
Part III — Differential Geometry

Theorems

Based on lectures by J. A. Ross
Notes taken by Dexter Chua

Michaelmas 2016

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

This course is intended as an introduction to modern differential geometry. It can be
taken with a view to further studies in Geometry and Topology and should also be
suitable as a supplementary course if your main interests are, for instance in Analysis
or Mathematical Physics. A tentative syllabus is as follows.

• Local Analysis and Differential Manifolds. Definition and examples of manifolds,
smooth maps. Tangent vectors and vector fields, tangent bundle. Geometric
consequences of the implicit function theorem, submanifolds. Lie Groups.

• Vector Bundles. Structure group. The example of Hopf bundle. Bundle mor-
phisms and automorphisms. Exterior algebra of differential forms. Tensors.
Symplectic forms. Orientability of manifolds. Partitions of unity and integration
on manifolds, Stokes Theorem; de Rham cohomology. Lie derivative of tensors.
Connections on vector bundles and covariant derivatives: covariant exterior
derivative, curvature. Bianchi identity.

• Riemannian Geometry. Connections on the tangent bundle, torsion. Bianchi’s
identities for torsion free connections. Riemannian metrics, Levi-Civita con-
nection, Christoffel symbols, geodesics. Riemannian curvature tensor and its
symmetries, second Bianchi identity, sectional curvatures.

Pre-requisites

An essential pre-requisite is a working knowledge of linear algebra (including bilinear

forms) and multivariate calculus (e.g. differentiation and Taylor’s theorem in several

variables). Exposure to some of the ideas of classical differential geometry might also

be useful.
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1 Manifolds

1.1 Manifolds

Lemma. If (Uα, ϕα) and (Uβ , ϕβ) are charts in some atlas, and f : M → R,
then f ◦ϕ−1

α is smooth at ϕα(p) if and only if f ◦ϕ−1
β is smooth at ϕβ(p) for all

p ∈ Uα ∩ Uβ .

Lemma. Let M be a manifold, and ϕ1 : U1 → Rn and ϕ2 : U2 → Rm be charts.
If U1 ∩ U2 6= ∅, then n = m.

1.2 Smooth functions and derivatives

Lemma. ∂
∂x1

∣∣∣
p
, · · · , ∂

∂xn

∣∣∣
p

is a basis of TpRn. So these are all the derivations.

Proposition (Chain rule). Let M,N,P be manifolds, and F ∈ C∞(M,N),
G ∈ C∞(N,P ), and p ∈M, q = F (p). Then we have

D(G ◦ F )|p = DG|q ◦DF |p.

Corollary. If F is a diffeomorphism, then DF |p is a linear isomorphism, and
(DF |p)−1 = D(F−1)|F (p).

Lemma. We have

DF |p

(
∂

∂xi

∣∣∣∣
p

)
=

m∑
j=1

∂Fj
∂xi

(p)
∂

∂yj

∣∣∣∣
q

.

In other words, DF |p has matrix representation(
∂Fj
∂xi

(p)

)
ij

.

1.3 Bump functions and partitions of unity

Lemma. Suppose W ⊆M is a coordinate chart with p ∈W . Then there is an
open neighbourhood V of p such that V̄ ⊆W and an X ∈ C∞(M,R) such that
X = 1 on V and X = 0 on M \W .

Lemma. Let p ∈ W ⊆ U and W,U open. Let f1, f2 ∈ C∞(U) be such that
f1 = f2 on W . If X ∈ Derp(C

∞(U)), then we have X(f1) = X(f2)

Theorem. Given any {Uα} open cover, there exists a partition of unity subor-
dinate to {Uα}.

1.4 Submanifolds

Lemma. If S is an embedded submanifold of M , then there exists a unique
differential structure on S such that the inclusion map ι : S ↪→M is smooth and
S inherits the subspace topology.

Proposition. Let S be an embedded submanifold. Then the derivative of the
inclusion map ι : S ↪→M is injective.

Proposition. Let F ∈ C∞(M,N), and let c ∈ N . Suppose c is a regular value.
Then S = F−1(c) is an embedded submanifold of dimension dimM − dimN .
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2 Vector fields

2.1 The tangent bundle

Lemma. The charts actually make TM into a manifold.

Lemma. The map X 7→ X is an R-linear isomorphism

Γ : Vect(M)→ Der(C∞(M)).

2.2 Flows

Theorem (Fundamental theorem on ODEs). Let U ⊆ Rn be open and α : U →
Rn smooth. Pick t0 ∈ R.

Consider the ODE

γ̇i(t) = αi(γ(t))

γi(t0) = ci,

where c = (c1, · · · , cn) ∈ Rn.
Then there exists an open interval I containing t0 and an open U0 ⊆ U such

that for every c ∈ U0, there is a smooth solution γc : I → U satisfying the ODE.
Moreover, any two solutions agree on a common domain, and the function

Θ : I × U0 → U defined by Θ(t, c) = γc(t) is smooth (in both variables).

Theorem (Existence of integral curves). Let X ∈ Vect(M) and p ∈M . Then
there exists some open interval I ⊆ R with 0 ∈ I and an integral curve γ : I →M
for X with γ(0) = p.

Moreover, if γ̃ : Ĩ →M is another integral curve for X, and γ̃(0) = p, then
γ̃ = γ on I ∩ Ĩ.

Theorem. Let M be a manifold and X a complete vector field on M . Define
Θt : R×M →M by

Θt(p) = γp(t),

where γp is the maximal integral curve of X through p with γ(0) = p. Then Θ
is a function smooth in p and t, and

Θ0 = id, Θt ◦Θs = Θs+t

Theorem. Let M be a manifold, and X ∈ Vect(M). Define

D = {(t, p) ∈ R×M : t ∈ Ip}.

In other words, this is the set of all (t, p) such that γp(t) exists. We set

Θt(p) = Θ(t, p) = γp(t)

for all (t, p) ∈ D. Then

(i) D is open and Θ : D →M is smooth

(ii) Θ(0, p) = p for all p ∈M .
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2 Vector fields III Differential Geometry (Theorems)

(iii) If (t, p) ∈ D and (t,Θ(s, p)) ∈ D, then (s+ t, p) ∈ D and Θ(t,Θ(s, p)) =
Θ(t+ s, p).

(iv) For any t ∈ R, the set Mt : {p ∈M : (t, p) ∈ D} is open in M , and

Θt : Mt →M−t

is a diffeomorphism with inverse Θ−t.

Proposition. Let M be a compact manifold. Then any X ∈ Vect(M) is
complete.

2.3 Lie derivative

Lemma. LX(g) = X(g). In particular, LX(g) ∈ C∞(M,R).

Lemma. We have
LXY = [X,Y ].

Corollary. Let X,Y ∈ Vect(M) and f ∈ C∞(M,R). Then

(i) LX(fY ) = LX(f)Y + fLXY = X(f)Y + fLXY

(ii) LXY = −LYX

(iii) LX [Y,Z] = [LXY,Z] + [Y,LXZ].

6
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3 Lie groups

Lemma. Given ξ ∈ TeG, we let

Xξ|g = DLg|e(ξ) ∈ Tg(G).

Then the map TeG→ VectL(G) by ξ 7→ Xξ is an isomorphism of vector spaces.

Lemma. Let G be an abelian Lie group. Then the bracket of g vanishes.

Proposition. Let G be a Lie group and ξ ∈ g. Then the integral curve γ for Xξ

through e ∈ G exists for all time, and γ : R→ G is a Lie group homomorphism.

Proposition.

(i) exp is a smooth map.

(ii) If F (t) = exp(tξ), then F : R → G is a Lie group homomorphism and
DF |0

(
d
dt

)
= ξ.

(iii) The derivative
D exp : T0g ∼= g→ TeG ∼= g

is the identity map.

(iv) exp is a local diffeomorphism around 0 ∈ g, i.e. there exists an open U ⊆ g
containing 0 such that exp : U → exp(U) is a diffeomorphism.

(v) exp is natural, i.e. if f : G→ H is a Lie group homomorphism, then the
diagram

g G

h H

exp

Df |e f

exp

commutes.

Theorem. If h ⊆ g is a subalgebra, then there exists a unique connected Lie
subgroup H ⊆ G such that Lie(H) = h.

Theorem. Let g be a finite-dimensional Lie algebra. Then there exists a (unique)
simply-connected Lie group G with Lie algebra g.

Theorem. Let G,H be Lie groups with G simply connected. Then every Lie
algebra homomorphism g→ h lifts to a Lie group homomorphism G→ H.
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4 Vector bundles

4.1 Tensors

Lemma. Tensor products exist (and are unique up to isomorphism) for all pairs
of finite-dimensional vector spaces.

Proposition. Given maps f : V → W and g : V ′ → W ′, we obtain a map
f ⊗ g : V ⊗ V ′ →W ⊗W ′ given by the bilinear map

(f ⊗ g)(v, w) = f(v)⊗ g(w).

Lemma. Given v, vi ∈ V and w,wi ∈W and λi ∈ R, we have

(λ1v1 + λ2v2)⊗ w = λ1(v1 ⊗ w) + λ2(v2 ⊗ w)

v ⊗ (λ1w1 + λ2w2) = λ1(v ⊗ w1) + λ2(v ⊗ w2).

Lemma. If v1, · · · , vn is a basis for V , and w1, · · · , wm is a basis for W , then

{vi ⊗ wj : i = 1, · · · , n; j = 1, · · · ,m}

is a basis for V ⊗W . In particular, dimV ⊗W = dimV × dimW .

Proposition. For any vector spaces V,W,U , we have (natural) isomorphisms

(i) V ⊗W ∼= W ⊗ V

(ii) (V ⊗W )⊗ U ∼= V ⊗ (W ⊗ U)

(iii) (V ⊗W )∗ ∼= V ∗ ⊗W ∗

Lemma.

(i) If α ∈ ΛpV and β ∈ ΛqV , then α ∧ β = (−1)pqβ ∧ α.

(ii) If dimV = n and p > n, then we have

dim Λ0V = 1, dim ΛnV = 1, ΛpV = {0}.

(iii) The multilinear map det : V × · · · × V → R spans ΛnV .

(iv) If v1, · · · , vn is a basis for V , then

{vi1 ∧ · · · ∧ vip : i1 < · · · < ip}

is a basis for ΛpV .

Lemma. Let F : V → V be a linear map. Then ΛnF : ΛnV → ΛnV is
multiplication by detF .
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4.2 Vector bundles

Proposition. We have the following equalities whenever everything is defined:

(i) ϕαα = id

(ii) ϕαβ = ϕ−1
βα

(iii) ϕαβϕβγ = ϕαγ , where ϕαβϕβγ is pointwise matrix multiplication.

These are known as the cocycle conditions.

Proposition (Vector bundle construction). Suppose that for each p ∈M , we
have a vector space Ep. We set

E =
⋃
p

Ep

We let π : E →M be given by π(vp) = p for vp ∈ Ep. Suppose there is an open
cover {Uα} of open sets of M such that for each α, we have maps

tα : E|Uα = π−1(Uα)→ Uα × Rr

over Uα that induce fiberwise linear isomorphisms. Suppose the transition
functions ϕαβ are smooth. Then there exists a unique smooth structure on E
making π : E →M a vector bundle such that the tα are trivializations for E.

9
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5 Differential forms and de Rham cohomology

5.1 Differential forms

Theorem (Exterior derivative). There exists a unique linear map

d = dM,p : Ωp(M)→ Ωp+1(M)

such that

(i) On Ω0(M) this is as previously defined, i.e.

df(X) = X(f) for all X ∈ Vect(M).

(ii) We have
d ◦ d = 0 : Ωp(M)→ Ωp+2(M).

(iii) It satisfies the Leibniz rule

d(ω ∧ σ) = dω ∧ σ + (−1)pω ∧ dσ.

It follows from these assumptions that

(iv) d acts locally, i.e. if ω, ω′ ∈ Ωp(M) satisfy ω|U = ω′|U for some U ⊆ M
open, then dω|U = dω′|U .

(v) We have
d(ω|U ) = (dω)|U

for all U ⊆M .

Lemma. Let F ∈ C∞(M,N). Let F ∗ be the associated pullback map. Then

(i) F ∗ is a linear map Ωp(N)→ Ωp(M).

(ii) F ∗(ω ∧ σ) = F ∗ω ∧ F ∗σ.

(iii) If G ∈ C∞(N,P ), then (G ◦ F )∗ = F ∗ ◦G∗.

(iv) We have dF ∗ = F ∗d.

5.2 De Rham cohomology

Proposition.

(i) Let M have k connected components. Then

H0
dR(M) = Rk.

(ii) If p > dimM , then Hp
dR(M) = 0.

(iii) If F ∈ C∞(M,N), then this induces a map F ∗ : Hp
dR(N) → Hp

dR(M)
given by

F ∗[ω] = [F ∗ω].

(iv) (F ◦G)∗ = G∗ ◦ F ∗.

10



5 Differential forms and de Rham cohomologyIII Differential Geometry (Theorems)

(v) If F : M → N is a diffeomorphism, then F ∗ : Hp
dR(N) → Hp

dR(M) is an
isomorphism.

Theorem (Homotopy invariance). Let F0, F1 be homotopic maps. Then F ∗0 =
F ∗1 : Hp

dR(N)→ Hp
dR(M).

Corollary (Poincaré lemma). Let U ⊆ Rn be open and star-shaped. Suppose
ω ∈ Ωp(U) is such that dω = 0. Then there is some σ ∈ Ωp−1(M) such that
ω = dσ.

Corollary. If M and N are smoothly homotopy equivalent, then Hp
dR(M) ∼=

Hp
dR(N).

5.3 Homological algebra and Mayer-Vietoris theorem

Proposition. A cochain map induces a well-defined homomorphism on the
cohomology groups.

Theorem (Snake lemma). Suppose we have a short exact sequence of complexes

0 A· B· C· 0i q
,

i.e. the i, q are cochain maps and we have a short exact sequence

0 Ap Bp Cp 0ip qp

,

for each p.
Then there are maps

δ : Hp(C·)→ Hp+1(A·)
such that there is a long exact sequence

· · · Hp(A·) Hp(B·) Hp(C·)

Hp+1(A·) Hp+1(B·) Hp+1(C·) · · ·

i∗ q∗

δ

i∗ q∗

.

Theorem (Mayer-Vietoris theorem). Let M be a manifold, and M = U ∪ V ,
where U, V are open. We denote the inclusion maps as follows:

U ∩ V U

V M

i1

i2 j1

j2

Then there exists a natural linear map

δ : Hp
dR(U ∩ V )→ Hp+1

dR (M)

such that the following sequence is exact:

Hp
dR(M) Hp

dR(U)⊕Hp
dR(V ) Hp

dR(U ∩ V )

Hp+1
dR (M) Hp+1

dR (U)⊕Hp+1
dR (V ) · · ·

j∗1⊕j
∗
2 i∗1−i

∗
2

δ
j∗1⊕j

∗
2 i∗1−i

∗
2
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6 Integration

6.1 Orientation

6.2 Integration

Lemma. Let F : D → E be a smooth map between domains of integration in
Rn, and assume that F |D̊ : D̊ → E̊ is an orientation-preserving diffeomorphism.
Then ∫

E

ω =

∫
D

F ∗ω.

Lemma. This is well-defined, i.e. it is independent of cover and partition of
unity.

Theorem. Given a parametrization {Si} of M and an ω ∈ Ωn(M) with compact
support, we have ∫

M

ω =
∑
i

∫
Di

F ∗i ω.

Lemma. Let M be an oriented manifold, and g a Riemannian metric on M .
Then there is a unique ω ∈ Ωn(M) such that for all p, if e1, · · · , en is an oriented
orthonormal basis of TpM , then

ω(e1, · · · , en) = 1.

We call this the Riemannian volume form, written dVg.

6.3 Stokes Theorem

Proposition. Let M be a manifold with boundary. Then Int(M) and ∂M are
naturally manifolds, with

dim ∂M = dim IntM − 1.

Lemma. Let p ∈ ∂M , say p ∈ U ⊆M where (U,ϕ) is a chart (with boundary).
Then

∂

∂x1

∣∣∣∣
p

, · · · , ∂

∂xn

∣∣∣∣
p

is a basis for TpM . In particular, dimTpM = n.

Theorem (Stokes’ theorem). Let M be an oriented manifold with boundary of
dimension n. Then if ω ∈ Ωn−1(M) has compact support, then∫

M

dω =

∫
∂M

ω.

In particular, if M has no boundary, then∫
M

dω = 0
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7 De Rham’s theorem*

Theorem (de Rham’s theorem). There exists a natural isomorphism

Hp
dR(M) ∼= Hp(M,R),

where Hp(M,R) is the singular cohomology of M , and this is in fact an iso-
morphism of rings, where Hp

dR(M) has the product given by the wedge, and
Hp(M,R) has the cup product.

Theorem. The map i∗ : H∞p (M)→ Hp(M) is an isomorphism.

Lemma. I is a well-defined map Hp
dR(M)→ Hp

∞(M,R).

Lemma. I is functorial and commutes with the boundary map of Mayer-Vietoris.
In other words, if F : M → N is smooth, then the diagram

Hp
dR(M) Hp

dR(N)

Hp
∞(M) Hp

∞(N)

F∗

I I

F∗

.

And if M = U ∪ V and U, V are open, then the diagram

Hp
dR(U ∩ V ) Hp+1

dR (U ∪ V )

Hp
∞(U ∩ V,R) Hp(U ∪ V,R)

δ

I I

δ

also commutes. Note that the other parts of the Mayer-Vietoris sequence
commute because they are induced by maps of manifolds.

Proposition. Let U ⊆ Rn is convex, then

U : Hp
dR(U)→ Hp

∞(U,R)

is an isomorphism for all p.

Proposition. Suppose {U, V } is a de Rham cover of U ∪ V . Then U ∪ V is de
Rham.

Corollary. If U1, · · · , Uk is a finite de Rham cover of U1 ∪ · · · ∪ Uk = N , then
M is de Rham.

Proposition. The disjoint union of de Rham spaces is de Rham.

Lemma. Let M be a manifold. If it has a de Rham basis, then it is de Rham.

Theorem. Any manifold has a de Rham basis.
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8 Connections

8.1 Basic properties of connections

Proposition. For any X, ∇X is linear in s over R, and linear in X over C∞(M).
Moreover,

∇X(fs) = f∇X(s) +X(f)s

for f ∈ C∞(M) and s ∈ Ω0(E).

Lemma. Given a linear connection ∇ and a path γ : I → M , there exists a
unique map Dt : J(γ)→ J(γ) such that

(i) Dt(fV ) = ḟV + fDtV for all f ∈ C∞(I)

(ii) If U is an open neighbourhood of im(γ) and Ṽ is a vector field on U such
that Ṽ |γ(t) = Vt for all t ∈ I, then

Dt(V )|t = ∇γ̇(0)Ṽ .

We call Dt the covariant derivative along γ.

Lemma. Given a connection ∇ and vector fields X,Y ∈ Vect(M), the quantity
∇XY |p depends only on the values of Y near p and the value of X at p.

Proposition. Any vector bundle admits a connection.

Proposition. The map dE extends uniquely to dE : Ωp(E) → Ωp+1(E) such
that dE is linear and

dE(w ⊗ s) = dω ⊗ s+ (−1)pω ∧ dEs,

for s ∈ Ω0(E) and ω ∈ Ωp(M). Here ω ∧ dEs means we take the wedge on the
form part of dEs. More generally, we have a wedge product

Ωp(M)× Ωq(E)→ Ωp+q(E)

(α, β ⊗ s) 7→ (α ∧ β)⊗ s.

More generally, the extension satisfies

dE(ω ∧ ξ) = dω ∧ ξ + (−1)qω ∧ dEξ,

where ξ ∈ Ωp(E) and ω ∈ Ωq(M).

8.2 Geodesics and parallel transport

Theorem. Let ∇ be a linear connection on M , and let W ∈ TpM . Then there
exists a geodesic γ : (−ε, ε)→M for some ε > 0 such that

γ̇(0) = W.

Any two such geodesics agree on their common domain.

Lemma (Parallel transport). Let t0 ∈ I and ξ ∈ Tγ(t0)M . Then there exists a
unique parallel vector field V ∈ J(γ) such that V (t0) = ξ. We call V the parallel
transport of ξ along γ.

14
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8.3 Riemannian connections

Lemma. Let ∇ be a connection. Then ∇ is compatible with g if and only if for
all γ : I →M and V,W ∈ J(γ), we have

d

dt
g(V (t),W (t)) = g(DtV (t),W (t)) + g(V (t),DtW (t)). (∗)

Corollary. If V,W are parallel along γ, then g(V (t),W (t)) is constant with
respect to t.

Corollary. If γ is a geodesic, then |γ̇| is constant.

Corollary. Parallel transport is an isometry.

Proposition. τ is a tensor of type (2, 1).

Theorem. Let M be a manifold with Riemannian metric g. Then there exists
a unique torsion-free linear connection ∇ compatible with g.

8.4 Curvature

Lemma. FE is a tensor. In particular, FE ∈ Ω2(End(E)).

Lemma. We have

FE(X,Y )(s) = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s.

In other words, we have

FE(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

Theorem. Let M be a manifold with Riemannian metric g .Then M is flat iff
it is locally isometric to Rn.

Proposition. Let dimM = n and U ⊆M open. Let V1, · · · , Vn ∈ Vect(U) be
such that

(i) For all p ∈ U , we know V1(p), · · · , Vn(p) is a basis for TpM , i.e. the Vi are
a frame.

(ii) [Vi, Vj ] = 0, i.e. the Vi form a frame that pairwise commutes.

Then for all p ∈ U , there exists coordinates x1, · · · , xn on a chart p ∈ Up such
that

Vi =
∂

∂xi
.

Suppose that g is a Riemannian metric on M and the Vi are orthonormal in
TpM . Then the map defined above is an isometry.
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