
Part III — Symplectic Geometry

Theorems

Based on lectures by A. R. Pires
Notes taken by Dexter Chua

Lent 2018

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

The first part of the course will be an overview of the basic structures of symplectic ge-
ometry, including symplectic linear algebra, symplectic manifolds, symplectomorphisms,
Darboux theorem, cotangent bundles, Lagrangian submanifolds, and Hamiltonian sys-
tems. The course will then go further into two topics. The first one is moment maps and
toric symplectic manifolds, and the second one is capacities and symplectic embedding
problems.

Pre-requisites

Some familiarity with basic notions from Differential Geometry and Algebraic Topology

will be assumed. The material covered in the respective Michaelmas Term courses

would be more than enough background.
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1 Symplectic manifolds III Symplectic Geometry (Theorems)

1 Symplectic manifolds

1.1 Symplectic linear algebra

Theorem (Standard form theorem). Let V be a real vector space and Ω a skew-
symmetric bilinear form. Then there is a basis {u1, . . . , uk, e1, . . . , en, f1, . . . , fn}
of V such that

(i) Ω(ui, v) = 0 for all v ∈ V

(ii) Ω(ei, ej) = Ω(fi, fj) = 0.

(iii) Ω(ei, fj) = δij .

1.2 Symplectic manifolds

Proposition. If a compact manifold M2n is such that H2k
dR(M) = 0 for some

k < n, then M does not admit a symplectic structure.

Theorem (Moser). If M is compact with a family ωt of symplectic forms with
[ωt] constant, then there is an isotopy ρt : M →M with ρ∗tωt = ω0.

Theorem (Relative Moser). Let X ⊆M be a compact manifold of a manifold M ,
and ω0, ω1 symplectic forms on M agreeing on X. Then there are neighbourhoods
U0, U1 of X and a diffeomorphism ϕ : U0 → U1 fixing X such that ϕ∗ω1 = ω0.

Theorem (Darboux theorem). If (M,ω) is a symplectic manifold, and p ∈M ,
then there is a chart (U, x1, . . . , xn, y1, . . . , yn) about p on which

ω =
∑

dxi ∧ dyi.

Proposition. Let π : M = T ∗X → X be the projection map, and π∗ : T ∗X →
T ∗M the pullback map. Then for ξ ∈M , we have αξ = π∗ξ.

Proposition. Let µ be a one-form of X, i.e. a section sµ : X → T ∗X. Then
s∗µα = µ.

1.3 Symplectomorphisms and Lagrangians

Proposition. Let L = N∗S and M = T ∗X. Then L ↪→ M is a Lagrangian
submanifold.

Proposition. f is a symplectomorphism iff Tf is a Lagrangian submanifold of
(M1 ×M2, ω̃).

1.4 Periodic points of symplectomorphisms

Proposition. The fixed point of ϕ are in one-to-one correspondence with the
critical points of ψ.

Proposition. The n-periodic points of ϕ are in one-to-one correspondence with
the critical points of

ψn(x1, . . . , xn) = f(x1, x2) + f(x2, x3) + · · ·+ f(xn, x1).
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1 Symplectic manifolds III Symplectic Geometry (Theorems)

Theorem (Poincaré’s last geometric theorem (Birkhoff, 1925)). Let ϕ : A →
A be an area-preserving diffeomorphism such that ϕ preserves the boundary
components, and twists them in opposite directions. Then ϕ has at least two
fixed points.

1.5 Lagrangian submanifolds and fixed points

Theorem (Lagrangian neighbourhood theorem). Let (M,ω) be a symplectic
manifold, X a compact Lagrangian submanifold, and ω0 the canonical symplectic
form on T ∗X. Then there exists neighbourhoods U0 of X in T ∗X and U of X
in M and a symplectomorphism ϕ : U0 → U sending X to X.

Theorem (Weinstein). Let M be a 2n-dimensional manifold, X n-dimensional
compact submanifold, and i : X ↪→M the inclusion, and symplectic forms ω0, ω1

on M such that i∗ω0 = i∗ω1 = 0, i.e. X is Lagrangian with respect to both
symplectic structures. Then there exists neighbourhoods U0,U1 of X in M such
that ρ|X = idX and ρ∗ω1 = ω0.

Lemma. Let V be a 2n-dimensional vector space, Ω0,Ω1 symplectic structures
on V . Suppose U is a subspace of V Lagrangian with respect to both Ω0 and
Ω1, and W is any complement of V . Then we can construct canonically a linear
isomorphism H : V → V such that H|U = idU and H∗Ω1 = Ω2.

Note that the statement of the theorem doesn’t mention W , but the con-
struction of H requires a complement of V , so it is canonical only after we pick
a W .

Theorem (Whitney extension theorem). Let X be a submanifold of M , Hp :
TpM → TpM smooth family of isomorphisms such that Hp|TpX = idTpX . Then
there exists an neighbourhood N of X in M and an embedding h : N → M
such that h|X = idX and for all p ∈ X, dhp = Hp.

Theorem. Let (M,ω) be a compact symplectic manifold such that H1
dR(M) = 0.

Then any symplectomorphism ϕ : M →M sufficiently close to the identity has
at least two fixed points.

Theorem (Arnold conjecture). Let (M,ω) be a compact symplectic manifold
of dimension 2n, and ϕ : M →M a symplectomorphism. Suppose ϕ is exactly
homotopic to the identity and non-degenerate. Then the number of fixed points
of ϕ is at least

∑2n
i=0 dimHi(M,R).

4



2 Complex structures III Symplectic Geometry (Theorems)

2 Complex structures

2.1 Almost complex structures

Lemma. There is a correspondence between real vector spaces with a complex
structure and complex vector spaces, where J acts as multiplication by i.

Proposition (Polar decomposition). Let (V,Ω) be a symplectic vector space,
and G an inner product on V . Then from G, we can canonically construct a
compatible complex structure J on (V,Ω). If G = GJ for some J , then this
process returns J .

Proposition. J (V,Ω) is path-connected.

Proposition. Let (M,ω) be a symplectic manifold, and g a metric on M . Then
from g we can canonically construct a compatible almost complex structure
J .

Corollary. Any symplectic manifold has a compatible almost complex structure.

Proposition. J(M,ω) is contractible.

Proposition. Let J be an almost complex structure on M that is compatible
with ω0 and ω1. Then ω0 and ω1 are deformation equivalent.

Proposition. Let (M,ω) be a symplectic manifold, J a compatible almost
complex structure. If X is an almost complex submanifold of (M,J), i.e.
J(TX) = TX, then X is a symplectic submanifold of (M,ω).

Theorem (Gromov). Let (M,J) be an almost complex manifold with M open,
i.e. M has no closed connected components. Then there exists a symplectic form
ω in any even 2-cohomology class and such that J is homotopic to an almost
complex structure compatible with ω.

2.2 Dolbeault theory

Theorem (Newlander–Nirenberg). The following are equivalent:

– ∂̄2 = 0

– ∂2 = 0

– d = ∂ + ∂̄

– J is integrable

– N = 0

where N is the Nijenhuis torsion

N (X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ].

2.3 Kähler manifolds

Lemma. ω ∈ Ω1,1.
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2 Complex structures III Symplectic Geometry (Theorems)

Theorem. A Kähler form ω on a complex manifold M is a ∂- and ∂̄-closed
form of type (1, 1) which on a local chart is given by

ω =
i

2

∑
j,k

hjk dzj ∧ dz̄k

where at each point, the matrix (hjk) is Hermitian and positive definite.

Proposition. Let (M,ω) be a complex Kähler manifold. If X ⊆M is a complex
submanifold, then (X, i∗ω) is Kähler, and this is called a Kähler submanifold .

Proposition. Let M be a complex manifold, and ρ ∈ C∞(M ;R) strictly
plurisubharmonic. Then

ω =
i

2
∂∂̄ρ

is a Kähler form.

Proposition. Let M be a complex manifold, ω a closed real-valued (1, 1)-form
and p ∈M , then there exists a neighbourhood U of p in M and a ρ ∈ C∞(U,R)
such that

ω = i∂∂̄ρ on U.

2.4 Hodge theory

Theorem (Hodge decomposition theorem). Let (M,ω) be a compact Kḧaler
manifold. Then

Hk
dR
∼=
⊕
p+q=k

Hp,q
Dolb(M).

Proposition.

– ∗(e1 ∧ · · · ∧ ek) = ek+1 ∧ · · · ∧ em

– ∗(ek+1 ∧ · · · ∧ em) = (−1)k(m−k)e1 ∧ · · · ∧ ek.

– ∗∗ = α = (−1)k(m−k)α for α ∈ Λk.

Proposition.

(i) ∗ ∗ α = (−1)k(m−k)α for α ∈ Ωk(M).

(ii) ∗1 = Vol

Proposition. δ2 = 0.

Proposition.
δ = (−1)m(k+1)+1∗ d ∗ : Ωk → Ωk−1.

Proposition.

(i) ∆∗ = ∗∆ : Ωk → Ωm−k

(ii) ∆ = (d + δ)2

(iii) 〈∆α, β〉L2 = 〈α,∆β〉L2 .
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2 Complex structures III Symplectic Geometry (Theorems)

(iv) ∆α = 0 iff dα = δα = 0.

Theorem (Hodge decomposition theorem). Let (M, g) be a compact oriented
Riemannian manifold. Then every cohomology class in Hk

dR(M) has a unique
harmonic representation, i.e. the natural map Hk → Hk

dR(M) is an isomorphism.

Proposition. Let M be a complex manifold, dimCM = n and (M,ω) Kähler.
Then

(i) ∗ : Ωp,q → Ωn−p,n−q.

(ii) ∆ : Ωp,q → Ωp,q.

Proposition. If our manifold is Kähler, then

∆ = 2∆∂ = 2∆∂̄ .

Theorem (Hodge decomposition theorem). Let (M,ω) be a compact Kähler
manifold. The natural map Hp,q → Hp,q

Dolb is an isomorphism. Hence

Hk
dR(M ;C) ∼= HkC =

⊕
p+q=k

Hp,q ∼=
⊕
p+q=k

Hp,q
Dolb(M).

Corollary. Odd Betti numbers are even.

Corollary. h1,0 = h0,1 = 1
2b1 is a topological invariant.

Proposition. Even Betti numbers are positive.

Proposition. hk,k 6= 0.
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3 Hamiltonian vector fields III Symplectic Geometry (Theorems)

3 Hamiltonian vector fields

3.1 Hamiltonian vector fields

Proposition. If XH is a Hamiltonian vector field with flow ρt, then ρ∗tω = ω.
In other words, each ρt is a symplectomorphism.

Proposition. ρt preserves H, i.e. ρ∗tH = H.

Proposition. Let X,Y be symplectic vector fields on (M,ω). Then [X,Y ] is
Hamiltonian.

Proposition. {f, g} = 0 iff f is constant along integral curves of Xg.

3.2 Integrable systems

Theorem (Arnold–Liouville thoerem). Let (M,ω,H) be an integrable system
with dimM = 2n and f1 = H, f2, . . . , fn integrals of motion, and c ∈ R a regular
value of f = (f1, . . . , fn).

(i) If the flows of Xfi are complete, then the connected components of f−1({c})
are homogeneous spaces for Rn and admit affine coordinates ϕ1, . . . , ϕn
(angle coordinates), in which the flows of Xfi are linear.

(ii) There exists coordinates ψ1, . . . , ψn (action coordinates) such that the ψi’s
are integrals of motion and ϕ1, . . . , ϕn, ψ1, . . . , ψn form a Darboux chart.

3.3 Classical mechanics

3.4 Hamiltonian actions

3.5 Symplectic reduction

Theorem (Marsden–Weinstein, Meyer). Let G be a compact Lie group, and
(M,ω) a symplectic manifold with a Hamiltonian G-action with moment map
µ : M → g∗. Write i : µ−1(0) ↪→M for the inclusion. Suppose G acts freely on
µ−1(0). Then

(i) Mred = µ−1(0)/G is a manifold;

(ii) π : µ−1(0)→Mred is a principal G-bundle; and

(iii) There exists a symplectic form ωred on Mred such that i∗ω = π∗ωred.

Theorem. Let G be a compact Lie group and Z a manifold, and G acts freely
on Z. Then Z/G is a manifold and Z → Z/G is a principal G-bundle.

Lemma. Let (V,Ω) be a symplectic vector space and I an isotropic sub-
space. Then Ω induces a canonical symplectic structure Ωred on IΩ/I, given by
Ωred([u], [v]) = Ω(u, v).

Lemma. Giving an Ehresmann connection is the same as giving a connection
1-form.
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3 Hamiltonian vector fields III Symplectic Geometry (Theorems)

3.6 The convexity theorem

Theorem (Convexity theorem (Atiyah, Guillemin–Sternberg)). Let (M,ω) be
a compact connected symplectic manifold, and

µ : M → Rn

a moment map for a Hamiltonian torus action. Then

(i) The levels µ−1(c) are connected for all c

(ii) The image µ(M) is convex.

(iii) The image µ(M) is in fact the convex hull of µ(MG).

We call µ(M) the moment polytope.

Lemma. (ii) implies (iii).

Lemma. (i) implies (ii).

Theorem (Morse theory).

(i) If f−1([c1, c2]) does not contain any critical point. Then f−1(c1) ∼= f−1(c2)
and Mc1

∼= Mc2 (where ∼= means diffeomorphic).

(ii) If f−1([c1, c2]) contains one critical manifold Z, then M−c2 'M
−
c1 ∪D(E−),

where D(E−) is the disk bundle of E−.

In particular, if Z is an isolated point, M−c2 is, up to homotopy equivalence,
obtained by adding a dimE−p -cell to M−c1 .

Lemma. Let M be a compact connected manifold, and f : M → R a Morse–Bott
function with no critical submanifold of index or coindex 1. Then

(i) f has a unique local maximum and local minimum

(ii) All level sets of f−1(c) are connected.

Lemma. For any X ∈ Rn, µX is a Morse–Bott function where all critical
submanifolds are symplectic.

Lemma. (i) holds.

Theorem (Kirwan, 1984). µ+(M) ⊆ t∗+ is a convex polytope.

Theorem (Schur–Horn theorem). ϕ(Hnλ) is the convex hull of the n! points
from the diagonal matrices.

3.7 Toric manifolds

Proposition. Let (M,ω) be a compact, connected symplectic manifold with
moment map µ : M → Rn for a Hamiltonian Tn action. If the Tn action is
effective, then

(i) There are at least n+ 1 fixed points.

(ii) dimM ≥ 2n.
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3 Hamiltonian vector fields III Symplectic Geometry (Theorems)

Theorem (Delzant). There are correspondences{
symplectic toric manifolds

up to equivalence

}
←→

{
Delzant polytopes

}
{

symplectic toric manifolds
up to weak equivalence

}
←→

{
Delzant polytopes
modulo AGL(n,Z)

}
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4 Symplectic embeddings

Theorem (Non-squeezing theorem, Gromov, 1985). There is an embedding
B2(n) ↪→ Z2n(R) iff r < R.

Proposition. The existence of a symplectic capacity is equivalent to Gromov’s
non-squeezing theorem.
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