SCHRAMM-LOEWNER EVOLUTIONS, LENT 2018, EXAMPLE SHEET 1

Please send corrections to jpmiller@statslab.cam.ac.uk

Problem 1.

• Suppose that $f: \mathbb{D} \to \mathbb{D}$ is a conformal transformation (i.e., f is a conformal automorphism of \mathbb{D}). Use the Schwarz lemma to show that there exists $z \in \mathbb{D}$ and $\lambda \in \partial \mathbb{D}$ so that

$$f(w) = \lambda \frac{z - w}{\overline{z}w - 1}.$$

• Suppose that $f: \mathbb{H} \to \mathbb{H}$ is a conformal transformation (i.e., f is a conformal automorphism of \mathbb{H}). Show that there exists $a, b, c, d \in \mathbb{R}$ with ad - bc = 1 so that

$$f(z) = \frac{az+b}{cz+d}.$$

Deduce that if f fixes 0 and ∞ then there exists a > 0 so that f(z) = az.

Problem 2.

• Using the conformal invariance of Brownian motion, show that the hitting density (with respect to Lebesgue measure) for a complex Brownian motion starting from $z \in \mathbb{D}$ on the unit circle is given by

$$p(z, e^{i\theta}) = \frac{1}{2\pi} \frac{1 - |z|^2}{|e^{i\theta} - z|^2}$$
 for $\theta \in [0, 2\pi)$.

You may assume that the hitting density is given by the uniform distribution on $\partial \mathbb{D}$ when z = 0.

• Using the conformal invariance of Brownian motion, show that the hitting density (with respect to Lebesgue measure) for a complex Brownian motion starting from $z \in \mathbb{H}$ on the real line $\partial \mathbb{H}$ is given by

$$p(z,u) = \frac{1}{\pi} \frac{y}{(x-u)^2 + y^2}$$
 where $z = x + iy$, $u \in \partial \mathbb{H}$.

(Note that $p(i, \cdot)$ is the Cauchy distribution on \mathbb{R} .)

Problem 3.

- Show that f(z) = z + 1/z is a conformal transformation from $\mathbb{H} \setminus \overline{\mathbb{D}}$ to \mathbb{H} .
- Using the conformal invariance of Brownian motion, show that the density $p(z, e^{i\theta}), \theta \in [0, \pi]$, for the first exit distribution (with respect to Lebesgue measure) of a complex Brownian motion on $\mathbb{H} \cap \partial \mathbb{D}$ starting from $z \in \mathbb{H} \setminus \overline{\mathbb{D}}$ satisfies:

$$p(z, e^{i\theta}) = \frac{2}{\pi} \frac{\operatorname{Im}(z)}{|z|^2} \sin(\theta) \left(1 + O(|z|^{-1})\right) \quad \text{as} \quad z \to \infty.$$

Problem 4. Using the previous problem, show that if $A \in \mathcal{Q}$ then

$$\operatorname{hcap}(A) = \frac{2}{\pi} \int_0^{\pi} \mathbb{E}_{e^{i\theta}} [\operatorname{Im}(B_{\tau})] \sin(\theta) d\theta$$

where τ is the first time that a complex Brownian motion B exits $\mathbb{H} \setminus A$ and \mathbb{E}_z denotes the expectation with respect to the law under which B starts from z.

Problem 5. (Schwarz reflection for harmonic functions) Suppose that $u: \overline{\mathbb{H} \cap \mathbb{D}} \to \mathbb{R}$ is harmonic in $\mathbb{H} \cap \mathbb{D}$, continuous in $\overline{\mathbb{H} \cap \mathbb{D}}$, and vanishes on [-1, 1]. Show that u extends to a harmonic function on \mathbb{D} by odd reflection, i.e., by taking $u(\overline{z}) = -u(z)$.

Problem 6. Suppose that D is a domain in \mathbb{C} and f is holomorphic and non-zero on D. Show that $\log |f|$ is harmonic.

Problem 7.

- Consider the rectangle $A_r = [-r, r] \times (0, 1]$ in \mathbb{H} . Show that there exists a constant c > 0 such that $hcap(A_r) \leq cr$ for all $r \geq 1$.
- Find a sequence of compact \mathbb{H} -hulls (A_n) such that $\operatorname{diam}(A_n) \to \infty$ but $\operatorname{hcap}(A_n) \to 0$.

Problem 8. Suppose that u is a harmonic function on a domain $D \subseteq \mathbb{C}$. Show that for each $n \in \mathbb{N} = \{1, 2, \ldots\}$ there exists a constant $c_n > 0$ such that for all $j, k \in \mathbb{N}_0 = \{0, 1, \ldots\}$ with j + k = n and $z = x + iy \in D$ we have that

$$\left|\partial_x^j \partial_y^k u(z)\right| \le \frac{c_n}{\operatorname{dist}(z, \partial D)^n} \|u\|_{\infty}.$$

Hint: use the first part of Problem 2.

Problem 9. Suppose that $A \in \mathcal{Q}$ with $rad(A) = sup\{|z| : z \in A\} \leq 1$. Show that

$$x \le g_A(x) \le x + \frac{1}{x}$$
 for all $x > 1$
 $x + \frac{1}{x} \le g_A(x) \le x$ for all $x < -1$.

Show also that for all $A \in Q$ and $A \in \mathbb{H} \setminus A$ we have that $|g_A(z) - z| \leq 3 \operatorname{rad}(A)$. Hint: for x > 1, show that $g_A(x)$ is increasing in A and recall the first part of Problem 3.

Problem 10. Suppose that $A \in \mathcal{Q}$ is connected. Let *B* be a complex Brownian motion and let $\tau = \inf\{t \ge 0 : B_t \notin \mathbb{H} \setminus A\}$. Show that there exists constants $c_1, c_2 > 0$ such that

$$c_1 \operatorname{diam}(A) \leq \lim_{y \to \infty} y \mathbb{P}_{iy}[B_\tau \in A] \leq c_2 \operatorname{diam}(A).$$

Problem 11. Suppose that $\gamma: [0,T] \to \overline{\mathbb{H}}$ is a simple curve (i.e., $s \neq t$ implies $\gamma(s) \neq \gamma(t)$) with $\gamma(0) = 0$ and $\gamma(t) \in \mathbb{H}$ for all $t \in (0,T]$. Show that $A_t = \gamma((0,t])$ for $t \in [0,T]$ is a family of locally growing compact \mathbb{H} -hulls. Show, moreover, that there exists a homeomorphism $\phi: [0,T] \to [0, \frac{1}{2}\operatorname{hcap}(A_T)]$ so that $\operatorname{hcap}(A_{\phi^{-1}(t)}) = 2t$ for all $t \in [0, \frac{1}{2}\operatorname{hcap}(A_T)]$. (This is the so-called capacity parameterization of γ .)

Problem 12. Suppose that $U: [0,T] \to \mathbb{R}$ is a continuous function. Let $g_t(z)$ solve the chordal Loewner equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - U_t}, \quad g_0(z) = z.$$

Show for each $t \in [0,T]$ that g_t is a conformal transformation from its domain onto \mathbb{H} with $g_t(z) - z \to 0$ as $z \to \infty$ using the following steps.

- Show that $t \mapsto \operatorname{Im}(g_t(z))$ is decreasing in t, hence for each $z \in \mathbb{H}$, $t \mapsto g_t(z)$ is defined up until $\tau_z = \sup\{t \ge 0 : \operatorname{Im}(g_t(z)) > 0\}$. Conclude that $H_t = \{z : \tau_z > t\}$ is the domain of g_t .
- Show for each $t \in [0, T]$ that $z \mapsto g_t(z)$ is complex differentiable on H_t .

• Show for each $t \in [0,T]$ that $z \mapsto g_t(z)$ has an inverse defined on \mathbb{H} by showing that $g_t(f_t(w)) = w$ for all $w \in \mathbb{H}$ where f_s for $s \in [0,t]$ solves the so-called *reverse chordal* Loewner equation

$$\partial_s f_s(w) = -\frac{2}{f_s(w) - U_{t-s}}, \quad f_0(w) = w.$$

Optional problems: Riemann mapping theorem

The purpose of this sequence of problems is to prove the Riemann mapping theorem.

Optional Problem 1. Prove the Harnack inequality: suppose that u is a positive harmonic function defined on a domain D. Then for each $K \subseteq D$ compact there exists a constant M > 0 (independent of u) such that

$$\frac{\sup_{z \in K} u(z)}{\inf_{z \in K} u(z)} \le M.$$

Optional Problem 2. Deduce from Problem 1 that if f, \tilde{f} are conformal transformations $D \to \mathbb{D}$ taking z to 0 and with positive derivative at z, then $f = \tilde{f}$.

Optional Problem 3. Suppose that D is a simply connected domain with $D \neq \mathbb{C}$. Suppose that $z \in D$. Show that there exists a unique conformal transformation $f: D \to \mathbb{D}$ with f(z) = 0 and f'(z) > 0 using the following steps.

- Let C be the collection of conformal transformations f from D into a subset of D with f(z) = 0 and f'(z) > 0. Deduce from the Schwarz lemma that if f ∈ C then f'(z) ≤ (dist(z, ∂D))⁻¹.
 Show that C is non-empty.
- Suppose that (f_n) is a sequence in \mathcal{C} such that, for each $K \subseteq D$ compact, we have that $f_n|_K \to f|_K$ uniformly where f is conformal on D. Show that f is either constant or injective.
- Let $M = \sup\{f'(z) : z \in C\}$. Let (f_n) be a sequence of functions in C with $f'_n(z)$ increasing to M. Explain why there exists a subsequence (f_{n_k}) of (f_n) which converges uniformly to a map $f: D \to \mathbb{D}$. (Hint: use Problem 7, the Harnack inequality, and the Arzela-Ascoli theorem.) Explain why f'(z) = M and deduce from the previous part that f is injective.
- Show that f is surjective onto \mathbb{D} . (Hint: argue by contradiction that if f is not surjective then f'(z) < M.)

SCHRAMM-LOEWNER EVOLUTIONS, LENT 2018, EXAMPLE SHEET 2

Please send corrections to jpmiller@statslab.cam.ac.uk

Problem 1. Suppose that $U_t = \sqrt{\kappa}B_t$ where B is a standard Brownian motion and let (g_t) solve

$$\partial_t g_t(z) = \frac{2}{g_t(z) - U_t}, \quad g_0(z) = z.$$

- (Markov property) Suppose that τ is a stopping time for U which is almost surely finite and let $\tilde{g}_t = g_{\tau+t}(g_{\tau}^{-1}(z+U_{\tau})) U_{\tau}$. Show that the maps (\tilde{g}_t) have the same distribution as the maps (g_t) .
- (Scale invariance) Fix r > 0 and let $\tilde{g}_t(z) = rg_{t/r^2}(z/r)$. Show that the maps (\tilde{g}_t) have the same distribution as the maps (g_t) .

Suppose that D is a simply connected domain, $x, y \in \partial D$ are distinct, and $\varphi \colon \mathbb{H} \to D$ is a conformal transformation with $\varphi(0) = x$ and $\varphi(\infty) = y$. Explain why the definition of SLE_{κ} given by $\varphi(\gamma)$ where γ is an SLE_{κ} in \mathbb{H} from 0 to ∞ is well-defined.

Problem 2.

- Suppose that B is a standard Brownian motion and a < 0. Show that $\sup_{t \ge 0} (B_t + at) < \infty$ almost surely.
- Suppose that (g_t) is the family of conformal maps which solve the Loewner equation with driving function $U_t = \sqrt{\kappa}B_t$ and, for each $x \in \mathbb{R}$, let $V_t^x = g_t(x) U_t$ and $\tau_x = \inf\{t \ge 0 : V_t^x = 0\}$. For each 0 < x < y, let $g(x, y) = \mathbb{P}[\tau_x = \tau_y]$. Show that if $g(1, 1 + \epsilon/2) > 0$ for all $\epsilon \in (0, \epsilon_0)$ for some $\epsilon_0 > 0$ then g(x, y) > 0 for all 0 < x < y.

Problem 3. Fix T > 0 and let $D \subseteq \mathbb{H}$ be a simply connected domain. Suppose that $(A_t)_{t \in [0,T]}$ is a non-decreasing family of compact \mathbb{H} -hulls which are locally growing with $A_0 = \emptyset$, hcap $(A_t) = 2t$ for all $t \in [0,T]$, and $A_T \subseteq D$. Let $\psi: D \to \mathbb{H}$ be a conformal transformation which is bounded on bounded sets. Show that the family of compact \mathbb{H} -hulls $\widetilde{A}_t = \psi(A_t)$ for $t \in [0,T]$ is locally growing with $\widetilde{A}_0 = \emptyset$ and with

$$\operatorname{hcap}(\widetilde{A}_t) = \int_0^t 2(\psi'_s(U_s))^2 ds \quad \text{where} \quad \psi_t = \widetilde{g}_t \circ \psi \circ g_t^{-1} \quad \text{for each} \quad t \in [0, T]$$

and \widetilde{g}_t is the unique conformal transformation $\mathbb{H} \setminus \widetilde{A}_t \to \mathbb{H}$ with $\widetilde{g}_t(z) - z \to 0$ as $z \to \infty$.

Problem 4. In the setting of the previous problem, show that

$$\partial_t \psi_t(U_t) = \lim_{z \to U_t} \partial_t \psi_t(z) = -3\psi_t''(U_t).$$

Problem 5. Suppose that (A_t) is a non-decreasing family of \mathbb{H} -hulls which are locally growing and with $A_0 = \emptyset$. For each $t \ge 0$, let $a(t) = hcap(A_t)$ and assume that a(t) is C^1 . For each $t \ge 0$, let g_t be the unique conformal transformation which takes $\mathbb{H} \setminus A_t$ to \mathbb{H} with $g_t(z) - z \to 0$ as $z \to \infty$. Show that the conformal maps (g_t) satisfy the ODE:

$$\partial_t g_t(z) = rac{\partial_t a(t)}{g_t(z) - U_t}, \quad g_0(z) = z$$

for some continuous, real-valued function U_t . (Hint: perform a time-change so that the hulls are parameterized by capacity, apply Loewner's theorem as proved in class, and then invert the time change.)

Problem 6. Suppose that B is a standard Brownian motion starting from $B_0 = x > 0$. For each $a \in \mathbb{R}$, let $\tau_a = \inf\{t \ge 0 : B_t = a\}$.

- For a < x < b, explain why $\mathbb{P}[\tau_a < \tau_b] = (b x)/(b a)$.
- Using the Girsanov theorem, explain why the law of B weighted by $B_{\tau_0 \wedge \tau_b}$ is equal to that of a BES³ process stopped upon hitting b. That is, if \mathbb{P} denotes the law of B and we define the law $\widetilde{\mathbb{P}}$ using the Radon-Nikodym derivative

$$\frac{d\mathbb{P}}{d\mathbb{P}} = \frac{B_{\tau_0 \wedge \tau_b}}{\mathbb{E}[B_{\tau_0 \wedge \tau_b}]}$$

then the law of B under $\widetilde{\mathbb{P}}$ is that of a BES³ process stopped upon hitting b.

- Explain why a standard Brownian motion conditioned to be non-negative is a BES³ process.
- More generally, explain why a BES^d process with d < 2 conditioned to be non-negative is a BES^{4-d} process.

Problem 7. Suppose that (g_t) is the family of conformal maps associated with an SLE_{κ} with driving function U_t , i.e., $U_t = \sqrt{\kappa}B_t$ where B is a standard Brownian motion. Fix $z \in \mathbb{H}$ and let $z_t = x_t + iy_t = g_t(z)$. Assume that $\rho \in \mathbb{R}$ is fixed. Use Itô's formula to show that

$$M_t = |g_t'(z)|^{(8-2\kappa+\rho)\rho/(8\kappa)} y_t^{\rho^2/8\kappa} |U_t - z_t|^{\rho/\kappa}$$

is a continuous local martingale. (Hint: let

$$Z_t = \frac{(8 - 2\kappa + \rho)\rho}{8\kappa} \log g'_t(z) + \frac{\rho^2}{8\kappa} \log y_t + \frac{\rho}{\kappa} \log(U_t - z_t),$$

compute dZ_t using Itô's formula, take its real part, and exponentiate.)

Problem 8. Assume that we have the setup of Problem 7. Let $\Upsilon_t = y_t/|g_t'(z)|$.

• Explain why Υ_t is proportional to dist $(z, \gamma([0, t]) \cup \partial \mathbb{H})$. More precisely, explain why

$$\frac{1}{4} \le \frac{\Upsilon_t}{\operatorname{dist}(z, \gamma([0, t]) \cup \partial \mathbb{H})} \le 4.$$

• Let $S_t = \sin(\arg(z_t - U_t))$. Explain why

$$M_t = |g_t'(z)|^{(8-\kappa+\rho)\rho/(4\kappa)} \Upsilon_t^{\rho(\rho+8)/(8\kappa)} S_t^{-\rho/\kappa}$$

• By considering the above martingale with the special choice $\rho = \kappa - 8$, show that if $\kappa > 8$ then the SLE_{κ} curve γ almost surely hits z. Conclude that γ fills all of \mathbb{H} . (Hint: recall that we showed in class that γ fills $\partial \mathbb{H}$. Deduce from this and the conformal Markov property that γ cannot separate z from ∞ without hitting it. Consider the behavior of S_t when γ is hitting a point on $\partial \mathbb{H}$ with either very large positive or negative values.)

Problem 9. In the context of Problem 4, show that

$$\partial_t \psi'_t(U_t) = \lim_{z \to U_t} \partial_t \psi'_t(z) = \frac{\psi''_t(U_t)^2}{2\psi'_t(U_t)} - \frac{4}{3} \psi'''_t(U_t).$$

Problem 10. Prove that the Dirichlet inner product is conformally invariant. That is, show that if $f, g \in C_0^{\infty}(D)$ and $\varphi: D \to \widetilde{D}$ is a conformal transformation, then

$$(f,g)_{\nabla} = (f \circ \varphi^{-1}, g \circ \varphi^{-1})_{\nabla}$$

(Hint: use the change of variables formula and the Cauchy-Riemann equations.)

Problem 11. Suppose that $f \in H_0^1(D)$ with $\Delta f = 0$ in U in the distributional sense: if $g \in C_0^\infty(U)$, then $(f, \Delta g) = 0$ where (\cdot, \cdot) denotes the L^2 inner product. Show that $f|_U$ is C^∞ in U and $\Delta f = 0$ in U in (the usual sense) using the following steps.

• Let ϕ be a radially symmetric C_0^{∞} bump function supported in \mathbb{D} . In other words, $\phi(x) \ge 0$ for all $x, \phi(x)$ depends only on $|x|, \phi(x) = 0$ for $|x| \ge 1$, and $\int \phi = 1$. For each $\epsilon > 0$, let

$$f_{\epsilon}(x) = \epsilon^{-2} \int f(y)\phi\left(\frac{x-y}{\epsilon}\right) dy.$$

Explain why f_{ϵ} is C^{∞} in $U_{\epsilon} = \{z \in U : \operatorname{dist}(z, \partial U) > \epsilon\}.$

- Fix $\delta > 0$ and let $x \in U_{\delta}$. Explain why $f_{\epsilon}(x)$ does not depend on the value of ϵ for $\epsilon \in (0, \delta)$. (Hint: compute the derivative of $f_{\epsilon}(x)$ respect to ϵ , recall the form of Δ when expressed in polar coordinates, and consider the radially symmetric function $\psi(r) = \int r\phi(r)dr$.)
- Conclude that if $g \in C_0^{\infty}(U)$, then the value of (f_{ϵ}, g) does not depend on ϵ for sufficiently small values of ϵ .
- Explain why the previous parts imply that f is C^{∞} in U and $\Delta f = 0$ in U (in the usual sense).

Bonus Problem. Fill in the missing details to the proof of Theorem 11.3 from the lecture notes by proving the following.

• Suppose that γ is an $\text{SLE}_{8/3}$ in \mathbb{H} from 0 to ∞ . Suppose that for every $A \in \mathcal{Q}_{\pm}$ with the property that there exists a smooth, simple curve $\beta \colon (0,1) \to \mathbb{H}$ such that $\mathbb{H} \cap \partial A = \beta((0,1))$ we have that

(0.1)
$$\mathbb{P}[\gamma([0,\infty]) \cap A = \emptyset] = (\psi'_A(0))^{5/8}.$$

Show that (0.1) holds for all $A \in \mathcal{Q}_{\pm}$.

- Using the conformal invariance of Brownian motion, carefully justify (11.6) in the lecture notes.
- Carefully justify the last sentence in the proof of Theorem 11.3.