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Example Sheet 1

[You may submit questions 2 and 4 to be marked.]

1. The four-dimensional 4×4 Dirac matrices are defined uniquely up to an equivalence
by {γµ, γν} = 2gµν1, with 1 the unit matrix. We may also require that if γµ = (γ0,γ)
then γµ† = (γ0,−γ). If [X, γµ] = 0 for all µ then X ∝ 1 and if γµ, γ′µ both obey
the Dirac algebra then γ′µ = SγµS−1 for some S. Define the charge conjugation
matrix C by CγµTC−1 = −γµ, where T denotes the matrix transpose. Show that
[CTC−1, γµ] = 0 and hence that CT = cC, c = ±1. Derive the results(

γµC
)T

= − cγµC ,
(
γ5C

)T
= cγ5C(

γµγ5C
)T

= cγµγ5C ,
(
[γµ, γν ]C

)T
= −c[γµ, γν ]C .

Hence, since there are 6 independent antisymmetric and 10 symmetric 4×4 matrices,
show that we must take c = −1.

Using the assumed Hermiticity properties of the Dirac matrices, show [γµ, CC†] = 0
so that we may take CC† = 1.

The matrix B is defined by B−1γµ∗B = (γ0,−γ). Show that B−1γ5∗B = γ5. With
the assumed form for γµ† verify that we may take B−1 = ±γ5C. [This is consistent
with lectures because in our setup there we had C−1 = −C and Cγ5 = γ5C.]
∗Generalise the above argument for finding c to 2n dimensions when the Dirac
matrices are 2n × 2n and we may take as a linearly independent basis 1 and γµ1...µr =
γ[µ1 . . . γµr], where [ ] denotes antisymmetrisation of indices, for r = 1, . . . 2n (γµ1...µr

has
(
2n
r

)
independent components). Show that C(γµ1...µr)TC−1 = (−1)

1
2
r(r+1)γµ1...µr

and hence c = (−1)
1
2
n(n+1). Generalise γ5 by taking γ̂ = −in−1γ0γ1 . . . γ2n−1 and

show that γ̂ is Hermitian and γ̂2 = 1. Show that

ψc = Cψ̄ T , ψ′ = γ̂ψ ⇒ ψ = −cCψ̄c T , ψ′c = −(−1)nγ̂ψc .

In what dimensions is it possible to have Majorana-Weyl spinors, so that ψc =
±ψ′ = ψ?

2. A Dirac quantum field transforms under parity so that

P̂ψ(x)P̂−1 = γ0ψ(xP ) , xµP = (x0,−x) ,

and has an interaction with a scalar field φ(x)

LI(x) = g ψ̄(x)ψ(x)φ(x) + g′ψ̄(x)iγ5ψ(x)φ(x) .

Obtain the necessary form for P̂ φ(x)P̂−1 to ensure that the theory is invariant under
parity if g′ = 0. What are the transformation properties of φ(x) for parity invariance
when instead g = 0? Can parity be conserved in a theory if both g, g′ are non zero?

How does the axial current j µ5 (x) = ψ̄(x)γµγ5ψ(x) transform under parity?
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3. For a free operator Dirac field ψ̂(x) assume ψ̂(x) =
∑

r ar ψr(x) where {ψr(x)}
forms a basis for solutions of the Dirac equation and ar are operators. Explain
why a basis may be chosen so that B−1ψ∗r(x) = ψr′(xT ) where xµT = (−x0,x) and
B−1γµ∗B = (γ0,−γ). Assume that the time-reversal operator is defined so that
T̂ arT̂

−1 = ar′ . What is T̂ ψ̂(x)T̂−1?

4. Under charge conjugation and time reversal a Dirac field ψ transforms as

Ĉψ(x)Ĉ−1 = Cψ̄T (x) , T̂ψ(x)T̂−1 = Bψ(xT ) , xµT = (−x0,x) .

with Ĉ, T̂ the unitary, anti-unitary operators implementing these operations (recall
that if T̂ |φ〉 = |φT 〉 then 〈φ′|φ〉 = 〈φT |φ′T 〉). The matrices C,B are defined in
question 1 and note that C†C = B†B = 1. Show that, if X is a matrix acting on
Dirac spinors,

Ĉ ψ̄(x)Xψ(x)Ĉ−1 = ψ̄(x)XCψ(x) , T̂ ψ̄(x)Xψ(x)T̂−1 = ψ̄(xT )XTψ(xT ) ,

where XC = CXTC−1 (take ψ and ψ̄ to anti-commute) and XT = B−1X∗B. Hence
determine the transformation properties under charge conjugation and time reversal
of

ψ̄(x)ψ(x) , ψ̄(x)iγ5ψ(x) , ψ̄(x)γµγ5ψ(x) .

If |π〉 is a boson with momentum p and 〈0|ψ̄(0)iγ5ψ(0)|π(p)〉 6= 0 show that, in a
theory in which parity and charge conjugation are conserved, then the boson must
have negative intrinsic parity and also positive charge-conjugation parity.

5. From Maxwell’s equation ∂νF
µν = eψ̄γµψ, where Fµν = ∂µAν − ∂νAµ, derive

the required transformation properties of Aµ(x) to ensure that Maxwell’s equa-
tion is invariant under parity, charge conjugation and time reversal. Show that∫
d4x εµνσρFµνFσρ is odd under both parity and time reversal.

6. For a Dirac field ψ define ψ± = 1
2
(1 ± γ5)ψ. Show that ψ̄±γ

5 = ∓ψ̄±. Let Ψ± =(
ψ±
Cψ̄T∓

)
and show that then Ψ̄± =

(
ψ̄±,−ψT∓C−1

)
. [Hint: it is easier to keep the

new 2-dimensional “super-spin” space separate from the 4-dimensional spinor space
of ψ.] A generalized Lorentz-invariant mass term can be written as

Lm =
1

2
ΨT

+C
−1MΨ+ −

1

2
Ψ̄+M∗CΨ̄T

+

whereM is a symmetric 2×2 matrix which commutes with C and γµ. [The notation
can be confusing but it is conventional. You can read the matrices more explicitly
as 114 ⊗M, C ⊗ 112 and γµ ⊗ 112]. Verify that L†m = Lm.

(i) If M =

(
0 m
m 0

)
show that by absorbing any phase into ψ± we can take m

real and positive, and that this reduces to the conventional Dirac mass term Lm =
−mψ̄ψ. Show that the kinetic term LK = ψ̄i/∂ψ = Ψ̄+i/∂Ψ+. Regarding Ψ+ and Ψ̄+

as independent and assuming L = LK + Lm, derive the equations

i/∂Ψ+ −M∗CΨ̄T
+ = 0, i/∂CΨ̄T

+ −MΨ+ = 0
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Hence show that the mass-squared eigenvalues are found by solving

det
(
p21−M∗M

)
= 0 .

(ii) Requiring T̂ψ(x)T̂−1 = Bψ(xT ) and T̂ ψ̄(x)T̂−1 = ψ̄(xT )B−1, withB = ±(γ5C)−1 =
±C−1γ5 as in question 1, show that T̂Ψ+(x)T̂−1 = BΨ+(xT ). Hence demonstrate
that M should be real in order to have T̂Lm(x)T̂−1 = Lm(xT ).

(iii) IfM =

(
0 m
m M

)
with m real and positive and |M | � m, show that the masses

are approximately |M | and m2/|M |.

Comments/corrections to C.E.Thomas@damtp.cam.ac.uk.
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1. A field theory is described in terms of the elements of a complex N ×N matrix M
by a Lagrangian

L = Tr(∂µM †∂µM)− 1
2
λTr(M †MM †M)− kTr(M †M) ,

where Tr denotes the matrix trace and λ > 0.

(i) Show that this theory is invariant under the symmetry group
(
U(N)×U(N)

)
/U(1)

for transformations given by M 7→ AMB−1 for A,B ∈ U(N) and where the U(1)
corresponds to A = B = eiθI. [Note that if H is a subgroup of G then G/H is a
group if H belongs to the centre of G, i.e. hg = gh for all h ∈ H, g ∈ G.] Show
that if k < 0 spontaneous symmetry breakdown occurs and that in the ground state
M0
†M0 = v2I for some v. What is the unbroken symmetry group and how many

Goldstone modes are there?

(ii) If L → L+ L′ where

L′ = h
(
detM + detM †) ,

what is the symmetry group and how many Goldstone modes are there now af-
ter spontaneous symmetry breakdown? [Assume the ground state still satisfies
M0
†M0 = v2I.]

[Note U(N) =
(
SU(N)× U(1)

)
/ZN where ZN is the finite group corresponding to

the complex numbers e2πik/N , k = 0, . . . N − 1, under multiplication.]

2. A field theory has 5 real scalar fields φa which are expressed in terms of a symmetric
traceless 3 × 3 matrix Φ =

∑5
a=1 φata where ta are a basis of symmetric traceless

matrices with Tr(tatb) = δab. The Lagrangian is given by

L = 1
2
Tr(∂µΦ∂µΦ)− V (Φ) , V (Φ) = g

(
1
4
Tr(Φ4) + 1

3
bTr(Φ3) + 1

2
cTr(Φ2)

)
,

where g > 0. Show that this theory has an SO(3) symmetry. Let M0 = {Φ0 :
V (Φ0) = Vmin}. Assume SO(3) acts transitively on M0, i.e. all points in M0 can
be linked by an SO(3) transformation. Show that then all Φ0 ∈M0 have the same
eigenvalues, which add up to zero, and that we may choose Φ0 so that it is diagonal.
Describe how the eigenvalues of Φ0 determine the unbroken subgroup of SO(3).
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For this theory show that M0 is determined by the equation

Φ3
0 + bΦ2

0 + cΦ0 = µ I , 3µ = Tr(Φ3
0) + bTr(Φ2

0) .

[Here µ may be regarded as a Lagrange multiplier for the condition Tr(Φ) = 0
when varying V (Φ).] Verify that there is a potential solution in which the unbroken
subgroup is SO(2) if b2 > 12c. [Note that in this case Φ0 may be given in terms of
a single eigenvalue.]

For 3 × 3 traceless matrices Tr(M4) = 1
2

(
Tr(M2)

)2
. Show that if b = 0 the initial

symmetry is in fact SO(5) and that Vmin = −1
2
gc2 with an unbroken group SO(4).

How do the results on possible unbroken symmetry groups generalise to the analo-
gous theory with an SO(N) symmetry defined in terms of N×N symmetric traceless
matrices?

3. Consider an SU(2) gauge theory coupled to a two component complex scalar field
φ. The SU(2) generators acting on φ are represented by τ = 1

2
σ, with σ the usual

Pauli matrices,

L = −1
4
Fµν ·Fµν + (Dµφ)†(Dµφ)− 1

2
λ
(
φ†φ− 1

2
v2)2 ,

where
Fµν = ∂µAν − ∂νAµ − gAµ ×Aν , Dµφ = ∂µφ+ igAµ · τφ ,

Aµ = (A1
µ, A

2
µ, A

3
µ) and Fµν = (F 1

µν , F
2
µν , F

3
µν). [The cross product above arises

because the SU(2) structure constant is the Levi-Civita symbol: [ta, tb] = iεabctc.]
Explain why we may choose φ = (0, v+h)T/

√
2 and why the SU(2) gauge symmetry

is completely broken. Neglecting quantum corrections, what are the masses of the
elementary particle states?

4. (i) A triplet gauge field Aµ is coupled to a real triplet field φ with the Lagrangian,

L = − 1
4
Fµν ·Fµν + 1

2
(Dµφ) · (Dµφ)− 1

8
λ
(
φ2 − v2

)2
,

Fµν = ∂µAν − ∂νAµ − eAµ ×Aν , Dµφ = ∂µφ− eAµ × φ .

[I.e. φ transforms in the adjoint representation of SU(2). The cross product above
arises from writing the SU(2) generators in the adjoint representation as (ta)jk =
−iεajk.] Show that this theory is invariant under SU(2) gauge transformations but
that this is broken by the ground state to U(1). Rewrite the theory in terms of
physical fields and determine their masses and couplings.

(ii) For a complex triplet field φ suppose the Lagrangian is

L = −1
4
Fµν ·Fµν + (Dµφ)∗ · (Dµφ) + 1

2
g2(φ∗ × φ)2 .

Show that in the classical ground state the potential may be minimised, up to a
freedom of gauge transformations, by choosing φ0 = v e3/

√
2 for any complex v

where e3 is the unit vector in the 3-direction. Explain why v ∼ −v under residual
gauge transformations. Why is it possible to impose the conditions Re(v∗φ·e1) =
Re(v∗φ·e2) = 0? Determine the masses of the physical fields. Why are theories with
different values of v2 inequivalent?
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5. A gauge theory for the group G is described by the Lagrangian,

L = − 1
4
F µν

aFµνa + 1
2

(Dµφ) · (Dµφ)− V (φ) ,

Fµνa = ∂µAνa − ∂νAµa − g cabcAµbAνc , Dµφ = ∂µφ+ ig Aµaθaφ ,

where φ is a multiplet of complex scalar fields, a = 1, . . . , dimG, and θa are ma-
trices representing the Lie algebra of G, [θa, θb] = icabcθc, where cabc is completely
antisymmetric. Assuming V ′(φ)·θaφ = 0 and φ̃·(θaφ) = (θaφ̃)·φ, show that L is
invariant under G gauge transformations. [Recall that φ̃ · φ = φ̃†φ.]

Suppose V (φ) is minimised at φ = φ0 and that we add a gauge fixing term of the
form

Lg.f. = −1
2

(
∂µAµa − ig(θaφ0)·φ

)(
∂νAνa − ig(θaφ0)·φ

)
.

If φ = φ0 + f derive the decoupled linearised equations of motion for the vector and
scalar fields,

∂2Aµa − g2(θaφ0)·(θbφ0)Aµb = 0 , ∂2f +M·f − g2(θaφ0) (θaφ0)·f = 0 ,

whereM is a matrix determined by the second derivatives of V (φ) at φ = φ0. Show
that the mass eigenstates form multiplets of the unbroken gauge group H (for which
the corresponding gauge fields are massless). [It is sufficient to show that the mass
matrices appearing in the linear field equations commute with the generators of H
in the appropriate representation.]

6. Let L = ∂µφ∗∂µφ− 1
2
g(φ∗φ− 1

2
v2)2 be the Lagrangian for a complex scalar field φ.

Writing φ = (v + f + iα)/
√

2, show that the α field is massless whereas the f field
has a mass

√
gv2. Consider the scattering amplitude M for α particle scattering

which is defined by 〈α(p3)α(p4)|T |α(p1)α(p2)〉 = (2π)4δ4(p3 + p4− p1− p2)M where
the scattering S-matrix is S = 1 − iT . Neglecting any Feynman diagrams with
loops, show that

M = g2v2
(

1

s− gv2
+

1

t− gv2
+

1

u− gv2

)
+ 3g ,

where
s = (p1 + p2)

2 , t = (p3 − p1)2 , u = (p4 − p1)2 .

Verify that s + t + u = 0 and hence show that for α particles with low energies E
we have M = O(E4).

Comments/corrections to C.E.Thomas@damtp.cam.ac.uk.
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1. The Lagrangian density for the Weinberg-Salam theory with gauge fields Wµ, Bµ,
a complex scalar field φ and fermion fields ψ may be written as

L = −1
4
Fµν · Fµν − 1

4
BµνBµν + (Dµφ)†(Dµφ)− 1

4
λ(φ†φ− 1

2
v2)2 + ψ̄iγµDµψ ,

−
{
ψ̄Γ2φ

1
2
(1 + γ5)ψ2 + ψ̄Γ1φ

c 1
2
(1 + γ5)ψ1 + Hermitian conjugate

}
,

where σ are the usual Pauli matrices, Γ1 and Γ2 are Yukawa couplings, and

Fµν = ∂µWν − ∂νWµ − gWµ ×Wν , Bµν = ∂µBν − ∂νBµ ,

ψ =

(
ψ1

ψ2

)
, φ =

(
φ1

φ2

)
, φc = iσ2φ

∗ , Dµφ = ∂µφ+ i(gWµ·12σ + g′BµY )φ ,

Dµψ = ∂µψ + i(gWµ·12σ + g′Bµy)1
2
(1− γ5)ψ + ig′Bµ(y + Y σ3)1

2
(1 + γ5)ψ .

Identify the gauge group of L and show how each term in L is gauge invariant [note
that Y only enters in the product g′Y so its value is essentially arbitrary]. Show
that a mass term for the gauge fields of the form

m 2
WW

µ†Wµ +
1

2
m 2
ZZ

µZµ

is produced where Wµ = 1√
2

(W1µ − iW2µ) and Zµ = cos θWW3µ − sin θWBµ for a

suitable choice of the angle θW . How is mZ/mW related to θW ? Explain why it is
impossible to introduce mass terms for the fermion fields into L that are compatible
with gauge invariance. What are the fermion charges which give the coupling to the
photon?

2. Show that the decay rate of a Higgs boson to a `¯̀ pair is given by

ΓH→`¯̀ =
GF√

2

1

4π

m2
`

m2
H

(
m2
H − 4m2

`)
3
2 ,

assuming mH > 2m`.
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3. For two generations of quarks with masses md,ms,mu,mc, suppose the part of the
Lagrangian containing mass terms is given by

Lm = −
{
q+m+

1
2
(1 + γ5)q+ + q−m−

1
2
(1 + γ5)q− + h.c.

}
with

q+ =

(
u′

c′

)
, q− =

(
d′

s′

)
, m+ =

(
0 a
a∗ b

)
, m− =

(
0 c
c∗ d

)
, (b, d are real) .

where u′, d′, c′, s′ are quark fields (the prime indicates they diagonalize the weak

charged-current interaction). Given R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, define θ+ by

R(θ+)

(
0 |a|
|a| b

)
R(θ+)−1 =

(
mu 0
0 −mc

)
and define θ− similarly for ms and md. Show that, after suitable rephasing of quark
fields, one can use R to diagonalize m±. [This is just a toy model so do not be
concerned about the minus sign in front of mc.] Hence, from the mixing matrix
generated by the quarks’ weak charged-current interactions, show that the Cabbibo
angle in this case is given by

θC = θ− − θ+ = tan−1

√
md

ms

− tan−1

√
mu

mc

.

4. In the µ− decay process,

µ−(p)→ e−(k) + ν̄e(q) + νµ(q′) ,

suppose the initial µ is polarised. The spin polarisation may be represented by
a 4-vector sµ, with s · p = 0, where in the muon rest frame sµ = (0, s), and the
corresponding Dirac spinor then satisfies uµ(p)uµ(p) = (/p + mµ)1

2
(1 + γ5/s). Show

that if M is the matrix element of LW (0) for this process then,∑
spins e,ν̄e,νµ

|M|2 = 64G 2
F [q′ · k] [q · (p−mµ s)] .

Hence, neglecting the electron mass, obtain the differential decay rate in the µ− rest
frame for the final electron of energy Ee emitted into a solid angle dΩ(k̂) about the
direction k̂

dΓ =
G 2
F m

5
µ

24(2π)4
x2
(
3− 2x− (2x− 1) k̂ · s

)
dx dΩ(k̂) ,

where x = 2Ee/mµ and 0 6 x 6 1. Explain why this decay distribution is a direct
indication of the breakdown of parity invariance.
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5. If Aα(x) is the ∆S = ∆Q = 1 weak hadronic current, the kaon decay constant FK
is defined by

〈0|Aα(0)|K−(p)〉 = i
√

2FKpα .

Use the theory of weak decays to show that the decay rate for a kaon decaying to a
muon and an antineutrino is

ΓK−→µ− ν̄µ =
G 2
F F

2
K sin2 θC
4π

m2
µmK

(
1−

m2
µ

m2
K

)2

.

6. Show that the interaction of the Z boson with a lepton field ` can be written as

LI = − g

2 cos θW
`γµ(v − aγ5)` Zµ ,

where for the electron v = 2 sin2 θW − 1
2

and a = −1
2
, while the νe has v = a = 1

2
.

Calculate the decay rate ΓZ→`` neglecting the lepton mass.

7. Neglecting lepton masses, show that including Z-mediated processes as well as
photon-mediated processes, the differential cross section for e−e+ → ``, where ` = µ
or τ , has the form,

dσ

dΩ
=

α2

4q2

{
(1 + cos2 θ)

(
1 + 2v2D + (v2 + a2)2D2

)
+ 4 cos θ

(
a2D + 2v2a2D2

)}
,

where v = 2 sin2 θW − 1
2
, a = −1

2
and D =

GF√
2

m 2
Z

q2 −m 2
Z

/
2πα

q2
. [The differential

cross section here is the cross section per unit solid angle, dΩ = sin θ dθ dφ.] For
q2 ≈ m 2

Z the cross section behaves like

σe−e+→`` ∼ 12π
ΓZ→e−e+ΓZ→``

(q2 −m 2
Z)2 +m 2

ZΓ2
,

where Γ is the total decay width. Show that the formula for the differential cross
section is compatible with the result for ΓZ→``.

Comments/corrections to C.E.Thomas@damtp.cam.ac.uk.
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1. In QCD let the strong coupling a = g2/(4π)2. The running coupling a(µ2) is defined
by

µ2 da

dµ2
= β(a) , β(a) = −β0a2 − β1a3 − β2a4 +O(a5) .

Show that, for a suitable choice of Λ,

1

a(µ2)
= β0 log

µ2

Λ2
+
β1
β0

log log
µ2

Λ2
+O

(
1

/
log

µ2

Λ2

)
.

If the coupling is redefined so that

ā = f(a) = a+ v1a
2 + v2a

3 +O(a4) ,

show that β̄(ā) = β(a)f ′(a) and hence β̄0 = β0, β̄1 = β1, β̄2 = β2+β0(v2−v21)−β1v1.
If ā(µ2) = f(a(µ2)) is written in terms of Λ̄ in the same form as a in terms of Λ
above, show that

log
Λ̄2

Λ2
=
v1
β0
.

Suppose a physical observable R has a perturbative expansion in terms of the cou-
pling a(µ2) of the form R = aN

[
r0 + r1a+ r2a

2 + . . .
]
. Under the above redefinition

r1 → r̄1 = r1 +Nv1r0, r2 → r̄2 = r2 +Nv2r0 + 1
2
N(N − 1)v21r0 + (N + 1)v1r1. Show

that

r̂1 = r1 − β0Nr0 log
µ2

Λ2
, r̂2 = r2 +N

β2
β0
r0 −

N + 1

2N

r21
r0
− β1
β0
r1 ,

are invariant under this redefinition of the coupling.

2. Use the interaction LW = −(GF/
√

2) J had†
α ν̄τγ

α(1 − γ5)τ to show that the total
decay rate for τ− → ντ + hadrons is

Γτ−→ ντ +hadrons =
G 2
F m

3
τ

16π

∫ m2
τ

0

dσ

(
1− σ

m2
τ

)2[
ρ0(σ) +

(
1 +

2σ

m2
τ

)
ρ1(σ)

]
,

where∑
X

(2π)3δ4(PX−k)〈0|J hadrons
α |X〉〈X|J hadrons†

β |0〉 = kαkβρ0(k
2)+(−gαβk2+kαkβ)ρ1(k

2) ,

and X covers all possible hadronic final states. If X is restricted to the π− show
that ρ0(σ) = 2F 2

π cos2 θC δ(σ −m2
π) and ρ1(σ) = 0. Hence find Γτ−→ ντ π− .

1



3. Using light-cone coordinates, the longitudinal components forward/backward along
the light cone in the e3 direction for an arbitrary 4-vector V are V ± = V 0±V 3 and
the transverse components are V⊥ = (V 1, V 2). Show that the Minkowski metric
has components g+− = g−+ = 1

2
and g11 = g22 = −1 with the others zero.

Consider deep inelastic scattering off a hadron where P is the initial-state hadron
momentum and q is the photon momentum. Using a frame where P⊥ = q⊥ = 0
show that,

Q2 = −q+q− , ν = 1
2
(q+P− + q−P+) .

Taking the DIS limit to be q− →∞ with q+ = O(P+) show that,

ν ∼ 1
2
q−P+ x ∼ − q

+

P+

.

Obtain the following expressions,

W+−
H (q, P ) = −W1 +

(
M2 +

ν2

Q2

)
W2 ≡ FL(x,Q2) ,

W++
H (q, P ) =

(q+)2

Q2
FL(x,Q2) , W−−

H (q, P ) =
(q−)2

Q2
FL(x,Q2) ,

and show that in the DIS limit,

FL(x,Q2) ∼ −F1(x,Q
2) +

1

2x
F2(x,Q

2) .

4. For a fundamental complex scalar field φ the electromagnetic current has the form
Jµ = i[φ∗ (∂µφ) − (∂µφ∗)φ]. Assuming that this field corresponds to the charged
constituents of a hadron H and treating the constituents as if they were free, obtain

WH
µν(q, P ) ∼

∫
d4k Wφ

µν(q, k)
[
ΓH(P, k) + ΓH(P, k)

]
,

where
Wφ

µν(q, k) = 1
2
(2k + q)µ(2k + q)ν δ

(
(k + q)2

)
,

the momentum of the initial-state hadron is P and the photon momentum is q.
Hence obtain for F2(x,Q

2) = ν W2(ν,Q
2) and F1(x,Q

2) = W1(ν,Q
2), where x = Q2

2ν

and ν = P · q, the asymptotic forms in the deep inelastic limit Q2 = −q2 →∞

F2(x,Q
2) ∼ x

[
f(x) + f(x)

]
, F1(x,Q

2) ∼ 0 ,

where, for 0 < x < 1 and taking k = ξP + k′ with k′ · q bounded

f(x) = x

∫
d4k δ(ξ − x) ΓH(P, k) , f(x) = x

∫
d4k δ(ξ − x) ΓH(P, k) .
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5. [From Donoghue, Golowich, Holstein, Chapter IV.] In describing the decay µ→ eγ,
one may try to use an effective Lagrangian L3,4 which contains terms of dimension
3 and 4

L3,4 = a3(ēµ+ µ̄e) + ia4(ē /Dµ + µ̄ /De)

where Dµ = ∂µ + ieQAµ and a3, a4 are constants. Show by direct calculation that
L3,4 does not lead to µ→ eγ. If L3,4 is added to the QED Lagrangian for muons and
electrons, show that one can define new fields µ′ and e′ to yield a Lagrangian which
is diagonal in flavour. Thus, even in the presence of L3,4 there are two conserved
fermion numbers. Finally, at dimension 5, show that µ → eγ can be described by
including in the Lagrangian

L5 = ēσαβ(c+ dγ5)µFαβ + h.c.

where c and d are constants and σαβ = i
2
[γα, γβ].

Comments/corrections to C.E.Thomas@damtp.cam.ac.uk.
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