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Problem 1.

• Suppose that f : D→ D is a conformal transformation (i.e., f is a conformal automorphism
of D). Use the Schwarz lemma to show that there exists z ∈ D and λ ∈ ∂D so that

f(w) = λ
z − w
zw − 1

.

• Suppose that f : H→ H is a conformal transformation (i.e., f is a conformal automorphism
of H). Show that there exists a, b, c, d ∈ R with ad− bc = 1 so that

f(z) =
az + b

cz + d
.

Deduce that if f fixes 0 and ∞ then there exists a > 0 so that f(z) = az.

Problem 2.

• Using the conformal invariance of Brownian motion, show that the hitting density (with
respect to Lebesgue measure) for a complex Brownian motion starting from z ∈ D on the
unit circle is given by

p(z, eiθ) =
1

2π

1− |z|2

|eiθ − z|2
for θ ∈ [0, 2π).

You may assume that the hitting density is given by the uniform distribution on ∂D when
z = 0.
• Using the conformal invariance of Brownian motion, show that the hitting density (with

respect to Lebesgue measure) for a complex Brownian motion starting from z ∈ H on the
real line ∂H is given by

p(z, u) =
1

π

y

(x− u)2 + y2
where z = x+ iy, u ∈ ∂H.

(Note that p(i, ·) is the Cauchy distribution on R.)

Problem 3.

• Show that f(z) = z + 1/z is a conformal transformation from H \ D to H.
• Using the conformal invariance of Brownian motion, show that the density p(z, eiθ), θ ∈ [0, π],

for the first exit distribution (with respect to Lebesgue measure) of a complex Brownian
motion on H ∩ ∂D starting from z ∈ H \ D satisfies:

p(z, eiθ) =
2

π

Im(z)

|z|2
sin(θ)

(
1 +O(|z|−1)

)
as z →∞.

Problem 4. Using the previous problem, show that if A ∈ Q then

hcap(A) =
2

π

∫ π

0
Eeiθ [Im(Bτ )] sin(θ)dθ
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where τ is the first time that a complex Brownian motion B exits H \ A and Ez denotes the
expectation with respect to the law under which B starts from z.

Problem 5. (Schwarz reflection for harmonic functions) Suppose that u : H ∩ D→ R is harmonic
in H∩D, continuous in H ∩ D, and vanishes on [−1, 1]. Show that u extends to a harmonic function
on D by odd reflection, i.e., by taking u(z) = −u(z).

Problem 6. Suppose that D is a domain in C and f is holomorphic and non-zero on D. Show
that log |f | is harmonic.

Problem 7.

• Consider the rectangle Ar = [−r, r]× (0, 1] in H. Show that there exists a constant c > 0
such that hcap(Ar) ≤ cr for all r ≥ 1.
• Find a sequence of compact H-hulls (An) such that diam(An)→∞ but hcap(An)→ 0.

Problem 8. Suppose that u is a harmonic function on a domain D ⊆ C. Show that for each
n ∈ N = {1, 2, . . .} there exists a constant cn > 0 such that for all j, k ∈ N0 = {0, 1, . . .} with
j + k = n and z = x+ iy ∈ D we have that∣∣∣∂jx∂kyu(z)

∣∣∣ ≤ cn
dist(z, ∂D)n

‖u‖∞.

Hint: use the first part of Problem 2.

Problem 9. Suppose that A ∈ Q with rad(A) = sup{|z| : z ∈ A} ≤ 1. Show that

x ≤ gA(x) ≤ x+
1

x
for all x > 1

x+
1

x
≤ gA(x) ≤ x for all x < −1.

Show also that for all A ∈ Q and A ∈ H \A we have that |gA(z)− z| ≤ 3rad(A). Hint: for x > 1,
show that gA(x) is increasing in A and recall the first part of Problem 3.

Problem 10. Suppose that A ∈ Q is connected. Let B be a complex Brownian motion and let
τ = inf{t ≥ 0 : Bt /∈ H \A}. Show that there exists constants c1, c2 > 0 such that

c1diam(A) ≤ lim
y→∞

yPiy[Bτ ∈ A] ≤ c2diam(A).

Problem 11. Suppose that γ : [0, T ] → H is a simple curve (i.e., s 6= t implies γ(s) 6= γ(t))
with γ(0) = 0 and γ(t) ∈ H for all t ∈ (0, T ]. Show that At = γ((0, t]) for t ∈ [0, T ] is a
family of locally growing compact H-hulls. Show, moreover, that there exists a homeomorphism
φ : [0, T ] → [0, 12hcap(AT )] so that hcap(Aφ−1(t)) = 2t for all t ∈ [0, 12hcap(AT )]. (This is the
so-called capacity parameterization of γ.)

Problem 12. Suppose that U : [0, T ] → R is a continuous function. Let gt(z) solve the chordal
Loewner equation

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z.

Show for each t ∈ [0, T ] that gt is a conformal transformation from its domain onto H with
gt(z)− z → 0 as z →∞ using the following steps.

• Show that t 7→ Im(gt(z)) is decreasing in t, hence for each z ∈ H, t 7→ gt(z) is defined up
until τz = sup{t ≥ 0 : Im(gt(z)) > 0}. Conclude that Ht = {z : τz > t} is the domain of gt.
• Show for each t ∈ [0, T ] that z 7→ gt(z) is complex differentiable on Ht.
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• Show for each t ∈ [0, T ] that z 7→ gt(z) has an inverse defined on H by showing that
gt(ft(w)) = w for all w ∈ H where fs for s ∈ [0, t] solves the so-called reverse chordal
Loewner equation

∂sfs(w) = − 2

fs(w)− Ut−s
, f0(w) = w.

Optional problems: Riemann mapping theorem

The purpose of this sequence of problems is to prove the Riemann mapping theorem.

Optional Problem 1. Prove the Harnack inequality: suppose that u is a positive harmonic
function defined on a domain D. Then for each K ⊆ D compact there exists a constant M > 0
(independent of u) such that

supz∈K u(z)

infz∈K u(z)
≤M.

Optional Problem 2. Deduce from Problem 1 that if f, f̃ are conformal transformations D → D
taking z to 0 and with positive derivative at z, then f = f̃ .

Optional Problem 3. Suppose that D is a simply connected domain with D 6= C. Suppose that
z ∈ D. Show that there exists a unique conformal transformation f : D → D with f(z) = 0 and
f ′(z) > 0 using the following steps.

• Let C be the collection of conformal transformations f from D into a subset of D with f(z) = 0
and f ′(z) > 0. Deduce from the Schwarz lemma that if f ∈ C then f ′(z) ≤ (dist(z, ∂D))−1.
• Show that C is non-empty.
• Suppose that (fn) is a sequence in C such that, for each K ⊆ D compact, we have that
fn|K → f |K uniformly where f is conformal on D. Show that f is either constant or
injective.
• Let M = sup{f ′(z) : z ∈ C}. Let (fn) be a sequence of functions in C with f ′n(z) increasing

to M . Explain why there exists a subsequence (fnk) of (fn) which converges uniformly to
a map f : D → D. (Hint: use Problem 7, the Harnack inequality, and the Arzela-Ascoli
theorem.) Explain why f ′(z) = M and deduce from the previous part that f is injective.
• Show that f is surjective onto D. (Hint: argue by contradiction that if f is not surjective

then f ′(z) < M .)
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Problem 1. Suppose that Ut =
√
κBt where B is a standard Brownian motion and let (gt) solve

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z.

• (Markov property) Suppose that τ is a stopping time for U which is almost surely finite and
let g̃t = gτ+t(g

−1
τ (z + Uτ ))− Uτ . Show that the maps (g̃t) have the same distribution as the

maps (gt).
• (Scale invariance) Fix r > 0 and let g̃t(z) = rgt/r2(z/r). Show that the maps (g̃t) have the

same distribution as the maps (gt).

Suppose that D is a simply connected domain, x, y ∈ ∂D are distinct, and ϕ : H→ D is a conformal
transformation with ϕ(0) = x and ϕ(∞) = y. Explain why the definition of SLEκ given by ϕ(γ)
where γ is an SLEκ in H from 0 to ∞ is well-defined.

Problem 2.

• Suppose that B is a standard Brownian motion and a < 0. Show that supt≥0(Bt + at) <∞
almost surely.
• Suppose that (gt) is the family of conformal maps which solve the Loewner equation with

driving function Ut =
√
κBt and, for each x ∈ R, let V x

t = gt(x)− Ut and τx = inf{t ≥ 0 :
V x
t = 0}. For each 0 < x < y, let g(x, y) = P[τx = τy]. Show that if g(1, 1 + ε/2) > 0 for all
ε ∈ (0, ε0) for some ε0 > 0 then g(x, y) > 0 for all 0 < x < y.

Problem 3. Fix T > 0 and let D ⊆ H be a simply connected domain. Suppose that (At)t∈[0,T ] is a
non-decreasing family of compact H-hulls which are locally growing with A0 = ∅, hcap(At) = 2t
for all t ∈ [0, T ], and AT ⊆ D. Let ψ : D → H be a conformal transformation which is bounded on

bounded sets. Show that the family of compact H-hulls Ãt = ψ(At) for t ∈ [0, T ] is locally growing

with Ã0 = ∅ and with

hcap(Ãt) =

∫ t

0
2(ψ′s(Us))

2ds where ψt = g̃t ◦ ψ ◦ g−1t for each t ∈ [0, T ]

and g̃t is the unique conformal transformation H \ Ãt → H with g̃t(z)− z → 0 as z →∞.

Problem 4. In the setting of the previous problem, show that

∂tψt(Ut) = lim
z→Ut

∂tψt(z) = −3ψ′′t (Ut).

Problem 5. Suppose that (At) is a non-decreasing family of H-hulls which are locally growing and
with A0 = ∅. For each t ≥ 0, let a(t) = hcap(At) and assume that a(t) is C1. For each t ≥ 0, let
gt be the unique conformal transformation which takes H \At to H with gt(z)− z → 0 as z →∞.
Show that the conformal maps (gt) satisfy the ODE:

∂tgt(z) =
∂ta(t)

gt(z)− Ut
, g0(z) = z

1
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for some continuous, real-valued function Ut. (Hint: perform a time-change so that the hulls are
parameterized by capacity, apply Loewner’s theorem as proved in class, and then invert the time
change.)

Problem 6. Suppose that B is a standard Brownian motion starting from B0 = x > 0. For each
a ∈ R, let τa = inf{t ≥ 0 : Bt = a}.

• For a < x < b, explain why P[τa < τb] = (b− x)/(b− a).
• Using the Girsanov theorem, explain why the law of B weighted by Bτ0∧τb is equal to that

of a BES3 process stopped upon hitting b. That is, if P denotes the law of B and we define

the law P̃ using the Radon-Nikodym derivative

dP̃
dP

=
Bτ0∧τb

E[Bτ0∧τb ]

then the law of B under P̃ is that of a BES3 process stopped upon hitting b.
• Explain why a standard Brownian motion conditioned to be non-negative is a BES3 process.
• More generally, explain why a BESd process with d < 2 conditioned to be non-negative is a

BES4−d process.

Problem 7. Suppose that (gt) is the family of conformal maps associated with an SLEκ with
driving function Ut, i.e., Ut =

√
κBt where B is a standard Brownian motion. Fix z ∈ H and let

zt = xt + iyt = gt(z). Assume that ρ ∈ R is fixed. Use Itô’s formula to show that

Mt = |g′t(z)|(8−2κ+ρ)ρ/(8κ)y
ρ2/8κ
t |Ut − zt|ρ/κ

is a continuous local martingale. (Hint: let

Zt =
(8− 2κ+ ρ)ρ

8κ
log g′t(z) +

ρ2

8κ
log yt +

ρ

κ
log(Ut − zt),

compute dZt using Itô’s formula, take its real part, and exponentiate.)

Problem 8. Assume that we have the setup of Problem 7. Let Υt = yt/|g′t(z)|.
• Explain why Υt is proportional to dist(z, γ([0, t]) ∪ ∂H). More precisely, explain why

1

4
≤ Υt

dist(z, γ([0, t]) ∪ ∂H)
≤ 4.

• Let St = sin(arg(zt − Ut)). Explain why

Mt = |g′t(z)|(8−κ+ρ)ρ/(4κ)Υ
ρ(ρ+8)/(8κ)
t S

−ρ/κ
t .

• By considering the above martingale with the special choice ρ = κ− 8, show that if κ > 8
then the SLEκ curve γ almost surely hits z. Conclude that γ fills all of H. (Hint: recall that
we showed in class that γ fills ∂H. Deduce from this and the conformal Markov property
that γ cannot separate z from ∞ without hitting it. Consider the behavior of St when γ is
hitting a point on ∂H with either very large positive or negative values.)

Problem 9. In the context of Problem 4, show that

∂tψ
′
t(Ut) = lim

z→Ut

∂tψ
′
t(z) =

ψ′′t (Ut)
2

2ψ′t(Ut)
− 4

3
ψ′′′t (Ut).
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Problem 10. Prove that the Dirichlet inner product is conformally invariant. That is, show that if

f, g ∈ C∞0 (D) and ϕ : D → D̃ is a conformal transformation, then

(f, g)∇ = (f ◦ ϕ−1, g ◦ ϕ−1)∇.
(Hint: use the change of variables formula and the Cauchy-Riemann equations.)

Problem 11. Suppose that f ∈ H1
0 (D) with ∆f = 0 in U in the distributional sense: if g ∈ C∞0 (U),

then (f,∆g) = 0 where (·, ·) denotes the L2 inner product. Show that f |U is C∞ in U and ∆f = 0
in U in (the usual sense) using the following steps.

• Let φ be a radially symmetric C∞0 bump function supported in D. In other words, φ(x) ≥ 0
for all x, φ(x) depends only on |x|, φ(x) = 0 for |x| ≥ 1, and

∫
φ = 1. For each ε > 0, let

fε(x) = ε−2
∫
f(y)φ

(
x− y
ε

)
dy.

Explain why fε is C∞ in Uε = {z ∈ U : dist(z, ∂U) > ε}.
• Fix δ > 0 and let x ∈ Uδ. Explain why fε(x) does not depend on the value of ε for ε ∈ (0, δ).

(Hint: compute the derivative of fε(x) respect to ε, recall the form of ∆ when expressed in
polar coordinates, and consider the radially symmetric function ψ(r) =

∫
rφ(r)dr.)

• Conclude that if g ∈ C∞0 (U), then the value of (fε, g) does not depend on ε for sufficiently
small values of ε.
• Explain why the previous parts imply that f is C∞ in U and ∆f = 0 in U (in the usual

sense).

Bonus Problem. Fill in the missing details to the proof of Theorem 11.3 from the lecture notes
by proving the following.

• Suppose that γ is an SLE8/3 in H from 0 to ∞. Suppose that for every A ∈ Q± with the
property that there exists a smooth, simple curve β : (0, 1)→ H such that H∩∂A = β((0, 1))
we have that

(0.1) P[γ([0,∞]) ∩A = ∅] = (ψ′A(0))5/8.

Show that (0.1) holds for all A ∈ Q±.
• Using the conformal invariance of Brownian motion, carefully justify (11.6) in the lecture

notes.
• Carefully justify the last sentence in the proof of Theorem 11.3.


