Let M be a manifold with a linear connection ∇. We
say that γ : I →M is a geodesic if

Dtγ̇(t) = 0.
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A natural question to ask is if geodesics exist. This is a local problem, so we
work in local coordinates. We try to come up with some ordinary differential
equations that uniquely specify a geodesic, and then existence and uniqueness
will be immediate. If we have a vector field V ∈ J(γ), we can write it locally as

V = V j∂j ,

then we have
DtV = V̇ j∂j + V j∇γ̇(t0)∂j .

We now want to write this in terms of Christoffel symbols. We put γ =
(γ1, · · · , γn). Then using the chain rule, we have

DtV = V̇ k∂k + V j γ̇i∇∂i∂j
= (V̇ k + V j γ̇iΓkij)∂k.

Recall that γ is a geodesic if Dtγ̇ = 0 on I. This holds iff we locally have

γ̈k + γ̇iγ̇jΓkij = 0.

As this is just a second-order ODE in γ, we get unique solutions locally given
initial conditions.

Theorem. Let ∇ be a linear connection on M , and let W ∈ TpM . Then there
exists a geodesic γ : (−ε, ε)→M for some ε > 0 such that

γ̇(0) = W.

Any two such geodesics agree on their common domain.

More generally, we can talk about parallel vector fields.

Definition (Parallel vector field). Let ∇ be a linear connection on M , and
γ : I → M be a path. We say a vector field V ∈ J(γ) along γ is parallel if
DtV (t) ≡ 0 for all t ∈ I.

What does this say? If we think of Dt as just the usual derivative, this tells
us that the vector field V is “constant” along γ (of course it is not literally
constant, since each V (t) lives in a different vector space).

Example. A path γ is a geodesic iff γ̇ is parallel.

The important result is the following:

Lemma (Parallel transport). Let t0 ∈ I and ξ ∈ Tγ(t0)M . Then there exists a
unique parallel vector field V ∈ J(γ) such that V (t0) = ξ. We call V the parallel
transport of ξ along γ.

Proof. Suppose first that γ(I) ⊆ U for some coordinate chart U with coordinates
x1, · · · , xn. Then V ∈ J(γ) is parallel iff DtV = 0. We put

V =
∑

V j(t)
∂

∂xj
.

Then we need
V̇ k + V j γ̇iΓkij = 0.

This is a first-order linear ODE in V with initial condition given by V (t0) = ξ,
which has a unique solution.

The general result then follows by patching, since by compactness, the image
of γ can be covered by finitely many charts.
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Given this, we can define a map given by parallel transport:

Definition (Parallel transport). Let γ : I →M be a curve. For t0, t1, we define
the parallel transport map

Pt0t1 : Tγ(t0)M → Tγ(t1)M

given by ξ 7→ Vξ(t1).

It is easy to see that this is indeed a linear map, since the equations for
parallel transport are linear, and this has an inverse Pt1t0 given by the inverse
path. So the connection ∇ “connects” Tγ(t0)M and Tγ(t1)M .

Note that this connection depends on the curve γ chosen! This problem is in
general unfixable. Later, we will see that there is a special kind of connections
known as flat connections such that the parallel transport map only depends on
the homotopy class of the curve, which is an improvement.

8.3 Riemannian connections

Now suppose our manifold M has a Riemannian metric g. It is then natural to
ask if there is a “natural” connection compatible with g.

The requirement of “compatibility” in some sense says the product rule is
satisfied by the connection. Note that saying this does require the existence of a
metric, since we need one to talk about the product of two vectors.

Definition (Metric connection). A linear connection ∇ is compatible with g (or
is a metric connection) if for all X,Y, Z ∈ Vect(M),

∇Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ).

Note that the first term is just X(g(Y,Z)).

We should view this formula as specifying that the product rule holds.
We can alternatively formulate this in terms of the covariant derivative.

Lemma. Let ∇ be a connection. Then ∇ is compatible with g if and only if for
all γ : I →M and V,W ∈ J(γ), we have

d

dt
g(V (t),W (t)) = g(DtV (t),W (t)) + g(V (t),DtW (t)). (∗)

Proof. Write it out explicitly in local coordinates.

We have some immediate corollaries, where the connection is always assumed
to be compatible.

Corollary. If V,W are parallel along γ, then g(V (t),W (t)) is constant with
respect to t.

Corollary. If γ is a geodesic, then |γ̇| is constant.

Corollary. Parallel transport is an isometry.

In general, on a Riemannian manifold, there can be many metric conditions.
To ensure that it is actually unique, we need to introduce a new constraint,
known as the torsion. The definition itself is pretty confusing, but we will chat
about it afterwards to explain why this is a useful definition.
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Definition (Torsion of linear connection). Let ∇ be a linear connection on M .
The torsion of ∇ is defined by

τ(X,Y ) = ∇XY −∇YX − [X,Y ]

for X,Y ∈ Vect(M).

Definition (Symmetric/torsion free connection). A linear connection is sym-
metric or torsion-free if τ(X,Y ) = 0 for all X,Y .

Proposition. τ is a tensor of type (2, 1).

Proof. We have

τ(fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ]

= f∇XY − Y (f)X − f∇YX − fXY + Y (fX)

= f(∇XY −∇YX − [X,Y ])

= fτ(X,Y ).

So it is linear.
We also have τ(X,Y ) = −τ(Y,X) by inspection.

What does being symmetric tell us? Consider the Christoffel symbols in
some coordinate system x1, · · · , xn. We then have[

∂

∂xi
,
∂

∂xj

]
= 0.

So we have

τ

(
∂

∂xi
,
∂

∂xj

)
= ∇i∂j −∇j∂i

= Γkij∂k − Γkji∂k.

So we know a connection is symmetric iff the Christoffel symbol is symmetric,
i.e.

Γkij = Γkji.

Now the theorem is this:

Theorem. Let M be a manifold with Riemannian metric g. Then there exists
a unique torsion-free linear connection ∇ compatible with g.

The actual proof is unenlightening.

Proof. In local coordinates, we write

g =
∑

gij dxi ⊗ dxj .

Then the connection is explicitly given by

Γkij =
1

2
gk`(∂igj` + ∂jgi` − ∂`gij),

where gk` is the inverse of gij .
We then check that it works.
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Definition (Riemannian/Levi-Civita connection). The unique torsion-free met-
ric connection on a Riemannian manifold is called the Riemannian connection
or Levi-Civita connection.

Example. Consider the really boring manifold Rn with the usual metric. We
also know that TRn ∼= Rn → Rn is trivial, so we can give a trivial connection

dRn

(
f
∂

∂xi

)
= df ⊗ ∂

∂xi
.

In the ∇ notation, we have

∇X
(
f
∂

∂xi

)
= X(f)

∂

∂xi
.

It is easy to see that this is a connection, and also that it is compatible with the
metric. So this is the Riemannian connection on Rn.

This is not too exciting.

Example. Suppose φ : M ⊆ Rn is an embedded submanifold. This gives us a
Riemannian metric on M by pulling back

g = φ∗gRn

on M .
We also get a connection on M as follows: suppose X,Y ∈ Vect(M). Locally,

we know X,Y extend to vector fields X̃, Ỹ on Rn. We set

∇XY = π(∇̄X̃ Ỹ ),

where π is the orthogonal projection Tp(Rn)→ TpM .
It is an exercise to check that this is a torsion-free metric connection on M .

It is a (difficult) theorem by Nash that every manifold can be embedded in
Rn such that the metric is the induced metric. So all metrics arise this way.

8.4 Curvature

The final topic to discuss is the curvature of a connection. We all know that Rn
is flat, while Sn is curved. How do we make this precise?

We can consider doing some parallel transports on Sn along the loop coun-
terclockwise:

We see that after the parallel transport around the loop, we get a different vector.
It is in this sense that the connection on S2 is not flat.

Thus, what we want is the following notion:
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Definition (Parallel vector field). We say a vector field V ∈ Vect(M) is parallel
if V is parallel along any curve in M .

Example. In R2, we can pick ξ ∈ T0R2 ∼= R2. Then setting V (p) = ξ ∈ TpR2 ∼=
R2 gives a parallel vector field with V (0) = ξ.

However, we cannot find a non-trivial parallel vector field on S2.
This motivates the question — given a manifold M and a ξ ∈ TpM non-zero,

does there exist a parallel vector field V on some neighbourhood of p with
V (p) = ξ?

Naively, we would try to construct it as follows. Say dimM = 2 with
coordinates x, y. Put p = (0, 0). Then we can transport ξ along the line {y = 0}
to define V (x, 0). Then for each α, we parallel transport V (α, 0) along {x = α}.
So this determines V (x, y).

Now if we want this to work, then V has to be parallel along any curve, and
in particular for lines {y = β} for β 6= 0. If we stare at it long enough, we figure
out a necessary condition is

∇ ∂
∂xi

∇ ∂
∂xj

= ∇ ∂
∂xj

∇ ∂
∂xi

.

So the failure of these to commute tells us the curvature. This definition in fact
works for any vector bundle.

The actual definition we will state will be slightly funny, but we will soon
show afterwards that this is what we think it is.

Definition (Curvature). The curvature of a connection dE : Ω0(E)→ Ω1(E) is
the map

FE = dE ◦ dE : Ω0(E)→ Ω2(E).

Lemma. FE is a tensor. In particular, FE ∈ Ω2(End(E)).

Proof. We have to show that FE is linear over C∞(M). We let f ∈ C∞(M) and
s ∈ Ω0(E). Then we have

FE(fs) = dEdE(fs)

= dE(df ⊗ s+ fdEs)

= d2f ⊗ s− df ∧ dEs+ df ∧ dEs+ fd2
Es

= fFE(s)

How do we think about this? Given X,Y ∈ Vect(M), consider

FE(X,Y ) : Ω0(E)→ Ω0(E)

FE(X,Y )(s) = (FE(s))(X,Y )

Lemma. We have

FE(X,Y )(s) = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s.

In other words, we have

FE(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].
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This is what we were talking about, except that we have an extra term ∇[X,Y ],

which vanishes in our previous motivating case, since ∂
∂xi

and ∂
∂xj

commute in

general.

Proof. We claim that if µ ∈ Ω1(E), then we have

(dEµ)(X,Y ) = ∇X(µ(Y ))−∇Y (µ(X))− µ([X,Y ]).

To see this, we let µ = ω ⊗ s, where ω ∈ Ω1(M) and s ∈ Ω0(E). Then we have

dEµ = dω ⊗ s− ω ∧ dEs.

So we know

(dEµ)(X,Y ) = dω(X,Y )⊗ s− (ω ∧ dEs)(X,Y )

By a result in the example sheet, this is equal to

= (Xω(Y )− Y ω(X)− ω([X,Y ]))⊗ s
− ω(X)∇Y (s) + ω(Y )∇X(s)

= Xω(Y )⊗ s+ ω(Y )∇Xs
− (Y ω(X)⊗ s+ ω(X)∇Y s)− ω([X,Y ])⊗ s

Then the claim follows, since

µ([X,Y ]) = ω([X,Y ])⊗ s
∇X(µ(Y )) = ∇X(ω(Y )s)

= Xω(Y )⊗ s+ ω(Y )∇Xs.

Now to prove the lemma, we have

(FEs)(X,Y ) = dE(dEs)(X,Y )

= ∇X((dEs)(Y ))−∇Y ((dEs)(X))− (dEs)([X,Y ])

= ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s.

Definition (Flat connection). A connection dE is flat if FE = 0.

Specializing to the Riemannian case, we have

Definition (Curvature of metric). Let (M, g) be a Riemannian manifold with
metric g. The curvature of g is the curvature of the Levi-Civita connection,
denoted by

Fg ∈ Ω2(End(TM)) = Ω0(Λ2T ∗M ⊗ TM ⊗ T ∗M).

Definition (Flat metric). A Riemannian manifold (M, g) is flat if Fg = 0.

Since flatness is a local property, it is clear that if a manifold is locally
isometric to Rn, then it is flat. What we want to prove is the converse — if you
are flat, then you are locally isometric to Rn. For completeness, let’s define what
an isometry is.
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Definition (Isometry). Let (M, g) and (N, g′) be Riemannian manifolds. We
say G ∈ C∞(M,N) is an isometry if G is a diffeomorphism and G∗g′ = g, i.e.

DG|p : TpM → TG(p)N

is an isometry for all p ∈M .

Definition (Locally isometric). A manifold M is locally isometric to N if for
all p ∈ M , there is a neighbourhood U of p and a V ⊆ N and an isometry
G : U → V .

Example. The flat torus obtained by the quotient of R2 by Z2 is locally isometric
to R2, but is not diffeomorphic (since it is not even homeomorphic).

Our goal is to prove the following result.

Theorem. Let M be a manifold with Riemannian metric g .Then M is flat iff
it is locally isometric to Rn.

One direction is obvious. Since flatness is a local property, we know that if
M is locally isometric to Rn, then it is flat.

To prove the remaining of the theorem, we need some preparation.

Proposition. Let dimM = n and U ⊆M open. Let V1, · · · , Vn ∈ Vect(U) be
such that

(i) For all p ∈ U , we know V1(p), · · · , Vn(p) is a basis for TpM , i.e. the Vi are
a frame.

(ii) [Vi, Vj ] = 0, i.e. the Vi form a frame that pairwise commutes.

Then for all p ∈ U , there exists coordinates x1, · · · , xn on a chart p ∈ Up such
that

Vi =
∂

∂xi
.

Suppose that g is a Riemannian metric on M and the Vi are orthonormal in
TpM . Then the map defined above is an isometry.

Proof. We fix p ∈ U . Let Θi be the flow of Vi. From example sheet 2, we know
that since the Lie brackets vanish, the Θi commute.

Recall that (Θi)t(q) = γ(t), where γ is the maximal integral curve of Vi
through q. Consider

α(t1, · · · , tn) = (Θn)tn ◦ (Θn)tn−1
◦ · · · ◦ (Θ1)t1(p).

Now since each of Θi is defined on some small neighbourhood of p, so if we just
move a bit in each direction, we know that α will be defined for (t0, · · · , tn) ∈
B = {|ti| < ε} for some small ε.

Our next claim is that

Dα

(
∂

∂ti

)
= Vi
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whenever this is defined. Indeed, for t ∈ B and f ∈ C∞(M,R). Then we have

Dα

(
∂

∂ti

∣∣∣∣
t

)
(f) =

∂

∂ti

∣∣∣∣
t

f(α(t1, · · · , tn))

=
∂

∂ti

∣∣∣∣
t

f((Θi)t ◦ (Θn)tn ◦ · · · ◦ (̂Θi)ti ◦ · · · ◦ (Θ1)t1(p))

= Vi|α(t)(f).

So done. In particular, we have

Dα|0
(

∂

∂ti

∣∣∣∣
0

)
= Vi(p),

and this is a basis for TpM . So Dα|0 : T0Rn → TpM is an isomorphism. By the
inverse function theorem, this is a local diffeomorphism, and in this chart, the
claim tells us that

Vi =
∂

∂xi
.

The second part with a Riemannian metric is clear.

We now actually prove the theorem

Proof of theorem. Let (M, g) be a flat manifold. We fix p ∈M . We let x1, · · · , xn
be coordinates centered at p1, say defined for |xi| < 1. We need to construct
orthonormal vector fields. To do this, we pick an orthonormal basis at a point,
and parallel transport it around.

We let e1, · · · , en be an orthonormal basis for TpM . We construct vector
fields E1, · · · , En ∈ Vect(U) by parallel transport. We first parallel transport
along (x1, 0, · · · , 0) which defines Ei(x1, 0, · · · , 0), then parallel transport along
the x2 direction to cover all Ei(x1, x2, 0, · · · , 0) etc, until we define on all of U .
By construction, we have

∇kEi = 0 (∗)

on {xk+1 = · · · = xn = 0}.
We will show that the {Ei} are orthonormal and [Ei, Ej ] = 0 for all i, j. We

claim that each Ei is parallel, i.e. for any curve γ, we have

DγEi = 0.

It is sufficient to prove that
∇jEi = 0

for all i, j.
By induction on k, we show

∇jEi = 0

for j ≤ k on {xk+1 = · · · = xn = 0}. The statement for k = 1 is already given
by (∗). We assume the statement for k, so

∇jEi = 0 (A)
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for j ≤ k and {xk+1 = · · · = xn = 0}. For j = k + 1, we know that ∇k+1Ei = 0
on {xk+2 = · · · = xn = 0} by (∗). So the only problem we have is for j = k and
{xk+2 = · · · = xn = 0}.

By flatness of the Levi-Civita connection, we have

[∇k+1,∇k] = ∇[∂k+1,∂k] = 0.

So we know
∇k+1∇kEi = ∇k∇k+1Ei = 0 (B)

on {xk+2 = · · · = xn = 0}. Now at xk+1 = 0 , we know ∇kEi vanishes. So it
follows from parallel transport that ∇kEi vanishes on {xk+2 = · · · = xn = 0}.

As the Levi-Civita connection is compatible with g, we know that parallel
transport is an isometry. So the inner product product g(Ei, Ej) = g(ei, ej) = δij .
So this gives an orthonormal frame at all points.

Finally, since the torsion vanishes, we know

[Ei, Ej ] = ∇EiEj −∇EjEi = 0,

as the Ei are parallel. So we are done by the proposition.

What does the curvature mean when it is non-zero? There are many answers
to this, and we will only give one.

Definition (Holonomy). Consider a piecewise smooth curve γ : [0, 1]→M with
γ(0) = γ(1) = p. Say we have a linear connection ∇. Then we have a notion of
parallel transport along γ.

The holonomy of ∇ around γ: is the map

H : TpM → TpM

given by
H(ξ) = V (1),

where V is the parallel transport of ξ along γ.

Example. If ∇ is compatible with a Riemannian metric g, then H is an isometry.

Example. Consider Rn with the usual connection. Then if ξ ∈ T0Rn, then
H(ξ) = ξ for any such path γ. So the holonomy is trivial.

Example. Say (M, g) is flat, and p ∈ M . We have seen that there exists a
neighbourhood of p such that (U, g|U ) is isometric to Rn. So if γ([0, 1]) ∈ U ,
then H = id.

The curvature measures the extent to which this does not happen. Suppose
we have coordinates x1, · · · , xn on some (M, g). Consider γ as follows:

(s, 0, · · · , 0)

(s, t, · · · , 0)(0, t, · · · , 0)

0
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Then we can Taylor expand to find

H = id +Fg

(
∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

)
st+O(s2t, st2).
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cohomology, 51

immersed submanifold, 16
induced connection

dual bundle, 75
tensor product, 75

induced orientation, 63
integral curve, 22

maximal, 25
integration

manifolds, 59
on Rn, 58

inward pointing, 63
isometry, 83

Jacobi identity, 22

Koszul connection, 72

left invariant vector field, 29
Leibniz rule, 9, 45
length

curve, 42
Levi-Civita connection, 80
Lie algebra, 22

homomorphism, 31
Lie algebra of Lie group, 30
Lie bracket, 22
Lie derivative

function, 27
vector field, 28

Lie group, 29
homomorphism, 31
subgroup, 33

Lie subgroup, 33
linear connection, 72

compatible, 78
metric, 78
symmetric, 79
torsion, 79
torsion-free, 79

local coordinates, 6
locally isometric, 83

manifold, 6
orientable, 57
orientation, 57
with boundary, 61

maximal integral curve, 25

Mayer-Vietoris sequence, 55
metric connection, 78
morphism

vector bundle, 42

non-degenerate form, 48

orientable manifold, 57
orientation

-preserving diffeomorphism, 58
manifold, 57
vector space, 57

oriented coordinates, 58
oriented manifold, 58
outward pointing, 63

parallel transport, 78
parallel vector field, 77, 81
parametrization, 60
partition of unity, 14
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