
Part III — Riemannian Geometry

Based on lectures by A. G. Kovalev
Notes taken by Dexter Chua

Lent 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

This course is a possible natural sequel of the course Differential Geometry offered in
Michaelmas Term. We shall explore various techniques and results revealing intricate
and subtle relations between Riemannian metrics, curvature and topology. I hope to
cover much of the following:

A closer look at geodesics and curvature. Brief review from the Differential Geometry
course. Geodesic coordinates and Gauss’ lemma. Jacobi fields, completeness and
the Hopf–Rinow theorem. Variations of energy, Bonnet–Myers diameter theorem and
Synge’s theorem.

Hodge theory and Riemannian holonomy. The Hodge star and Laplace–Beltrami
operator. The Hodge decomposition theorem (with the ‘geometry part’ of the proof).
Bochner–Weitzenböck formulae. Holonomy groups. Interplays with curvature and de
Rham cohomology.

Ricci curvature. Fundamental groups and Ricci curvature. The Cheeger–Gromoll
splitting theorem.

Pre-requisites

Manifolds, differential forms, vector fields. Basic concepts of Riemannian geometry

(curvature, geodesics etc.) and Lie groups. The course Differential Geometry offered in

Michaelmas Term is the ideal pre-requisite.
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1 Basics of Riemannian manifolds III Riemannian Geometry

1 Basics of Riemannian manifolds

Before we do anything, we lay out our conventions. Given a choice of local
coordinates {xk}, the coefficients Xk for a vector field X is defined by

X =
∑
k

Xk ∂

∂xk
.

In general, for a tensor field X ∈ TM⊗q ⊗ T ∗M⊗p, we write

X =
∑

X
k1...kq
`1...`p

∂

∂xk1
⊗ · · · ⊗ ∂

∂xkq
⊗ dx`1 ⊗ · · · ⊗ d`p ,

and we often leave out the ⊗signs.
For the sake of sanity, we will often use implicit summation convention, i.e.

whenever we write something of the form

XijkY
i`jk,

we mean ∑
i,j

XijkY
i`jk.

We will use upper indices to denote contravariant components, and lower
indices for covariant components, as we have done above. Thus, we always sum
an upper index with a lower index, as this corresponds to applying a covector to
a vector.

We will index the basis elements oppositely, e.g. we write dxk instead of dxk
for a basis element of T ∗M , so that the indices in expressions of the form Ak dxk

seem to match up. Whenever we do not follow this convention, we will write out
summations explicitly.

We will also adopt the shorthands

∂k =
∂

∂xk
, ∇k = ∇∂k .

With these conventions out of the way, we begin with a very brief summary
of some topics in the Michaelmas Differential Geometry course, starting from
the definition of a Riemannian metric.

Definition (Riemannian metric). Let M be a smooth manifold. A Riemannian
metric g on M is an inner product on the tangent bundle TM varying smoothly
with the fibers. Formally, this is a global section of T ∗M ⊗T ∗M that is fiberwise
symmetric and positive definite.

The pair (M, g) is called a Riemannian manifold .

On every coordinate neighbourhood with coordinates x = (x1, · · · , xn), we
can write

g =

n∑
i,j=1

gij(x) dxi dxj ,

and we can find the coefficients gij by

gij = g

(
∂

∂xi
,
∂

∂xj

)
and are C∞ functions.
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1 Basics of Riemannian manifolds III Riemannian Geometry

Example. The manifold Rk has a canonical metric given by the Euclidean
metric. In the usual coordinates, g is given by gij = δij .

Does every manifold admit a metric? Recall

Theorem (Whitney embedding theorem). Every smooth manifold M admits
an embedding into Rk for some k. In other words, M is diffeomorphic to a
submanifold of Rk. In fact, we can pick k such that k ≤ 2 dimM .

Using such an embedding, we can induce a Riemannian metric on M by
restricting the inner product from Euclidean space, since we have inclusions
TpM ↪→ TpRk ∼= Rk.

More generally,

Lemma. Let (N,h) be a Riemannian manifold, and F : M → N is an immersion,
then the pullback g = F ∗h defines a metric on M .

The condition of immersion is required for the pullback to be non-degenerate.
In Differential Geometry, if we do not have metrics, then we tend to consider

diffeomorphic spaces as being the same. With metrics, the natural notion of
isomorphism is

Definition (Isometry). Let (M, g) and (N,h) be Riemannian manifolds. We
say f : M → N is an isometry if it is a diffeomorphism and f∗h = g. In other
words, for any p ∈M and u, v ∈ TpM , we need

h
(
(df)pu, (df)pv

)
= g(u, v).

Example. Let G be a Lie group. Then for any x, we have translation maps
Lx, Rx : G→ G given by

Lx(y) = xy

Rx(y) = yx

These maps are in fact diffeomorphisms of G.
We already know that G admits a Riemannian metric, but we might want

to ask something stronger — does there exist a left-invariant metric? In other
words, is there a metric such that each Lx is an isometry?

Recall the following definition:

Definition (Left-invariant vector field). Let G be a Lie group, and X a vector
field. Then X is left invariant if for any x ∈ G, we have d(Lx)X = X.

We had a rather general technique for producing left-invariant vector fields.
Given a Lie group G, we can define the Lie algebra g = TeG. Then we can
produce left-invariant vector fields by picking some Xe ∈ g, and then setting

Xa = d(La)Xe.

The resulting vector field is indeed smooth, as shown in the differential geometry
course.

Similarly, to construct a left-invariant metric, we can just pick a metric at
the identity and the propagating it around using left-translation. More explicitly,
given any inner product on 〈 · , · 〉 on TeG, we can define g by

g(u, v) = 〈(dLx−1)xu, (dLx−1)xv〉
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1 Basics of Riemannian manifolds III Riemannian Geometry

for all x ∈ G and u, v ∈ TxG. The argument for smoothness is similar to that
for vector fields.

Of course, everything works when we replace “left” with “right”. A Rie-
mannian metric is said to be bi-invariant if it is both left- and right-invariant.
These are harder to find, but it is a fact that every compact Lie group admits a
bi-invariant metric. The basic idea of the proof is to start from a left-invariant
metric, then integrate the metric along right translations of all group elements.
Here compactness is necessary for the result to be finite.

We will later see that we cannot drop the compactness condition. There are
non-compact Lie groups that do not admit bi-invariant metrics, such as SL(2,R).

Recall that in order to differentiate vectors, or even tensors on a manifold,
we needed a connection on the tangent bundle. There is a natural choice for the
connection when we are given a Riemannian metric.

Definition (Levi-Civita connection). Let (M, g) be a Riemannian manifold.
The Levi-Civita connection is the unique connection ∇ : Ω0

M (TM)→ Ω1
M (TM)

on M satisfying

(i) Compatibility with metric:

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ),

(ii) Symmetry/torsion-free:

∇XY −∇YX = [X,Y ].

Definition (Christoffel symbols). In local coordaintes, the Christoffel symbols
are defined by

∇∂j
∂

∂xk
= Γijk

∂

∂xi
.

With a bit more imagination on what the symbols mean, we can write the
first property as

d(g(X,Y )) = g(∇X,Y ) + g(X,∇Y ),

while the second property can be expressed in coordinate representation by

Γijk = Γikj .

The connection was defined on TM , but in fact, the connection allows us to
differentiate many more things, and not just tangent vectors.

Firstly, the connection ∇ induces a unique covariant derivative on T ∗M , also
denoted ∇, defined uniquely by the relation

X〈α, Y 〉 = 〈∇Xα, Y 〉+ 〈α,∇XY 〉

for any X,Y ∈ Vect(M) and α ∈ Ω1(M).
To extend this to a connection ∇ on tensor bundles T q,p ≡ (TM)⊗q ⊗

(T ∗M)⊗p for any p, q ≥ 0, we note the following general construction:
In general, suppose we have vector bundles E and F , and s1 ∈ Γ(E) and

s2 ∈ Γ(F ). If we have connections ∇E and ∇F on E and F respectively, then
we can define

∇E⊗F (s1 ⊗ s2) = (∇Es1)⊗ s2 + s1 ⊗ (∇F s2).
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1 Basics of Riemannian manifolds III Riemannian Geometry

Since we already have a connection on TM and T ∗M , this allows us to extend
the connection to all tensor bundles.

Given this machinery, recall that the Riemannian metric is formally a section
g ∈ Γ(T ∗M ⊗ T ∗M). Then the compatibility with the metric can be written in
the following even more compact form:

∇g = 0.
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2 Riemann curvature III Riemannian Geometry

2 Riemann curvature

With all those definitions out of the way, we now start by studying the notion
of curvature. The definition of the curvature tensor might not seem intuitive
at first, but motivation was somewhat given in the III Differential Geometry
course, and we will not repeat that.

Definition (Curvature). Let (M, g) be a Riemannian manifold with Levi-Civita
connection ∇. The curvature 2-form is the section

R = −∇ ◦∇ ∈ Γ(
∧2T ∗M ⊗ T ∗M ⊗ TM) ⊆ Γ(T 1,3M).

This can be thought of as a 2-form with values in T ∗M ⊗ TM = End(TM).
Given any X,Y ∈ Vect(M), we have

R(X,Y ) ∈ Γ(EndTM).

The following formula is a straightforward, and also crucial computation:

Proposition.
R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ].

In local coordinates, we can write

R =
(
Rij,k`dx

kdx`
)
i,j=1,...,dimM

∈ Ω2
M (End(TM)).

Then we have
R(X,Y )ij = Rij,k`X

kY `.

The comma between j and k` is purely for artistic reasons.
It is often slightly convenient to consider a different form of the Riemann

curvature tensor. Instead of having a tensor of type (1, 3), we have one of type
(0, 4) by

R(X,Y, Z, T ) = g(R(X,Y )Z, T )

for X,Y, Z, T ∈ TpM . In local coordinates, we write this as

Rij,k` = giqR
q
j,k`.

The first thing we want to prove is that Rij,k` enjoys some symmetries we might
not expect:

Proposition.

(i)
Rij,k` = −Rij,`k = −Rji,k`.

(ii) The first Bianchi identity :

Rij,k` +Rik,`j +Ri`,jk = 0.

(iii)
Rij,k` = Rk`,ij .
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2 Riemann curvature III Riemannian Geometry

Note that the first Bianchi identity can also be written for the (0, 4) tensor as

Rij,k` +Rik,`j +Ri`,jk = 0.

Proof.

(i) The first equality is obvious as coefficients of a 2-form. For the second
equality, we begin with the compatibility of the connection with the metric:

∂gij
∂xk

= g(∇k∂i, ∂j) + g(∂i,∇k∂j).

We take a partial derivative, say with respect to x`, to obtain

∂2gij
∂x`∂xk

= g(∇`∇k∂i, ∂j)+g(∇k∂i,∇`∂j)+g(∇`∂i,∇k∂j)+g(∂i,∇`∇k∂j).

Then we know

0 =
∂2g

∂x`∂xk
− ∂2g

∂xk∂x`
= g([∇`,∇k]∂i, ∂j) + g(∂i, [∇`,∇k]∂j).

But we know

R(∂k, ∂`) = ∇[∂k,∂`] − [∇k,∇`] = −[∇k,∇`].

Writing Rk` = R(∂k, ∂`), we have

0 = g(Rk`∂i, ∂j) + g(∂i, Rk`∂j) = Rji,k` +Rij,k`.

So we are done.

(ii) Recall
Rij,k` = (Rk`∂j)

i = ([∇`,∇k]∂j)
i.

So we have

Rij,k` +Rik,`j +Ri`,jk

= [(∇`∇k∂j −∇k∇`∂j) + (∇j∇`∂k −∇`∇j∂k) + (∇k∇j∂` −∇j∇k∂`)]i .

We claim that
∇`∇k∂j −∇`∇j∂k = 0.

Indeed, by definition, we have

(∇k∂j)q = Γqkj = Γqjk = (∇j∂k)q.

The other terms cancel similarly, and we get 0 as promised.

(iii) Consider the following octahedron:

Rik,`j = Rki,j` Ri`,jk = R`i,kj

Rj`,ki = R`j,ikRjk,i` = Rkj,`i

Rij,k` = Rji,`k

Rk`,ij = R`k,ji
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2 Riemann curvature III Riemannian Geometry

The equalities on each vertex is given by (i). By the first Bianchi identity,
for each greyed triangle, the sum of the three vertices is zero.

Now looking at the upper half of the octahedron, adding the two greyed
triangles shows us the sum of the vertices in the horizontal square is
(−2)Rij,k`. Looking at the bottom half, we find that the sum of the
vertices in the horizontal square is (−2)Rk`,ij . So we must have

Rij,k` = Rk`,ij .

What exactly are the properties of the Levi-Civita connection that make
these equality works? The first equality of (i) did not require anything. The
second equality of (i) required the compatibility with the metric, and (ii) required
the symmetric property. The last one required both properties.

Note that we can express the last property as saying Rij,k` is a symmetric
bilinear form on

∧
2T ∗pM .

Sectional curvature

The full curvature tensor is rather scary. So it is convenient to obtain some
simpler quantities from it. Recall that if we had tangent vectors X,Y , then we
can form

|X ∧ Y | =
√
g(X,X)g(Y, Y )− g(X,Y )2,

which is the area of the parallelogram spanned by X and Y . We now define

K(X,Y ) =
R(X,Y,X, Y )

|X ∧ Y |2
.

Note that this is invariant under (non-zero) scaling of X or Y , and is symmetric
in X and Y . Finally, it is also invariant under the transformation (X,Y ) 7→
(X + λY, Y ).

But it is an easy linear algebra fact that these transformations generate all
isomorphism from a two-dimensional vector space to itself. So K(X,Y ) depends
only on the 2-plane spanned by X,Y . So we have in fact defined a function on
the Grassmannian of 2-planes, K : Gr(2, TpM)→ R. This is called the sectional
curvature (of g).

It turns out the sectional curvature determines the Riemann curvature tensor
completely!

Lemma. Let V be a real vector space of dimension ≥ 2. Suppose R′, R′′ :
V ⊗4 → R are both linear in each factor, and satisfies the symmetries we found
for the Riemann curvature tensor. We define K ′,K ′′ : Gr(2, V )→ R as in the
sectional curvature. If K ′ = K ′′, then R′ = R′′.

This is really just linear algebra.

Proof. For any X,Y, Z ∈ V , we know

R′(X + Z, Y,X + Z, Y ) = R′′(X + Z, Y,X + Z, Y ).

Using linearity of R′ and R′′, and cancelling equal terms on both sides, we find

R′(Z, Y,X, Y ) +R′(X,Y, Z, Y ) = R′′(Z, Y,X, Y ) +R′′(X,Y, Z, Y ).
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2 Riemann curvature III Riemannian Geometry

Now using the symmetry property of R′ and R′′, this implies

R′(X,Y, Z, Y ) = R′′(X,Y, Z, Y ).

Similarly, we replace Y with Y + T , and then we get

R′(X,Y, Z, T ) +R′(X,T, Z, Y ) = R′′(X,Y, Z, Y ) +R′′”(X,T, Z, Y ).

We then rearrange and use the symmetries to get

R′(X,Y, Z, T )−R′′(X,Y, Z, T ) = R′(Y,Z,X, T )−R′′(Y, Z,X, T ).

We notice this equation says R′(X,Y, Z, T )−R′′(X,Y, Z, T ) is invariant under
the cyclic permutation X → Y → Z → X. So by the first Bianchi identity, we
have

3(R′(X,Y, Z, T )−R′′(X,Y, Z, T )) = 0.

So we must have R′ = R′′.

Corollary. Let (M, g) be a manifold such that for all p, the function Kp :
Gr(2, TpM)→ R is a constant map. Let

R0
p(X,Y, Z, T ) = gp(X,Z)gp(Y, T )− gp(X,T )gp(Y, Z).

Then
Rp = KpR

0
p.

Here Kp is just a real number, since it is constant. Moreover, Kp is a smooth
function of p.

Equivalently, in local coordinates, if the metric at a point is δij , then we have

Rij,ij = −Rij,ji = Kp,

and all other entries all zero.

Of course, the converse also holds.

Proof. We apply the previous lemma as follows: we define R′ = KpR
0
p and

R′′ = Rp. It is a straightforward inspection to see that this R0 does follow the
symmetry properties of Rp, and that they define the same sectional curvature.
So R′′ = R′. We know Kp is smooth in p as both g and R are smooth.

We can further show that if dimM > 2, then Kp is in fact independent of p
under the hypothesis of this function, and the proof requires a second Bianchi
identity. This can be found on the first example sheet.

Other curvatures

There are other quantities we can extract out of the curvature, which will later
be useful.
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2 Riemann curvature III Riemannian Geometry

Definition (Ricci curvature). The Ricci curvature of g at p ∈M is

Ricp(X,Y ) = tr(v 7→ Rp(X, v)Y ).

In terms of coordinates, we have

Ricij = Rqi,jq = gpqRpi,jq,

where gpq denotes the inverse of g.
This Ric is a symmetric bilinear form on TpM . This can be determined by

the quadratic form

Ric(X) =
1

n− 1
Ricp(X,X).

The coefficient 1
n−1 is just a convention.

There are still two indices we can contract, and we can define

Definition (Scalar curvature). The scalar curvature of g is the trace of Ric
respect to g. Explicitly, this is defined by

s = gij Ricij = gijRqi,jq = Rqiiq.

Sometimes a convention is to define the scalar curvature as s
n(n−1) instead.

In the case of a constant sectional curvature tensor, we have

Ricp = (n− 1)Kpgp,

and
s(p) = n(n− 1)Kp.

Low dimensions

If n = 2, i.e. we have surfaces, then the Riemannian metric g is also known as
the first fundamental form, and it is usually written as

g = E du2 + 2F du dv +G dv2.

Up to the symmetries, the only non-zero component of the curvature tensor is
R12,12, and using the definition of the scalar curvature, we find

R12,12 =
1

2
s(EG− F 2).

Thus s/2 is also the sectional curvature (there can only be one plane in the
tangent space, so the sectional curvature is just a number). One can further
check that

s

2
= K =

LN −M2

EG− F 2
,

the Gaussian curvature. Thus, the full curvature tensor is determined by the
Gaussian curvature. Also, R12,21 is the determinant of the second fundamental
form.

If n = 3, one can check that R(g) is determined by the Ricci curvature.
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3 Geodesics III Riemannian Geometry

3 Geodesics

3.1 Definitions and basic properties

We will eventually want to talk about geodesics. However, the setup we need to
write down the definition of geodesics can be done in a much more general way,
and we will do that.

The general setting is that we have a vector bundle π : E →M .

Definition (Lift). Let π : E → M be a vector bundle with typical fiber V .
Consider a curve γ : (−ε, ε) → M . A lift of γ is a map γE : (−ε, ε) → E if
π ◦ γE = γ, i.e. the following diagram commutes:

E

(−ε, ε) M

π

γ

γE

.

For p ∈M , we write Ep = π−1({p}) ∼= V for the fiber above p. We can think
of Ep as the space of some “information” at p. For example, if E = TM , then the
“information” is a tangent vector at p. In physics, the manifold M might represent
our universe, and a point in Ep might be the value of the electromagnetic field
at p.

Thus, given a path γ in M , a lift corresponds to providing that piece of
“information” at each point along the curve. For example, if E = TM , then we
can canonically produce a lift of γ, given by taking the derivative of γ at each
point.

Locally, suppose we are in some coordinate neighbourhood U ⊆M such that
E is trivial on U . After picking a trivialization, we can write our lift as

γE(t) = (γ(t), a(t))

for some function a : (−ε, ε)→ V .
One thing we would want to do with such lifts is to differentiate them, and

see how it changes along the curve. When we have a section of E on the whole
of M (or even just an open neighbourhood), rather than just a lift along a
curve, the connection provides exactly the information needed to do so. It is not
immediately obvious that the connection also allows us to differentiate curves
along paths, but it does.

Proposition. Let γ : (−ε, ε) → M be a curve. Then there is a uniquely
determined operation ∇dt from the space of all lifts of γ to itself, satisfying the
following conditions:

(i) For any c, d ∈ R and lifts γ̃E , γE of γ, we have.

∇
dt

(cγE + dγ̃E) = c
∇γE

dt
+ d
∇γ̃E

dt

(ii) For any lift γE of γ and function f : (−ε, ε)→ R, we have

∇
dt

(fγE) =
df

dt
+ f
∇γE

dt
.
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3 Geodesics III Riemannian Geometry

(iii) If there is a local section s of E and a local vector field V on M such that

γE(t) = s(γ(t)), γ̇(t) = V (γ(t)),

then we have
∇γE

dt
= (∇V s) ◦ γ.

Locally, this is given by (
∇γE

dt

)i
= ȧi + Γijka

j ẋk.

The proof is straightforward — one just checks that the local formula works,
and the three properties force the operation to be locally given by that formula.

Definition (Covariant derivative). The uniquely defined operation in the propo-
sition above is called the covariant derivative.

In some sense, lifts that have vanishing covariant derivative are “constant”
along the map.

Definition (Horizontal lift). Let ∇ be a connection on E with Γijk(x) the

coefficients in a local trivialization. We say a lift γE is horizontal if

∇γE

dt
= 0.

Since this is a linear first-order ODE, we know that for a fixed γ, given any
initial a(0) ∈ Eγ(0), there is a unique way to obtain a horizontal lift.

Definition (Parallel transport). Let γ : [0, 1]→M be a curve in M . Given any
a0 ∈ Eγ(0), the unique horizontal lift of γ with γE(0) = (γ(0), a0) is called the
parallel transport of a0 along γ(0). We sometimes also call γE(1) the parallel
transport.

Of course, we want to use this general theory to talk about the case where
M is a Riemannian manifold, E = TM and ∇ is the Levi-Civita connection of
g. In this case, each curve γ(t) has a canonical lift independent of the metric or
connection given simply by taking the derivative γ̇(t).

Definition (Geodesic). A curve γ(t) on a Riemannian manifold (M, g) is called
a geodesic curve if its canonical lift is horizontal with respect to the Levi-Civita
connection. In other words, we need

∇γ̇
dt

= 0.

In local coordinates, we write this condition as

ẍi + Γijkẋ
j ẋk = 0.

This time, we obtain a second-order ODE. So a geodesic is uniquely specified
by the initial conditions p = x(0) and a = ẋ(0). We will denote the resulting
geodesic as γp(t, a), where t is the time coordinate as usual.
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3 Geodesics III Riemannian Geometry

Since we have a non-linear ODE, existence is no longer guaranteed on all
time, but just for some interval (−ε, ε). Of course, we still have uniqueness of
solutions.

We now want to prove things about geodesics. To do so, we will need to apply
some properties of the covariant derivative we just defined. Since we are lazy,
we would like to reuse results we already know about the covariant derivative
for vector fields. The trick is to notice that locally, we can always extend γ̇ to a
vector field.

Indeed, we work in some coordinate chart around γ(0), and we wlog assume

γ̇(0) =
∂

∂x1
.

By the inverse function theorem, we note that x1(t) is invertible near 0, and we
can write t = t(x1) for small x1. Then in this neighbourhood of 0, we can view
xk as a function of x1 instead of t. Then we can define the vector field

γ̇(x1, · · · , xk) = γ̇(x1, x2(x1), · · · , xk(x1)).

By construction, this agrees with γ̇ along the curve.
Using this notation, the geodesic equation can be written as

∇γ̇ γ̇
∣∣∣
γ(t)

= 0,

where the ∇ now refers to the covariant derivative of vector fields, i.e. the
connection itself.

γ

Using this, a lot of the desired properties of geodesics immediately follow from
well-known properties of the covariant derivative. For example,

Proposition. If γ is a geodesic, then |γ̇(t)|g is constant.

Proof. We use the extension γ̇ around p = γ(0), and stop writing the underlines.
Then we have

γ̇(g(γ̇, γ̇)) = g(∇γ̇ γ̇, γ̇) + g(γ̇,∇γ̇ γ̇) = 0,

which is valid at each q = γ(t) on the curve. But at each q, we have

γ̇(g(γ̇, γ̇)) = ẋk
∂

∂xk
g(γ̇, γ̇) =

d

dt
|γ̇(t)|2g

by the chain rule. So we are done.
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3 Geodesics III Riemannian Geometry

At this point, it might be healthy to look at some examples of geodesics.

Example. In Rn with the Euclidean metric, we have Γijk = 0. So the geodesic
equation is

ẍk = 0.

So the geodesics are just straight lines.

Example. On a sphere Sn with the usual metric induced by the standard
embedding Sn ↪→ Rn+1. Then the geodesics are great circles.

To see this, we may wlog p = e0 and a = e1, for a standard basis {ei} of
Rn+1. We can look at the map

ϕ : (x0, · · · , xn) 7→ (x0, x1,−x2, · · · ,−xn),

and it is clearly an isometry of the sphere. Therefore it preserves the Riemannian
metric, and hence sends geodesics to geodesics. Since it also preserves p and a,
we know ϕ(γ) = γ by uniqueness. So it must be contained in the great circle
lying on the plane spanned by e0 and e1.

Lemma. Let p ∈M , and a ∈ TpM . As before, let γp(t, a) be the geodesic with
γ(0) = p and γ̇(0) = p. Then

γp(λt, a) = γp(t, λa),

and in particular is a geodesic.

Proof. We apply the chain rule to get

d

dt
γ(λt, a) = λγ̇(λt, a)

d2

dt2
γ(λt, a) = λ2γ̈(λt, a).

So γ(λt, a) satisfies the geodesic equations, and have initial velocity λa. Then
we are done by uniqueness of ODE solutions.

Thus, instead of considering γp(t, a) for arbitrary t and a, we can just fix
t = 1, and look at the different values of γp(1, a). By ODE theorems, we know
this depends smoothly on a, and is defined on some open neighbourhood of
0 ∈ TpM .

Definition (Exponential map). Let (M, g) be a Riemannian manifold, and
p ∈M . We define expp by

expp(a) = γ(1, a) ∈M

for a ∈ TpM whenever this is defined.

We know this function has domain at least some open ball around 0 ∈ TpM ,
and is smooth. Also, by construction, we have expp(0) = p.

In fact, the exponential map gives us a chart around p locally, known as
geodesic local coordinates. To do so, it suffices to note the following rather trivial
proposition.

15
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Proposition. We have
(d expp)0 = idTpM ,

where we identify T0(TpM) ∼= TpM in the natural way.

All this is saying is if you go in the direction of a ∈ TpM , then you go in the
direction of a.

Proof.

(d expp)0(v) =
d

dt
expp(tv) =

d

dt
γ(1, tv) =

d

dt
γ(t, v) = v.

Corollary. expp maps an open ball B(0, δ) ⊆ TpM to U ⊆M diffeomorphically
for some δ > 0.

Proof. By the inverse mapping theorem.

This tells us the inverse of the exponential map gives us a chart of M around
p. These coordinates are often known as geodesic local coordinates.

In these coordinates, the geodesics from p have the very simple form

γ(t, a) = ta

for all a ∈ TpM and t sufficiently small that this makes sense.

Corollary. For any point p ∈M , there exists a local coordinate chart around p
such that

– The coordinates of p are (0, · · · , 0).

– In local coordinates, the metric at p is gij(p) = δij .

– We have Γijk(p) = 0 .

Coordinates satisfying these properties are known as normal coordinates.

Proof. The geodesic local coordinates satisfies these property, after identifying
TpM isometrically with (Rn, eucl). For the last property, we note that the
geodesic equations are given by

ẍi + Γijkẋ
kẋj = 0.

But geodesics through the origin are given by straight lines. So we must have
Γijk = 0.

Such coordinates will be useful later on for explicit calculations, since when-
ever we want to verify a coordinate-independent equation (which is essentially
all equations we care about), we can check it at each point, and then use normal
coordinates at that point to simplify calculations.

We again identify (TpN, g(p)) ∼= (Rn, eucl), and then we have a map

(r,v) ∈ (0, δ)× Sn−1 7→ expp(rv) ∈Mn.

16
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This chart is known as geodesic polar coordinates . For each fixed r, the image of
this map is called a geodesic sphere of geodesic radius r, written Σr. This is an
embedded submanifold of M .

Note that in geodesic local coordinates, the metric at 0 ∈ TpN is given by
the Euclidean metric. However, the metric at other points can be complicated.
Fortunately, Gauss’ lemma says it is not too complicated.

Theorem (Gauss’ lemma). The geodesic spheres are perpendicular to their
radii. More precisely, γp(t, a) meets every Σr orthogonally, whenever this makes
sense. Thus we can write the metric in geodesic polars as

g = dr2 + h(r,v),

where for each r, we have
h(r,v) = g|Σr .

In matrix form, we have

g =


1 0 · · · 0
0... h
0


The proof is not hard, but it involves a few subtle points.

Proof. We work in geodesic coordinates. It is clear that g(∂r, ∂r) = 1.
Consider an arbitrary vector field X = X(v) on Sn−1. This induces a vector

field on some neighbourhood B(0, δ) ⊆ TpM by

X̃(rv) = X(v).

Pick a direction v ∈ TpM , and consider the unit speed geodesic γ in the direction
of v. We define

G(r) = g(X̃(rv), γ̇(r)) = g(X̃, γ̇(r)).

We begin by noticing that

∇∂rX̃ −∇X̃∂r = [∂r, X̃] = 0.

Also, we have
d

dr
G(r) = g(∇γ̇X̃, γ̇) + g(X̃,∇γ̇ γ̇).

We know the second term vanishes, since γ is a geodesic. Noting that γ̇ = ∂
∂r ,

we know the first term is equal to

g(∇X̃∂r, ∂r) =
1

2

(
g(∇X̃∂r, ∂r) + g(∂r,∇X̃∂r)

)
=

1

2
X̃(g(∂r, ∂r)) = 0,

since we know that g(∂r, ∂r) = 1 constantly.
Thus, we know G(r) is constant. But G(0) = 0 since the metric at 0 is the

Euclidean metric. So G vanishes everywhere, and so ∂r is perpendicular to Σg.

Corollary. Let a,w ∈ TpM . Then

g((d expp)aa, (d expp)aw) = g(a,w)

whenever a lives in the domain of the geodesic local neighbourhood.
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3.2 Jacobi fields

Fix a Riemannian manifold M . Let’s imagine that we have a “manifold” of all
smooth curves on M . Then this “manifold” has a “tangent space”. Morally,
given a curve γ, a “tangent vector” at γ in the space of curve should correspond
to providing a tangent vector (in M) at each point along γ:

Since we are interested in the geodesics only, we consider the “submanifold” of
geodesics curves. What are the corresponding “tangent vectors” living in this
“submanifold”?

In rather more concrete terms, suppose fs(t) = f(t, s) is a family of geodesics

in M indexed by s ∈ (−ε, ε). What do we know about ∂f
∂s

∣∣∣
s=0

, a vector field

along f0?
We begin by considering such families that fix the starting point f(0, s), and

then derive some properties of ∂f
∂s in these special cases. We will then define a

Jacobi field to be any vector field along a curve that satisfies these properties.
We will then prove that these are exactly the variations of geodesics.

Suppose f(t, s) is a family of geodesics such that f(0, s) = p for all s. Then
in geodesics local coordinates, it must look like this:

For a fixed p, such a family is uniquely determined by a function

a(s) : (−ε, ε)→ TpM

such that
f(t, s) = expp(ta(s)).

The initial conditions of this variation can be given by a(0) = a and

ȧ(0) = w ∈ Ta(TpM) ∼= TpM.

We would like to know the “variation field” of γ(t) = f(t, 0) = γp(t, a) this

induces. In other words, we want to find ∂f
∂s (t, 0). This is not hard. It is just

given by

(d expp)ta0(tw) =
∂f

∂s
(t, 0),

As before, to prove something about f , we want to make good use of the
properties of ∇. Locally, we extend the vectors ∂f

∂s and ∂f
∂t to vector fields ∂

∂t

18
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and ∂
∂s . Then in this set up, we have

γ̇ =
∂f

∂t
=

∂

∂t
.

Note that in ∂f
∂t , we are differentiating f with respect to t, whereas the ∂

∂t on
the far right is just a formal expressions.

By the geodesic equation, we have

0 =
∇
dt
γ̇ = ∇∂t∂t.

Therefore, using the definition of the curvature tensor R, we obtain

0 = ∇∂s∇∂t
∂

∂t
= ∇∂t∇∂s∂t −R(∂s, ∂t)∂t

= ∇∂t∇∂s∂t +R(∂t, ∂s)∂t

We let this act on the function f . So we get

0 =
∇
dt

∇
ds

∂f

∂t
+R(∂t, ∂s)

∂f

∂t
.

We write

J(t) =
∂f

∂s
(t, 0),

which is a vector field along the geodesic γ. Using the fact that

∇
ds

∂f

∂t
=
∇
dt

∂f

∂s
,

we find that J must satisfy the ordinary differential equation

∇2

dt2
J +R(γ̇, J)γ̇ = 0.

This is a linear second-order ordinary differential equation.

Definition (Jacobi field). Let γ : [0, L]→M be a geodesic. A Jacobi field is a
vector field J along γ that is a solution of the Jacobi equation on [0, L]

∇2

dt2
J +R(γ̇, J)γ̇ = 0. (†)

We now embark on a rather technical journey to prove results about Jacobi
fields. Observe that γ̇(t) and tγ̇(t) both satisfy this equation, rather trivially.

Theorem. Let γ : [0, L]→ N be a geodesic in a Riemannian manifold (M, g).
Then

(i) For any u, v ∈ Tγ(0)M , there is a unique Jacobi field J along Γ with

J(0) = u,
∇J
dt

(0) = v.

If

J(0) = 0,
∇J
dt

(0) = kγ̇(0),
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then J(t) = ktγ̇(t). Moreover, if both J(0), ∇Jdt (0) are orthogonal to γ̇(0),
then J(t) is perpendicular to γ̇(t) for all [0, L].

In particular, the vector space of all Jacobi fields along γ have dimension
2n, where n = dimM .

The subspace of those Jacobi fields pointwise perpendicular to γ̇(t) has
dimensional 2(n− 1).

(ii) J(t) is independent of the parametrization of γ̇(t). Explicitly, if γ̃(t) =
γ̃(λt), then J̃ with the same initial conditions as J is given by

J̃(γ̃(t)) = J(γ(λt)).

This is the kind of theorem whose statement is longer than the proof.

Proof.

(i) Pick an orthonormal basis e1, · · · , en of TpM , where p = γ(0). Then
parallel transports {Xi(t)} via the Levi-Civita connection preserves the
inner product.

We take e1 to be parallel to γ̇(0). By definition, we have

Xi(0) = ei,
∇Xi

dt
= 0.

Now we can write

J =

n∑
i=1

yiXi.

Then taking g(Xi, · ) of (†) , we find that

ÿi +

n∑
j=2

R(γ̇, Xj , γ̇, Xi)yj = 0.

Then the claims of the theorem follow from the standard existence and
uniqueness of solutions of differential equations.

In particular, for the orthogonality part, we know that J(0) and ∇Jdt (0)
being perpendicular to γ̇ is equivalent to y1(0) = ẏ1(0) = 0, and then
Jacobi’s equation gives

ÿ1(t) = 0.

(ii) This follows from uniqueness.

Our discussion of Jacobi fields so far has been rather theoretical. Now that
we have an explicit equation for the Jacobi field, we can actually produce some
of them. We will look at the case where we have constant sectional curvature.

Example. Suppose the sectional curvature is constantly K ∈ R, for dimM ≥ 3.
We wlog |γ̇| = 1. We let J along γ be a Jacobi field, normal to γ̇.

Then for any vector field T along γ, we have

〈R(γ̇, J)γ̇, T 〉 = K(g(γ̇, γ̇)g(J, T )− g(γ̇, J)g(γ̇, T )) = Kg(J, T ).
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Since this is true for all T , we know

R(γ̇, J)γ̇ = KJ.

Then the Jacobi equation becomes

∇2

dt2
J +KJ = 0.

So we can immediately write down a collection of solutions

J(t) =


sin(t

√
K)√

K
Xi(t) K > 0

tXi(t) K = 0
sinh(t

√
−K)√

−K Xi(t) K < 0

.

for i = 2, · · · , n, and this has initial conditions

J(0) = 0,
∇J
dt

(0) = ei.

Note that these Jacobi fields vanishes at 0.

We can now deliver our promise, proving that Jacobi fields are precisely the
variations of geodesics.

Proposition. Let γ : [a, b] → M be a geodesic, and f(t, s) a variation of
γ(t) = f(t, 0) such that f(t, s) = γs(t) is a geodesic for all |s| small. Then

J(t) =
∂f

∂s

is a Jacobi field along γ̇.
Conversely, every Jacobi field along γ can be obtained this way for an

appropriate function f .

Proof. The first part is just the exact computation as we had at the beginning of
the section, but for the benefit of the reader, we will reproduce the proof again.

∇2J

dt
= ∇t∇t

∂f

∂s

= ∇t∇s
∂f

∂t

= ∇s
(
∇t

∂f

∂t

)
−R(∂t, ∂s)γ̇s.

We notice that the first term vanishes, because ∇t ∂f∂t = 0 by definition of geodesic.
So we find

∇2J

dt
= −R(γ̇, J)γ̇,

which is the Jacobi equation.
The converse requires a bit more work. We will write J ′(0) for the covariant

derivative of J along γ. Given a Jacobi field J along a geodesic γ(t) for t ∈ [0, L],
we let γ̃ be another geodesic such that

γ̃(0) = γ(0), ˙̃γ(0) = J(0).
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We take parallel vector fields X0, X1 along γ̃ such that

X0(0) = γ̇(0), X1(0) = J ′(0).

We put X(s) = X0(s) + sX1(s). We put

f(t, s) = expγ̃(s)(tX(s)).

In local coordinates, for each fixed s, we find

f(t, s) = γ̃(s) + tX(s) +O(t2)

as t→ 0. Then we define
γs(t) = f(t, s)

whenever this makes sense. This depends smoothly on s, and the previous
arguments say we get a Jacobi field

Ĵ(t) =
∂f

∂s
(t, 0)

We now want to check that Ĵ = J . Then we are done. To do so, we have to
check the initial conditions. We have

Ĵ(0) =
∂f

∂s
(0, 0) =

dγ̃

ds
(0) = J(0),

and also

Ĵ ′(0) =
∇
dt

∂f

∂s
(0, 0) =

∇
ds

∂f

∂t
(0, 0) =

∇X
ds

(0) = X1(0) = J ′(0).

So we have Ĵ = J .

Corollary. Every Jacobi field J along a geodesic γ with J(0) = 0 is given by

J(t) = (d expp)tγ̇(0)(tJ
′(0))

for all t ∈ [0, L].

This is just a reiteration of the fact that if we pull back to the geodesic local
coordinates, then the variation must look like this:

But this corollary is stronger, in the sense that it holds even if we get out of the
geodesic local coordinates (i.e. when expp no longer gives a chart).
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Proof. Write γ̇(0) = a, and J ′(0) = w. By above, we can construct the variation
by

f(t, s) = expp(t(a+ sw)).

Then

(d expp)t(a+sw)(tw) =
∂f

∂s
(t, s),

which is just an application of the chain rule. Putting s = 0 gives the result.

It can be shown that in the situation of the corollary, if a ⊥ w, and |a| =
|w| = 1, then

|J(t)| = t− 1

3!
K(σ)t3 + o(t3)

as t→ 0, where σ is the plane spanned by a and w.

3.3 Further properties of geodesics

We can now use Jacobi fields to prove interesting things. We now revisit the
Gauss lemma, and deduce a stronger version.

Lemma (Gauss’ lemma). Let a,w ∈ TpM , and

γ = γp(t, a) = expp(ta)

a geodesic. Then

gγ(t)((d expp)taa, (d expp)taw) = gγ(0)(a,w).

In particular, γ is orthogonal to expp{v ∈ TpM : |v| = r}. Note that the latter
need not be a submanifold.

This is an improvement of the previous version, which required us to live in
the geodesic local coordinates.

Proof. We fix any r > 0, and consider the Jacobi field J satisfying

J(0) = 0, J ′(0) =
w

r
.

Then by the corollary, we know the Jacobi field is

J(t) = (d expp)ta

(
tw

r

)
.

We may write
w

r
= λa+ u,

with a ⊥ u. Then since Jacobi fields depend linearly on initial conditions, we
write

J(t) = λtγ̇(t) + Jn(t)

for a Jacobi field Jn a normal vector field along γ. So we have

g(J(r), γ̇(r)) = λr|γ̇(r)|2 = g(w, a).
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But we also have

g(w, a) = g(λar + u, a) = λr|a|2 = λr|γ̇(0)|2 = λr|γ̇(r)|2.

Now we use the fact that
J(r) = (d expp)raw

and
γ̇(r) = (d expp)raa,

and we are done.

Corollary (Local minimizing of length). Let a ∈ TpM . We define ϕ(t) = ta,
and ψ(t) a piecewise C1 curve in TpM for t ∈ [0, 1] such that

ψ(0) = 0, ψ(1) = a.

Then
length(expp ◦ψ) ≥ length(expp ◦ϕ) = |a|.

It is important to interpret this corollary precisely. It only applies to curves
with the same end point in TpM . If we have two curves in TpM whose end
points have the same image in M , then the result need not hold (the torus would
be a counterexample).

Proof. We may of course assume that ψ never hits 0 again after t = 0. We write

ψ(t) = ρ(t)u(t),

where ρ(t) ≥ 0 and |u(t)| = 1. Then

ψ′ = ρ′u + ρu′.

Then using the extended Gauss lemma, and the general fact that if u(t) is a unit
vector for all t, then u · u′ = 1

2 (u · u)′ = 0, we have∣∣∣∣ d

dx
(expp ◦ψ)(t)

∣∣∣∣2 =
∣∣(d expp)ψ(t)ψ

′(t)
∣∣2

= ρ′(t)2 + 2g(ρ′(t)u(t), ρ(t)u′(t)) + ρ(t)2|(d expp)ψ(t)u
′(t)|2

= ρ′(t)2 + ρ(t)2|(d expp)ψ(t)u
′(t)|2,

Thus we have

length(expp ◦ψ) ≥
∫ 1

0

ρ′(t) dt = ρ(1)− ρ(0) = |a|.

Notation. We write Ω(p, q) for the set of all piecewise C1 curves from p to q.

We now wish to define a metric on M , in the sense of metric spaces.
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Definition (Distance). Suppose M is connected, which is the same as it being
path connected. Let (p, q) ∈M . We define

d(p, q) = inf
ξ∈Ω(p,q)

length(ξ),

where

To see this is indeed a metric, All axioms of a metric space are obvious, apart
from the non-negativity part.

Theorem. Let p ∈M , and let ε be such that expp |B(0,ε) is a diffeomorphism
onto its image, and let U be the image. Then

– For any q ∈ U , there is a unique geodesic γ ∈ Ω(p, q) with `(γ) < ε.
Moreover, `(γ) = d(p, q), and is the unique curve that satisfies this property.

– For any point q ∈M with d(p, q) < ε, we have q ∈ U .

– If q ∈ M is any point, γ ∈ Ω(p, q) has `(γ) = d(p, q) < ε, then γ is a
geodesic.

Proof. Let q = expp(a). Then the path γ(t) = expp(ta) is a geodesic from p to
q of length |a| = r < ε. This is clearly the only such geodesic, since expp |B(0,ε)

is a diffeomorphism.
Given any other path γ̃ ∈ Ω(p, q), we want to show `(γ̃) > `(γ). We let

τ = sup
{
t ∈ [0, 1] : γ([0, t]) ⊆ expp(B(0, r))

}
.

Note that if τ 6= 1, then we must have γ(τ) ∈ Σr, the geodesic sphere of radius
r, otherwise we can continue extending. On the other hand, if τ = 1, then we
certainly have γ(τ) ∈ Σr, since γ(τ) = q. Then by local minimizing of length,
we have

`(γ̃) ≥ `(γ̃[0,τ ]) ≥ r.
Note that we can always lift γ̃[0, τ ] to a curve from 0 to a in TpM , since expp is
a diffeomorphism in B(0, ε).

By looking at the proof of the local minimizing of length, and using the same
notation, we know that we have equality iff τ = 1 and

ρ(t)2|(d expp)ψ(t)ψ(t)u′(t)|2 = 0

for all t. Since d expp is regular, this requires u′(t) = 0 for all t (since ρ(t) 6= 0
when t 6= 0, or else we can remove the loop to get a shorter curve). This implies
γ̃ lifts to a straight line in TpM , i.e. is a geodesic.

Now given any q ∈ M with r = d(p, q) < ε, we pick r′ ∈ [r, ε) and a path
γ ∈ Ω(p, q) such that `(γ) = r′. We again let

τ = sup
{
t ∈ [0, 1] : γ([0, t]) ⊆ expp(B(0, r′))

}
.

If τ 6= 1, then we must have γ(τ) ∈ Σr′ , but lifting to TpM , this contradicts the
local minimizing of length.

The last part is an immediate consequence of the previous two.
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Corollary. The distance d on a Riemannian manifold is a metric, and induces
the same topology on M as the C∞ structure.

Definition (Minimal geodesic). A minimal geodesic is a curve γ : [0, 1]→M
such that

d(γ(0), γ(1)) = `(γ).

One would certainly want a minimal geodesic to be an actual geodesic. This
is an easy consequence of what we’ve got so far, using the observation that a
sub-curve of a minimizing geodesic is still minimizing.

Corollary. Let γ : [0, 1]→M be a piecewise C1 minimal geodesic with constant
speed. Then γ is in fact a geodesic, and is in particular C∞.

Proof. We wlog γ is unit speed. Let t ∈ [0, 1], and pick ε > 0 such that
expp |B(0,ε) is a diffeomorphism. Then by the theorem, γ[t,t+ 1

2 ε]
is a geodesic. So

γ is C∞ on (t, t+ 1
2ε), and satisfies the geodesic equations there.

Since we can pick ε continuously with respect to t by ODE theorems, any
t ∈ (0, 1) lies in one such neighbourhood. So γ is a geodesic.

While it is not true that geodesics are always minimal geodesics, this is locally
true:

Corollary. Let γ : [0, 1] ⊆ R→M be a C2 curve with |γ̇| constant. Then this
is a geodesic iff it is locally a minimal geodesic, i.e. for any t ∈ [0, 1), there exists
δ > 0 such that

d(γ(t), γ(t+ δ)) = `(γ|[t,t+δ]).

Proof. This is just carefully applying the previous theorem without getting
confused.

To prove ⇒, suppose γ is a geodesic, and t ∈ [0, 1). We wlog γ is unit speed.
Then pick U and ε as in the previous theorem, and pick δ = 1

2ε. Then γ|[t,t+δ]
is a geodesic with length < ε between γ(t) and γ(t+ δ), and hence must have
minimal length.

To prove the converse, we note that for each t, the hypothesis tells us γ|[t,t+δ]
is a minimizing geodesic, and hence a geodesic, but the previous corollary. By
continuity, γ must satisfy the geodesic equation at t. Since t is arbitrary, γ is a
geodesic.

There is another sense in which geodesics are locally length minimizing.
Instead of chopping up a path, we can say it is minimal “locally” in the space
Ω(p, q). To do so, we need to give Ω(p, q) a topology, and we pick the topology
of uniform convergence.

Theorem. Let γ(t) = expp(ta) be a geodesic, for t ∈ [0, 1]. Let q = γ(1).
Assume ta is a regular point for expp for all t ∈ [0, 1]. Then there exists
a neighbourhood of γ in Ω(p, q) such that for all ψ in this neighbourhood,
`(ψ) ≥ `(γ), with equality iff ψ = γ up to reparametrization.

Before we prove the result, we first look at why the two conditions are
necessary. To see the necessity of ta being regular, we can consider the sphere
and two antipodal points:
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p

q

Then while the geodesic between them does minimize distance, it does not do so
strictly.

We also do not guarantee global minimization of length. For example, we
can consider the torus

Tn = Rn/Zn.
This has a flat metric from Rn, and the derivative of the exponential map is
the “identity” on Rn at all points. So the geodesics are the straight lines in Rn.
Now consider any two p, q ∈ Tn, then there are infinitely many geodesics joining
them, but typically, only one of them would be the shortest.

p

q

Proof. The idea of the proof is that if ψ is any curve close to γ, then we can use
the regularity condition to lift the curve back up to TpM , and then apply our
previous result.

Write ϕ(t) = ta ∈ TpM . Then by the regularity assumption, for all t ∈ [0, 1],
we know expp is a diffeomorphism of some neighbourhood W (t) of ϕ(t) = at ∈
TpM onto the image. By compactness, we can cover [0, 1] by finitely many such
covers, say W (t1), · · · ,W (tn). We write Wi = W (ti), and we wlog assume

0 = t0 < t1 < · · · < tk = 1.

By cutting things up, we may assume

γ([ti, ti+1]) ⊆Wi.

We let
U =

⋃
expp(Wi).

Again by compactness, there is some ε < 0 such that for all t ∈ [ti, ti+1], we
have B(γ(t), ε) ⊆Wi.

Now consider any curve ψ of distance ε away from γ. Then ψ([ti, ti+1]) ⊆Wi.
So we can lift it up to TpM , and the end point of the lift is a. So we are done
by local minimization of length.

Note that the tricky part of doing the proof is to make sure the lift of ψ has
the same end point as γ in TpM , which is why we needed to do it neighbourhood
by neighbourhood.
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3.4 Completeness and the Hopf–Rinow theorem

There are some natural questions we can ask about geodesics. For example, we
might want to know if geodesics can be extended to exist for all time. We might
also be interested if distances can always be realized by geodesics. It turns out
these questions have the same answer.

Definition (Geodesically complete). We say a manifold (M, g) is geodesically
complete if each geodesic extends for all time. In other words, for all p ∈ M ,
expp is defined on all of TpM .

Example. The upper half plane

H2 = {(x, y) : y > 0}

under the induced Euclidean metric is not geodesically complete. However, H2

and R2 are diffeomorphic but R2 is geodesically complete.

The first theorem we will prove is the following:

Theorem. Let (M, g) be geodesically complete. Then any two points can be
connected by a minimal geodesic.

In fact, we will prove something stronger — let p ∈M , and suppose expp is
defined on all of TpM . Then for all q ∈M , there is a minimal geodesic between
them.

To prove this, we need a lemma

Lemma. Let p, q ∈M . Let

Sδ = {x ∈M : d(x, p) = δ}.

Then for all sufficiently small δ, there exists p0 ∈ Sδ such that

d(p, p0) + d(p0, q) = d(p, q).

Proof. For δ > 0 small, we know Sδ = Σδ is a geodesic sphere about p, and
is compact. Moreover, d( · , q) is a continuous function. So there exists some
p0 ∈ Σδ that minimizes d( · , q).

Consider an arbitrary γ ∈ Ω(p, q). For the sake of sanity, we assume δ <
d(p, q). Then there is some t such that γ(t) ∈ Σδ, and

`(γ) ≥ d(p, γ(t)) + d(γ(t), q) ≥ d(p, p0) + d(p0, q).

So we know
d(p, q) ≥ d(p, p0) + d(p0, p).

The triangle inequality gives the opposite direction. So we must have equality.

We can now prove the theorem.

Proof of theorem. We know expp is defined on TpM . Let q ∈ M . Let q ∈ M .
We want a minimal geodesic in Ω(p, q). By the first lemma, there is some δ > 0
and p0 such that

d(p, p0) = δ, d(p, p0) + d(p0, q) = d(p, q).
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Also, there is some v ∈ TpM such that expp v = p0. We let

γp(t) = expp

(
t
v

|v|

)
.

We let
I = {t ∈ R : d(q, γp(t)) + t = d(p, q)}.

Then we know

(i) δ ∈ I

(ii) I is closed by continuity.

Let
T = sup{I ∩ [0, d(p, q)]}.

Since I is closed, this is in fact a maximum. So T ∈ I. We claim that T = d(p, q).
If so, then γp ∈ Ω(p, q) is the desired minimal geodesic, and we are done.

Suppose this were not true. Then T < d(p, q). We apply the lemma to
p̃ = γp(T ), and q remains as before. Then we can find ε > 0 and some p1 ∈M
with the property that

d(p1, q) = d(γp(T ), q)− d(γp(T ), p1)

= d(γp(T ), q)− ε
= d(p, q)− T − ε

Hence we have
d(p, p1) ≥ d(p, q)− d(q, p1) = T + ε.

Let γ1 be the radial (hence minimal) geodesic from γp(T ) to p1. Now we know

`(γp|[0,T ]) + `(γ1) = T + ε.

So γ1 concatenated with γp|[0,T ] is a length-minimizing geodesic from p to p1,
and is hence a geodesic. So in fact p1 lies on γp, say p1 = γp(T + s) for some
s. Then T + s ∈ I, which is a contradiction. So we must have T = d(p, q), and
hence

d(q, γp(T )) + T = d(p, q),

hence d(q, γp(T )) = 0, i.e. q = γp(T ).

Corollary (Hopf–Rinow theorem). For a connected Riemannian manifold (M, g),
the following are equivalent:

(i) (M, g) is geodesically complete.

(ii) For all p ∈M , expp is defined on all TpM .

(iii) For some p ∈M , expp is defined on all TpM .

(iv) Every closed and bounded subset of (M,d) is compact.

(v) (M,d) is complete as a metric space.

Proof. (i) and (ii) are equivalent by definition. (ii)⇒ (iii) is clear, and we proved
(iii) ⇒ (i).
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– (iii)⇒ (iv): Let K ⊆M be closed and bounded. Then by boundedness, K
is contained in expp(B(0, R)). Let K ′ be the pre-image of K under expp.
Then it is a closed and bounded subset of Rn, hence compact. Then K is
the continuous image of a compact set, hence compact.

– (iv) ⇒ (v): This is a general topological fact.

– (v) ⇒ (i): Let γ(t) : I → R be a geodesic, where I ⊆ R. We wlog |γ̇| ≡ 1.
Suppose I 6= R. We wlog sup I = a < ∞. Then limt→a γ(t) exist by
completeness, and hence γ(a) exists. Since geodesics are locally defined
near a, we can pick a geodesic in the direction of limt→a γ

′(t). So we can
extend γ further, which is a contradiction.

3.5 Variations of arc length and energy

This section is mostly a huge computation. As we previously saw, geodesics are
locally length-minimizing, and we shall see that another quantity, namely the
energy is also a useful thing to consider, as minimizing the energy also forces
the parametrization to be constant speed.

To make good use of these properties of geodesics, it is helpful to compute
explicitly expressions for how length and energy change along variations. The
computations are largely uninteresting, but it will pay off.

Definition (Energy). The energy function E : Ω(p, q)→ R is given by

E(γ) =
1

2

∫ T

0

|γ̇|2 dt,

where γ : [0, T ]→M .

Recall that Ω(p, q) is defined as the space of piecewise C1 curves. Often, we
will make the simplifying assumption that all curves are in fact C1. It doesn’t
really matter.

Note that the length of a curve is independent of parametrization. Thus,
if we are interested in critical points, then the critical points cannot possibly
be isolated, as we can just re-parametrize to get a nearby path with the same
length. On the other hand, the energy E does depend on parametrization. This
does have isolated critical points, which is technically very convenient.

Proposition. Let γ0 : [0, T ] → M be a path from p to q such that for all
γ ∈ Ω(p, q) with γ : [0, T ] → M , we have E(γ) ≥ E(γ0). Then γ0 must be a
geodesic.

Recall that we already had such a result for length instead of energy. The
proof is just the application of Cauchy-Schwartz.

Proof. By the Cauchy-Schwartz inequality, we have

∫ T

0

|γ̇|2 dt ≥

(∫ T

0

|γ̇(t)| dt

)2
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with equality iff |γ̇| is constant. In other words,

E(γ) ≥ `(γ)2

2T
.

So we know that if γ0 minimizes energy, then it must be constant speed. Now
given any γ, if we just care about its length, then we may wlog it is constant
speed, and then

`(γ) =
√

2E(γ)T ≥
√

2E(γ0)T = `(γ0).

So γ0 minimizes length, and thus γ0 is a geodesic.

We shall consider smooth variations H(t, s) of γ0(t) = H(t, 0). We require
that H : [0, T ] × (−ε, ε) → M is smooth. Since we are mostly just interested
in what happens “near” s = 0, it is often convenient to just consider the
corresponding vector field along γ:

Y (t) =
∂H

∂s

∣∣∣∣
s=0

= (dH)(t,0)
∂

∂s
,

Conversely, given any such vector field Y , we can generate a variation H that
gives rise to Y . For example, we can put

H(t, s) = expγ0(t)(sY (t)),

which is valid on some neighbourhood of [0, T ]× {0}. If Y (0) = 0 = Y (T ), then
we can choose H fixing end-points of γ0.

Theorem (First variation formula).

(i) For any variation H of γ, we have

d

ds
E(γs)

∣∣∣∣
s=0

= g(Y (t), γ̇(t))|T0 −
∫ T

0

g

(
Y (t),

∇
dt
γ̇(t)

)
dt. (∗)

(ii) The critical points, i.e. the γ such that

d

ds
E(γs)

∣∣∣∣
s=0

for all (end-point fixing) variation H of γ, are geodesics.

(iii) If |γ̇s(t)| is constant for each fixed s ∈ (−ε, ε), and |γ̇(t)| ≡ 1, then

d

ds
E(γs)

∣∣∣∣
s=0

=
d

ds
`(γs)

∣∣∣∣
s=0

(iv) If γ is a critical point of the length, then it must be a reparametrization of
a geodesic.

This is just some calculations.
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Proof. We will assume that we can treat ∂
∂s and ∂

∂t as vector fields on an
embedded submanifold, even though H is not necessarily a local embedding.

The result can be proved without this assumption, but will require more
technical work.

(i) We have

1

2

∂

∂s
g(γ̇s(t), γ̇s(t)) = g

(
∇
ds
γ̇s(t), γ̇s(t)

)
= g

(
∇
dt

∂H

∂s
(t, s),

∂H

∂t
(t, s)

)
=

∂

∂t
g

(
∂H

∂s
,
∂H

∂t

)
− g

(
∂H

∂s
,
∇
dt

∂H

∂t

)
.

Comparing with what we want to prove, we see that we get what we want

by integrating
∫ T

0
dt, and then putting s = 0, and then noting that

∂H

∂s

∣∣∣∣
s=0

= Y,
∂H

∂t

∣∣∣∣
s=0

= γ̇.

(ii) If γ is a geodesic, then
∇
dt
γ̇(t) = 0.

So the integral on the right hand side of (∗) vanishes. Also, we have
Y (0) = 0 = Y (T ). So the RHS vanishes.

Conversely, suppose γ is a critical point for E. Then choose H with

Y (t) = f(t)
∇
dt
γ̇(t)

for some f ∈ C∞[0, T ] such that f(0) = f(T ) = 0. Then we know∫ T

0

f(t)

∣∣∣∣∇dt γ̇(t)

∣∣∣∣2 dt = 0,

and this is true for all f . So we know

∇
dt
γ̇ = 0.

(iii) This is evident from the previous proposition. Indeed, we fix [0, T ], then
for all H, we have

E(γs) =
`(γs)

2

2T
,

and so
d

ds
E(γs)

∣∣∣∣
s=0

=
1

T
`(γs)

d

ds
`(γs)

∣∣∣∣
s=0

,

and when s = 0, the curve is parametrized by arc-length, so `(γs) = T .

(iv) By reparametrization, we may wlog |γ̇| ≡ 1. Then γ is a critical point for
`, hence for E, hence a geodesic.
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Often, we are interested in more than just whether the curve is a critical
point. We want to know if it maximizes or minimizes energy. Then we need
more than the “first derivative”. We need the “second derivative” as well.

Theorem (Second variation formula). Let γ(t) : [0, T ]→M be a geodesic with
|γ̇| = 1. Let H(t, s) be a variation of γ. Let

Y (t, s) =
∂H

∂s
(t, s) = (dH)(t,s)

∂

∂s
.

Then

(i) We have

d2

ds2
E(γs)

∣∣∣∣
s=0

= g

(
∇Y
ds

(t, 0), γ̇

)∣∣∣∣T
0

+

∫ T

0

(|Y ′|2 −R(Y, γ̇, Y, γ̇)) dt.

(ii) Also

d2

ds2
`(γs)

∣∣∣∣
s=0

= g

(
∇Y
ds

(t, 0), γ̇(t)

)∣∣∣∣T
0

+

∫ T

0

(
|Y ′|2 −R(Y, γ̇, Y, γ̇)− g(γ̇, Y ′)2

)
dt,

where R is the (4, 0) curvature tensor, and

Y ′(t) =
∇Y
dt

(t, 0).

Putting
Yn = Y − g(Y, γ̇)γ̇

for the normal component of Y , we can write this as

d2

ds2
`(γs)

∣∣∣∣
s=0

= g

(
∇Yn
ds

(t, 0), γ̇(t)

)∣∣∣∣T
0

+

∫ T

0

(
|Y ′n|2 −R(Yn, γ̇, Yn, γ̇)

)
dt.

Note that if we have fixed end points, then the first terms in the variation
formulae vanish.

Proof. We use

d

ds
E(γs) = g(Y (t, s), γ̇s(t))|t=Tt=0 −

∫ T

0

g

(
Y (t, s),

∇
dt
γ̇s(t)

)
dt.

Taking the derivative with respect to s again gives

d2

ds2
E(γs) = g

(
∇Y
ds

, γ̇

)∣∣∣∣T
t=0

+ g

(
Y,
∇
ds
γ̇s

)∣∣∣∣T
t=0

−
∫ T

0

(
g

(
∇Y
ds

,
∇
dt
γ̇s

)
+ g

(
Y,
∇
ds

∇
dt
γ̇

))
dt.
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We now use that

∇
ds

∇
dt
γ̇s(t) =

∇
dt

∇
ds
γ̇s(t) +R

(
∂H

∂s
,
∂H

∂t

)
γ̇s

=

(
∇
dt

)2

Y (t, s) +R

(
∂H

∂s
,
∂H

∂t

)
γ̇s.

We now set s = 0, and then the above gives

d2

ds2
E(γs)

∣∣∣∣
s=0

= g

(
∇Y
ds

, γ̇

)∣∣∣∣T
0

+ g

(
Y,
∇γ̇
ds

)∣∣∣∣T
0

−
∫ T

0

[
g

(
Y,

(
∇
dt

)2

Y

)
+R(γ̇, Y, γ̇, Y )

]
dt.

Finally, applying integration by parts, we can write

−
∫ T

0

g

(
Y,

(
∇
dt

)2

Y

)
dt = − g

(
Y,
∇
dt
Y

)∣∣∣∣T
0

+

∫ T

0

∣∣∣∣∇Ydt
∣∣∣∣2 dt.

Finally, noting that
∇
ds
γ̇(s) =

∇
dt
Y (t, s),

we find that

d2

ds2
E(γs)

∣∣∣∣
s=0

= g

(
∇Y
ds

, γ̇

)∣∣∣∣T
0

+

∫ T

0

(
|Y ′|2 −R(Y, γ̇, Y, γ̇)

)
dt.

It remains to prove the second variation of length. We first differentiate

d

ds
`(γs) =

∫ T

0

1

2
√
g(γ̇s, γ̇s)

∂

∂s
g(γ̇s, γ̇s) dt.

Then the second derivative gives

d2

ds2
`(γs)

∣∣∣∣
s=0

=

∫ T

0

[
1

2

∂2

∂s2
g(γ̇s, γ̇s)

∣∣∣∣
s=0

− 1

4

(
∂

∂s
g(γ̇s, γ̇s)

)2
∣∣∣∣∣
s=0

]
dt,

where we used the fact that g(γ̇, γ̇) = 1.
We notice that the first term can be identified with the derivative of the

energy function. So we have

d2

ds2
`(γs)

∣∣∣∣
s=0

=
d2

ds2
E(γs)

∣∣∣∣
s=0

−
∫ T

0

(
g

(
γ̇s,
∇
ds
γ̇s

)∣∣∣∣
s=0

)2

dt.

So the second part follows from the first.

3.6 Applications

This finally puts us in a position to prove something more interesting.
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Synge’s theorem

We are first going to prove the following remarkable result relating curvature
and topology:

Theorem (Synge’s theorem). Every compact orientable Riemannian manifold
(M, g) such that dimM is even and has K(g) > 0 for all planes at p ∈ M is
simply connected.

We can see that these conditions are indeed necessary. For example, we can
consider RP2 = S2/± 1 with the induced metric from S2. Then this is compact
with positive sectional curvature, but it is not orientable. Indeed it is not simply
connected.

Similarly, if we take RP3, then this has odd dimension, and the theorem
breaks.

Finally, we do need strict inequality, e.g. the flat torus is not simply connected.
We first prove a technical lemma.

Lemma. Let M be a compact manifold, and [α] a non-trivial homotopy class
of closed curves in M . Then there is a closed minimal geodesic in [α].

Proof. Since M is compact, we can pick some ε > 0 such that for all p ∈M , the
map expp |B(0,p) is a diffeomorphism.

Let ` = infγ∈[α] `(γ). We know that ` > 0, otherwise, there exists a γ with
`(γ) < ε. So γ is contained in some geodesic coordinate neighbourhood, but
then α is contractible. So ` must be positive.

Then we can find a sequence γn ∈ [α] with γn : [0, 1]→M , |γ̇| constant, such
that

lim
n→∞

`(γn) = `.

Choose
0 = t0 < t1 < · · · < tk = 1

such that
ti+1 − ti <

ε

2`
.

So it follows that
d(γn(ti), γn(ti+1)) < ε

for all n sufficiently large and all i. Then again, we can replace γn|[ti,ti+1] by a
radial geodesic without affecting the limit lim `(γn).

Then we exploit the compactness of M (and the unit sphere) again, and pass
to a subsequence of {γn} so that γn(ti), γ̇n(ti) are all convergent for every fixed
i as n→∞. Then the curves converges to some

γn → γ̂ ∈ [α],

given by joining the limits limn→∞ γn(ti). Then we know that the length
converges as well, and so we know γ̂ is minimal among curves in [α]. So γ̂ is
locally minimal, hence a geodesic. So we can take γ = γ̂, and we are done.

Proof of Synge’s theorem. Suppose M satisfies the hypothesis, but π1(M) 6= {1}.
So there is a path α with [α] 6= 1, i.e. it cannot be contracted to a point. By the
lemma, we pick a representative γ of [α] that is a closed, minimal geodesic.
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We now prove the theorem. We may wlog assume |γ̇| = 1, and t ranges in
[0, T ]. Consider a vector field X(t) for 0 ≤ t ≤ T along γ(t) such that

∇X
dt

= 0, g(X(0), γ̇(0)) = 0.

Note that since g is a geodesic, we know

g(X(t), γ̇(t)) = 0,

for all t ∈ [0, T ] as parallel transport preserves the inner product. So X(T ) ⊥
γ̇(T ) = γ̇(0) since we have a closed curve.

We consider the map P that sends X(0) 7→ X(T ). This is a linear isometry
of (γ̇(0))⊥ with itself that preserves orientation. So we can think of P as a map

P ∈ SO(2n− 1),

where dimM = 2n. It is an easy linear algebra exercise to show that every
element of SO(2n− 1) must have an eigenvector of eigenvalue 1. So we can find
v ∈ TpM such that v ⊥ γ̇(0) and P (v) = v. We take X(0) = v. Then we have
X(T ) = v.

Consider now a variation H(t, s) inducing this X(t). We may assume |γ̇s| is
constant. Then

d

ds
`(γs)|s=0 = 0

as γ is minimal. Moreover, since it is a minimum, the second derivative must be
positive, or at least non-negative. Is this actually the case?

We look at the second variation formula of length. Using the fact that the
loop is closed, the formula reduces to

d2

ds2
`(γs)

∣∣∣∣
s=0

= −
∫ T

0

R(X, γ̇,X, γ̇) dt.

But we assumed the sectional curvature is positive. So the second variation is
negative! This is a contradiction.

Conjugate points

Recall that when a geodesic starts moving, for a short period of time, it is
length-minimizing. However, in general, if we keep on moving for a long time,
then we cease to be minimizing. It is useful to characterize when this happens.

As before, for a vector field J along a curve γ(t), we will write

J ′ =
∇J
dt

.

Definition (Conjugate points). Let γ(t) be a geodesic. Then

p = γ(α), q = γ(β)

are conjugate points if there exists some non-trivial J such that J(α) = 0 = J(β).

It is easy to see that this does not depend on parametrization of the curve,
because Jacobi fields do not.
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Proposition.

(i) If γ(t) = expp(ta), and q = expp(βa) is conjugate to p, then q is a singular
value of exp.

(ii) Let J be as in the definition. Then J must be pointwise normal to γ̇.

Proof.

(i) We wlog [α, β] = [0, 1]. So J(0) = 0 = J(1). We a = γ̇(0) and w = J ′(0).
Note that a,w are both non-zero, as Jacobi fields are determined by initial
conditions. Then q = expp(a).

We have shown earlier that if J(0) = 0, then

J(t) = (d expp)ta(tw)

for all 0 ≤ t ≤ 1. So it follows (d expp)a(w) = J(1) = 0. So (d expp)a has
non-trivial kernel, and hence isn’t surjective.

(ii) We claim that any Jacobi field J along a geodesic γ satisfies

g(J(t), γ̇(t)) = g(J ′(0), γ̇(0))t+ g(J(0), γ̇(0)).

To prove this, we note that by the definition of geodesic and Jacobi fields,
we have

d

dt
g(J ′, γ̇) = g(J ′′, γ̇(0)) = −g(R(γ̇, J), γ̇, γ̇) = 0

by symmetries of R. So we have

d

dt
g(J, γ̇) = g(J ′(t), γ̇(t)) = g(J ′(0), γ̇(0)).

Now integrating gives the desired result.

This result tells us g(J(t), γ̇(t)) is a linear function of t. But we have

g(J(0), γ̇(0)) = g(J(1), γ̇(1)) = 0.

So we know g(J(t), γ̇(t)) is constantly zero.

From the proof, we see that for any Jacobi field with J(0) = 0, we have

g(J ′(0), γ̇(0)) = 0⇐⇒ g(J(t), γ̇(t)) = constant.

This implies that the dimension of the normal Jacobi fields along γ satisfying
J(0) = 0 is dimM − 1.

Example. Consider M = S2 ⊆ R3 with the round metric, i.e. the “obvious”
metric induced from R3. We claim that N = (0, 0, 1) and S = (0, 1, 0) are
conjugate points.

To construct a Jacobi field, instead of trying to mess with the Jacobi equation,
we construct a variation by geodesics. We let

f(t, s) =

cos s sin t
sin s sin t

cos t

 .
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We see that when s = 0, this is the great-circle in the (x, z)-plane. Then we have
a Jacobi field

J(t) =
∂f

∂s

∣∣∣∣
s=0

=

 0
sin t

0

 .

This is then a Jacobi field that vanishes at N and S.

p

When we are at the conjugate point, then there are many adjacent curves
whose length is equal to ours. If we extend our geodesic beyond the conjugate
point, then it is no longer even locally minimal:

p

q

We can push the geodesic slightly over and the length will be shorter. On the
other hand, we proved that up to the conjugate point, the geodesic is always
locally minimal.

In turns out this phenomenon is generic:

Theorem. Let γ : [0, 1]→M be a geodesic with γ(0) = p, γ(1) = q such that p
is conjugate to some γ(t0) for some t0 ∈ (0, 1). Then there is a piecewise smooth
variation of f(t, s) with f(t, 0) = γ(t) such that

f(0, s) = p, f(1, s) = q

and `(f( · , s)) < `(γ) whenever s 6= 0 is small.

The proof is a generalization of the example we had above. We know that up
to the conjugate point, we have a Jacobi filed that allows us to vary the geodesic
without increasing the length. We can then give it a slight “kick” and then the
length will decrease.

Proof. By the hypothesis, there is a J(t) defined on t ∈ [0, 1] and t0 ∈ (0, 1) such
that

J(t) ⊥ γ̇(t)

for all t, and J(0) = J(t0) = 0 and J 6≡ 0. Then J ′(t0) 6= 0.
We define a parallel vector field Z1 along γ by Z1(t0) = −J ′(t0). We pick

θ ∈ C∞[0, 1] such that θ(0) = θ(1) = 0 and θ(t0) = 1.
Finally, we define

Z = θZ1,
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and for α ∈ R, we define

Yα(t) =

{
J(t) + αZ(t) 0 ≤ t ≤ t0
αZ(t) t0 ≤ t ≤ 1

.

We notice that this is not smooth at t0, but is just continuous. We will postpone
the choice of α to a later time.

We know Yα(t) arises from a piecewise C∞ variation of γ, say Hα(t, s). The
technical claim is that the second variation of length corresponding to Yα(t) is
negative for some α.

We denote by I(X,Y )T the symmetric bilinear form that gives rise to the
second variation of length with fixed end points. If we make the additional
assumption that X,Y are normal along γ, then the formula simplifies, and
reduces to

I(X,Y )T =

∫ T

0

(g(X ′, Y ′)−R(X, γ̇, Y, γ̇)) dt.

Then for Hα(t, s), we have

d2

ds2
`(γs)

∣∣∣∣
s=0

= I1 + I2 + I3

I1 = I(J, J)t0

I2 = 2αI(J, Z)t0

I3 = α2I(Z,Z)1.

We look at each term separately.
We first claim that I1 = 0. We note that

d

dt
g(J, J ′) = g(J ′, J ′) + g(J, J ′′),

and g(J, J ′′) added to the curvature vanishes by the Jacobi equation. Then
by integrating by parts and applying the boundary condition, we see that I1
vanishes.

Also, by integrating by parts, we find

I2 = 2αg(Z, J ′)|t00 .

Whence
d2

ds2
`(γs)

∣∣∣∣
s=0

= −2α|J ′(t0)|2 + α2I(Z,Z)1.

Now if α > 0 is very very small, then the linear term dominates, and this is
negative. Since the first variation vanishes (γ is a geodesic), we know this is a
local maximum of length.

Note that we made a compromise in the theorem by doing a piecewise C∞

variation instead of a smooth one, but of course, we can fix this by making a
smooth approximation.
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Bonnet–Myers diameter theorem

We are going to see yet another application of our previous hard work, which
may also be seen as an interplay between curvature topology. In case it isn’t
clear, all our manifolds are connected.

Definition (Diameter). The diameter of a Riemannian manifold (M, g) is

diam(M, g) = sup
p,q∈M

d(p, q).

Of course, this definition is valid for any metric space.

Example. Consider the sphere

Sn−1(r) = {x ∈ Rn : |x| = r},

with the induced “round” metric. Then

diam(Sn−1(r)) = πr.

It is an exercise to check that

K ≡ 1

r2
.

We will also need the following notation:

Notation. Let h, ĥ be two symmetric bilinear forms on a real vector space. We
say h ≥ ĥ if h− ĥ is non-negative definite.

If h, ĥ ∈ Γ(S2T ∗M) are fields of symmetric bilinear forms, we write h ≥ ĥ if

hp ≥ ĥp for all p ∈M .

The following will also be useful:

Definition (Riemannian covering map). Let (M, g) and (M̃, g̃) be two Rieman-
nian manifolds, and f : M̃ → M be a smooth covering map. We say f is a
Riemannian covering map if it is a local isometry. Alternatively, f∗g = g̃. We
say M̃ is a Riemannian cover of M .

Recall that if f is in fact a universal cover, i.e. M̃ is simply connected, then
we can (non-canonically) identify π1(M) with f−1(p) for any point p ∈M .

Definition (Bonnet–Myers diameter theorem). Let (M, g) be a complete n-
dimensional manifold with

Ric(g) ≥ n− 1

r2
g,

where r > 0 is some positive number. Then

diam(M, g) ≤ diamSn(r) = πr.

In particular, M is compact and π1(M) is finite.

40



3 Geodesics III Riemannian Geometry

Proof. Consider any L < diam(M, g). Then by definition (and Hopf–Rinow),
we can find p, q ∈M such that d(p, q) = L, and a minimal geodesic γ ∈ Ω(p, q)
with `(γ) = d(p, q). We parametrize γ : [0, L]→M so that |γ̇| = 1.

Now consider any vector field Y along γ such that Y (p) = 0 = Y (q). Since
Γ is a minimal geodesic, it is a critical point for `, and the second variation
I(Y, Y )[0,L] is non-negative (recall that the second variation has fixed end points).

We extend γ̇(0) to an orthonormal basis of TpM , say γ̇(0) = e1, e2, · · · , en.
We further let Xi be the unique vector field such that

X ′i = 0, Xi(0) = ei.

In particular, X1(t) = γ̇(t).
For i = 2, · · · , n, we put

Yi(t) = sin

(
πt

L

)
Xi(t).

Then after integrating by parts, we find that we have

I(Yi, Yi)[0,L] = −
∫ L

0

g(Y ′′i +R(γ̇, Yi)Yi, γ̇) dt

Using the fact that Xi is parallel, this can be written as

=

∫ L

0

sin2 πt

L

(
π2

L2
−R(γ̇, Xi, γ̇, Xi)

)
dt,

and since this is length minimizing, we know this is ≥ 0.
We note that we have R(γ̇, X1, γ̇, X1) = 0. So we have

n∑
i=2

R(γ̇, Xi, γ̇, Xi) = Ric(γ̇, γ̇).

So we know

n∑
i=2

I(Yi, Yi) =

∫ L

0

sin2 πt

L

(
(n− 1)

π2

L
− Ric(γ̇, γ̇)

)
dt ≥ 0.

We also know that

Ric(γ̇, γ̇) ≥ n− 1

r2

by hypothesis. So this implies that

π2

L2
≥ 1

r2
.

This tells us that
L ≤ πr.

Since L is any number less that diam(M, g), it follows that

diam(M, g) ≤ πr.
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Since M is known to be complete, by Hopf-Rinow theorem, any closed bounded
subset is compact. But M itself is closed and bounded! So M is compact.

To understand the fundamental, group, we simply have to consider a universal
Riemannian cover f : M̃ →M . We know such a topological universal covering
space must exist by general existence theorems. We can then pull back the
differential structure and metric along f , since f is a local homeomorphism.
So this gives a universal Riemannian cover of M . But they hypothesis of the
theorem is local, so it is also satisfied for M̃ . So it is also compact. Since f−1(p)
is a closed discrete subset of a compact space, it is finite, and we are done.

It is an easy exercise to show that the hypothesis on the Ricci curvature
cannot be weakened to just saying that the Ricci curvature is positive definite.

Hadamard–Cartan theorem

To prove the next result, we need to talk a bit more about coverings.

Proposition. Let (M, g) and (N,h) be Riemannian manifolds, and suppose M
is complete. Suppose there is a smooth surjection f : M → N that is a local
diffeomorphism. Moreover, suppose that for any p ∈M and v ∈ TpM , we have
|dfp(v)|h ≥ |v|. Then f is a covering map.

Proof. By general topology, it suffices to prove that for any smooth curve
γ : [0, 1] → N , and any q ∈ M such that f(q) = γ(0), there exists a lift of γ
starting from from q.

M

[0, 1] N

f

γ

γ̃

From the hypothesis, we know that γ̃ exists on [0, ε0] for some “small” ε0 > 0.
We let

I = {0 ≤ ε ≤: γ̃ exists on [0, ε]}.
We immediately see this is non-empty, since it contains ε0. Moreover, it is not
difficult to see that I is open in [0, 1], because f is a local diffeomorphism. So it
suffices to show that I is closed.

We let {tn}∞n=1 ⊆ I be such that tn+1 > tn for all n, and

lim
n→∞

tn = ε1.

Using Hopf-Rinow, either {γ̃(tn)} is contained in some compact K, or it is
unbounded. We claim that unboundedness is impossible. We have

`(γ) ≥ `(γ|[0,tn]) =

∫ tn

0

|γ̇| dt

=

∫ tn

0

|dfγ̃(t)
˙̃γ(t)| dt

≥
∫ tn

0

| ˙̃γ| dt

= `(γ̃|[0,tn])

≥ d(γ̃(0), γ̃(tn)).
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So we know this is bounded. So by compactness, we can find some x such that
γ̃(tn`

) → x as ` → ∞. There exists an open x ∈ V ⊆ M such that f |V is a
diffeomorphism.

Since there are extensions of γ̃ to each tn, eventually we get an extension to
within V , and then we can just lift directly, and extend it to ε1. So ε1 ∈ I. So
we are done.

Corollary. Let f : M → N be a local isometry onto N , and M be complete.
Then f is a covering map.

Note that since N is (assumed to be) connected, we know f is necessarily
surjective. To see this, note that the completeness of M implies completeness of
f(M), hence f(M) is closed in N , and since it is a local isometry, we know f is
in particular open. So the image is open and closed, hence f(M) = N .

For a change, our next result will assume a negative curvature, instead of a
positive one!

Theorem (Hadamard–Cartan theorem). Let (Mn, g) be a complete Riemannian
manifold such that the sectional curvature is always non-positive. Then for every
point p ∈ M , the map expp : TpM → M is a covering map. In particular, if
π1(M) = 0, then M is diffeomorphic to Rn.

We will need one more technical lemma.

Lemma. Let γ(t) be a geodesic on (M, g) such that K ≤ 0 along γ. Then γ
has no conjugate points.

Proof. We write γ(0) = p. Let I(t) be a Jacobi field along γ, and J(0) = 0. We
claim that if J is not identically zero, then J does not vanish everywhere else.

We consider the function

f(t) = g(J(t), J(t)) = |J(t)|2.

Then f(0) = f ′(0) = 0. Consider

1

2
f ′′(t) = g(J ′′(t), J(t)) + g(J ′(t), J ′(t)) = g(J ′, J ′)−R(γ̇, J, γ̇, J) ≥ 0.

So f is a convex function, and so we are done.

We can now prove the theorem.

Proof of theorem. By the lemma, we know there are no conjugate points. So
we know expp is regular everywhere, hence a local diffeomorphism by inverse
function theorem. We can use this fact to pull back a metric from M to TpM
such that expp is a local isometry. Since this is a local isometry, we know
geodesics are preserved. So geodesics originating from the origin in TpM are
straight lines, and the speed of the geodesics under the two metrics are the same.
So we know TpM is complete under this metric. Also, by Hopf–Rinow, expp is
surjective. So we are done.

43



4 Hodge theory on Riemannian manifolds III Riemannian Geometry

4 Hodge theory on Riemannian manifolds

4.1 Hodge star and operators

Throughout this chapter, we will assume our manifolds are oriented, and write
n of the dimension. We will write ε ∈ Ωn(M) for a non-vanishing form defining
the orientation.

Given a coordinate patch U ⊆ M , we can use Gram-Schmidt to obtain a
positively-oriented orthonormal frame e1, · · · , en. This allows us to dualize and
obtain a basis ω1, · · · , ωn ∈ Ω1(M), defined by

ωi(ei) = δij .

Since these are linearly independent, we can multiply all of them together to
obtain a non-zero n-form

ω1 ∧ · · · ∧ ωn = aε,

for some a ∈ C∞(U), a > 0. We can do this for any coordinate patches, and
the resulting n-form agrees on intersections. Indeed, given any other choice
ω′1, · · · , ω′n, they must be related to the original ω1, · · · , ωn by an element
Φ ∈ SO(n). Then by linear algebra, we have

ω′1 ∧ · · · ∧ ω′n = det(Φ) ω1 ∧ · · · ∧ ωn = ω1 ∧ · · · ∧ ωn.

So we can patch all these forms together to get a global n-form ωg ∈ Ωn(M)
that gives the same orientation. This is a canonical such n-form, depending only
on g and the orientation chosen. This is called the (Riemannian) volume form
of (M, g).

Recall that the ωi are orthonormal with respect to the natural dual inner
product on T ∗M . In general, g induces an inner product on

∧
pT ∗M for all

p = 0, 1, · · · , n, which is still denoted g. One way to describe this is to give an
orthonormal basis on each fiber, given by

{ωi1 ∧ · · · ∧ ωip : 1 ≤ i1 < · · · < ip ≤ n}.

From this point of view, the volume form becomes a form of “unit length”.
We now come to the central definition of Hodge theory.

Definition (Hodge star). The Hodge star operator on (Mn, g) is the linear map

? :
∧p(T ∗xM)→

∧n−p(T ∗xM)

satisfying the property that for all α, β ∈
∧
p(T ∗xM), we have

α ∧ ?β = 〈α, β〉g ωg.

Since g is non-degenerate, it follows that this is well-defined.
How do we actually compute this? Since we have vector spaces, it is natural

to consider what happens in a basis.

Proposition. Suppose ω1, · · · , ωn is an orthonormal basis of T ∗xM . Then we
claim that

?(ω1 ∧ · · · ∧ ωp) = ωp+1 ∧ · · · ∧ ωn.
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We can check this by checking all basis vectors of
∧
pM , and the result drops

out immediately. Since we can always relabel the numbers, this already tells us
how to compute the Hodge star of all other basis elements.

We can apply the Hodge star twice, which gives us a linear endomorphism
?? :

∧
pT ∗xM →

∧
pT ∗xM . From the above, it follows that

Proposition. The double Hodge star ?? :
∧
p(T ∗xM) →

∧
p(T ∗xM) is equal to

(−1)p(n−p).

In particular,
?1 = ωg, ?ωg = 1.

Using the Hodge star, we can define a differential operator:

Definition (Co-differential (δ)). We define δ : Ωp(M)→ Ωp−1(M) for 0 ≤ p ≤
dimM by

δ =

{
(−1)n(p+1)+1 ? d? p 6= 0

0 p = 0
.

This is (sometimes) called the co-differential .

The funny powers of (−1) are chosen so that our future results work well.
We further define

Definition (Laplace–Beltrami operator ∆). The Laplace–Beltrami operator is

∆ = dδ + δd : Ωp(M)→ Ωp(M).

This is also known as the (Hodge) Laplacian.

We quickly note that

Proposition.
?∆ = ∆ ? .

Consider the spacial case of (M, g) = (Rn, eucl), and p = 0. Then a straight-
forward calculation shows that

∆f = −∂
2f

∂x2
1

− · · · − ∂2f

∂x2
n

for each f ∈ C∞(Rn) = Ω0(Rn). This is just the usual Laplacian, except there
is a negative sign. This is there for a good reason, but we shall not go into that.

More generally, metric g = gij dxi dxj on Rn (or alternatively a coordinate
patch on any Riemannian manifold), we have

ωg =
√
|g| dx1 ∧ · · · ∧ dxn,

where |g| is the determinant of g. Then we have

∆gf = − 1√
|g|
∂j(
√
|g|gij∂if) = −gij∂i∂jf + lower order terms.

How can we think about this co-differential δ? One way to understand it is
that it is the “adjoint” to d.
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Proposition. δ is the formal adjoint of d. Explicitly, for any compactly sup-
ported α ∈ Ωp−1 and β ∈ Ωp, then∫

M

〈dα, β〉g ωg =

∫
M

〈α, δβ〉g ωg.

We just say it is a formal adjoint, rather than a genuine adjoint, because
there is no obvious Banach space structure on Ωp(M), and we don’t want to go
into that. However, we can still define

Definition (L2 inner product). For ξ, η ∈ Ωp(M), we define the L2 inner
product by

〈〈ξ, η〉〉g =

∫
M

〈ξ, η〉g ωg,

where ξ, η ∈ Ωp(M).

Note that this may not be well-defined if the space is not compact.
Under this notation, we can write the proposition as

〈〈dα, β〉〉g = 〈〈α, δβ〉〉g.

Thus, we also say δ is the L2 adjoint.
To prove this, we need to recall Stokes’ theorem. Since we don’t care about

manifolds with boundary in this course, we just have∫
M

dω = 0

for all forms ω.

Proof. We have

0 =

∫
M

d(α ∧ ?β)

=

∫
M

dα ∧ ?β +

∫
M

(−1)p−1α ∧ d ? β

=

∫
M

〈dα, β〉g ωg + (−1)p−1(−1)(n−p+1)(p−1)

∫
M

α ∧ ? ? d ? β

=

∫
M

〈dα, β〉g ωg + (−1)(n−p)(p−1)

∫
M

α ∧ ? ? d ? β

=

∫
M

〈dα, β〉g ωg −
∫
M

α ∧ ?δβ

=

∫
M

〈dα, β〉g ωg −
∫
M

〈α, δβ〉g ωg.

This result explains the funny signs we gave δ.

Corollary. ∆ is formally self-adjoint.

Similar to what we did in, say, IB Methods, we can define
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Definition (Harmonic forms). A harmonic form is a p-form ω such that ∆ω = 0.
We write

Hp = {α ∈ Ωp(M) : ∆α = 0}.

We have a further corollary of the proposition.

Corollary. Let M be compact. Then

∆α = 0⇔ dα = 0 and δα = 0.

We say α is closed and co-closed .

Proof. ⇐ is clear. For ⇒, suppose ∆α = 0. Then we have

0 = 〈〈α,∆α〉〉 = 〈〈α,dδα+ δdα〉〉 = ‖δα‖2g + ‖dα‖2g.

Since the L2 norm is non-degenerate, it follows that δα = dα = 0.

In particular, in degree 0, co-closed is automatic. Then for all f ∈ C∞(M),
we have

∆f = 0⇔ df = 0.

In other words, harmonic functions on a compact manifold must be constant.
This is a good way to demonstrate that the compactness hypothesis is required,
as there are many non-trivial harmonic functions on Rn, e.g. x.

Some of these things simplify if we know about the parity of our manifold. If
dimM = n = 2m, then ?? = (−1)p, and

δ = − ? d?

whenever p 6= 0. In particular, this applies to complex manifolds, say Cn ∼= R2n,
with the Hermitian metric. This is to be continued in sheet 3.

4.2 Hodge decomposition theorem

We now work towards proving the Hodge decomposition theorem. This is a very
important and far-reaching result.

Theorem (Hodge decomposition theorem). Let (M, g) be a compact oriented
Riemannian manifold. Then

– For all p = 0, · · · ,dimM , we have dimHp <∞.

– We have
Ωp(M) = Hp ⊕∆Ωp(M).

Moreover, the direct sum is orthogonal with respect to the L2 inner product.
We also formally set Ω−1(M) = 0.

As before, the compactness of M is essential, and cannot be dropped.

Corollary. We have orthogonal decompositions

Ωp(M) = Hp ⊕ dδΩp(M)⊕ δdΩp(M)

= Hp ⊕ dΩp−1(M)⊕ δΩp+1(M).
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Proof. Now note that for an α, β, we have

〈〈dδα, δdβ〉〉g = 〈〈ddδα,dβ〉〉g = 0.

So
dδΩp(M)⊕ δdΩp(M)

is an orthogonal direct sum that clearly contains ∆Ωp(M). But each component
is also orthogonal to harmonic forms, because harmonic forms are closed and
co-closed. So the first decomposition follows.

To obtain the final decomposition, we simply note that

dΩp−1(M) = d(Hp−1 ⊕∆Ωp−1(M)) = d(δdΩp−1(M)) ⊆ dδΩp(M).

On the other hand, we certainly have the other inclusion. So the two terms are
equal. The other term follows similarly.

This theorem has a rather remarkable corollary.

Corollary. Let (M, g) be a compact oriented Riemannian manifold. Then for
all α ∈ Hp

dR(M), there is a unique α ∈ Hp such that [α] = a. In other words,
the obvious map

Hp → Hp
dR(M)

is an isomorphism.

This is remarkable. On the left hand side, we have Hp, which is a completely
analytic thing, defined by the Laplacian. On the other hand, the right hand
sides involves the de Rham cohomology, which is just a topological, and in fact
homotopy invariant.

Proof. To see uniqueness, suppose α1, α2 ∈ Hp are such that [α1] = [α2] ∈
Hp

dR(M). Then
α1 − α2 = dβ

for some β. But the left hand side and right hand side live in different parts of
the Hodge decomposition. So they must be individually zero. Alternatively, we
can compute

‖dβ‖2g = 〈〈dβ, α1 − α2〉〉g = 〈〈β, δα1 − δα2〉〉g = 0

since harmonic forms are co-closed.
To prove existence, let α ∈ Ωp(M) be such that dα = 0. We write

α = α1 + dα2 + δα3 ∈ Hp ⊕ dΩp−1(M)⊕ δΩp+1(M).

Applying d gives us
0 = dα1 + d2α2 + dδα3.

We know dα1 = 0 since α1 is harmonic, and d2 = 0. So we must have dδα3 = 0.
So

〈〈δα3, δα3〉〉g = 〈〈α3,dδα3〉〉g = 0.

So δα3 = 0. So [α] = [α1] and α has a representative in Hp.
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We can also heuristically justify why this is true. Suppose we are given some
de Rham cohomology class a ∈ Hp

dR(M). We consider

Ba = {ξ ∈ Ωp(M) : dξ = 0, [ξ] = a}.

This is an infinite dimensional affine space.
We now ask ourselves — which α ∈ Ba minimizes the L2 norm? We consider

the function F : Ba → R given by F (α) = ‖α‖2. Any minimizing α is an
extremum. So for any β ∈ Ωp−1(M), we have

d

dt

∣∣∣∣
t=0

F (α+ tdβ) = 0.

In other words, we have

0 =
d

dt

∣∣∣∣
t=0

(‖α‖2 + 2t〈〈α,dβ〉〉g + t2‖dβ‖2) = 2〈〈α,dβ〉〉g.

This is the same as saying
〈〈δα, β〉〉g = 0.

So this implies δα = 0. But dα = 0 by assumption. So we find that α ∈ Hp. So
the result is at least believable.

The proof of the Hodge decomposition theorem involves some analysis, which
we are not bothered to do. Instead, we will just quote the appropriate results.
For convenience, we will use 〈 · , · 〉 for the L2 inner product, and then ‖ · ‖ is
the L2 norm.

The first theorem we quote is the following:

Theorem (Compactness theorem). If a sequence αn ∈ Ωn(M) satisfies ‖αn‖ <
C and ‖∆αn‖ < C for all n, then αn contains a Cauchy subsequence.

This is almost like saying Ωn(M) is compact, but it isn’t, since it is not
complete. So the best thing we can say is that the subsequence is Cauchy.

Corollary. Hp is finite-dimensional.

Proof. Suppose not. Then by Gram–Schmidt, we can find an infinite orthonormal
sequence en such that ‖en‖ = 1 and ‖∆en‖ = 0, and this certainly does not have
a Cauchy subsequence.

A large part of the proof is trying to solve the PDE

∆ω = α,

which we will need in order to carry out the decomposition. In analysis, one
useful idea is the notion of weak solutions. We notice that if ω is a solution,
then for any ϕ ∈ Ωp(M), we have

〈ω,∆ϕ〉 = 〈∆ω, ϕ〉 = 〈α,ϕ〉,

using that ∆ is self-adjoint. In other words, the linear form ` = 〈ω, · 〉 : Ωp(M)→
R satisfies

`(∆ϕ) = 〈α,ϕ〉.
Conversely, if 〈ω, · 〉 satisfies this equation, then ω must be a solution, since for
any β, we have

〈∆ω, β〉 = 〈ω,∆β〉 = 〈α, β〉.
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Definition (Weak solution). A weak solution to the equation ∆ω = α is a linear
functional ` : Ωp(M)→ R such that

(i) `(∆ϕ) = 〈α,ϕ〉 for all ϕ ∈ Ωp(M).

(ii) ` is bounded , i.e. there is some C such that |`(β)| < C‖β‖ for all β.

Now given a weak solution, we want to obtain a genuine solution. If Ωp(M)
were a Hilbert space, then we are immediately done by the Riesz representation
theorem, but it isn’t. Thus, we need a theorem that gives us what we want.

Theorem (Regularity theorem). Every weak solution of ∆ω = α is of the form

`(β) = 〈ω, β〉

for ω ∈ Ωp(M).

Thus, we have reduced the problem to finding weak solutions. There is one
final piece of analysis we need to quote. The definition of a weak solution only
cares about what ` does to ∆Ωp(M). And it is easy to define what ` should do
on ∆Ωp(M) — we simply define

`(∆η) = 〈η, α〉.

Of course, for this to work, it must be well-defined, but this is not necessarily
the case in general. We also have to check it is bounded. But suppose this
worked. Then the remaining job is to extend this to a bounded functional on all
of Ωp(M) in whatever way we like. This relies on the following (relatively easy)
theorem from analysis:

Theorem (Hahn–Banach theorem). Let L be a normed vector space, and L0 be
a subspace. We let f : L0 → R be a bounded linear functional. Then f extends
to a bounded linear functional L→ R with the same bound.

We can now begin the proof.

Proof of Hodge decomposition theorem. Since Hp is finite-dimensional, by basic
linear algebra, we can decompose

Ωp(M) = Hp ⊕ (Hp)⊥.

Crucially, we know (Hp)⊥ is a closed subspace. What we want to show is that

(Hp)⊥ = ∆Ωp(M).

One inclusion is easy. Suppose α ∈ Hp and β ∈ Ωp(M). Then we have

〈α,∆β〉 = 〈∆α, β〉 = 0.

So we know that
∆Ωp(M) ⊆ (Hp)⊥.

The other direction is the hard part. Suppose α ∈ (Hp)⊥. We may assume α is
non-zero. Since our PDE is a linear one, we may wlog ‖α‖ = 1.
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By the regularity theorem, it suffices to prove that ∆ω = α has a weak
solution. We define ` : ∆Ωp(M)→ R as follows: for each η ∈ Ωp(M), we put

`(∆η) = 〈η, α〉.

We check this is well-defined. Suppose ∆η = ∆ξ. Then η− ξ ∈ Hp, and we have

〈η, α〉 − 〈ξ, α〉 = 〈η − ξ, α〉 = 0

since α ∈ (Hp)⊥.
We next want to show the boundedness property. We now claim that there

exists a positive C > 0 such that

`(∆η) ≤ C‖∆η‖

for all η ∈ Ωp(M). To see this, we first note that by Cauchy–Schwartz, we have

|〈α, η〉| ≤ ‖α‖ · ‖η‖ = ‖η‖.

So it suffices to show that there is a C > 0 such that

‖η‖ ≤ C‖∆η‖

for every η ∈ Ωp(M).
Suppose not. Then we can find a sequence ηk ∈ (Hp)⊥ such that ‖ηk‖ = 1

and ‖∆ηk‖ → 0.
But then ‖∆ηk‖ is certainly bounded. So by the compactness theorem, we

may wlog ηk is Cauchy. Then for any ψ ∈ Ωp(M), the sequence 〈ψ, ηk〉 is Cauchy,
by Cauchy–Schwartz, hence convergent.

We define a : Ωp(M)→ R by

a(ψ) = lim
k→∞

〈ψ, ηk〉.

Then we have

a(∆ψ) = lim
k→∞

〈ηk,∆ψ〉 = lim
k→∞

〈∆ηk, ψ〉 = 0.

So we know that a is a weak solution of ∆ξ = 0. By the regularity theorem
again, we have

a(ψ) = 〈ξ, ψ〉

for some ξ ∈ Ωp(M). Then ξ ∈ Hp.
We claim that ηk → ξ. Let ε > 0, and pick N such that n,m > N implies

‖ηn − ηm‖ < ε. Then

‖ηn − ξ‖2 = 〈ηn − ξ, ηn − ξ〉 ≤ |〈ηm − ξ, ηn − ξ〉|+ ε‖ηn − ξ‖.

Taking the limit as m→∞, the first term vansihes, and this tells us ‖ηn−ξ‖ ≤ ε.
So ηn → ξ.

But this is bad. Since ηk ∈ (Hp)⊥, and (Hp)∞ is closed, we know ξ ∈ (Hp)⊥.
But also by assumption, we have ξ ∈ Hp. So ξ = 0. But we also know
‖ξ‖ = lim ‖ηk‖ = 1, whcih is a contradiction. So ` is bounded.

We then extend ` to any bounded linear map on Ωp(M). Then we are
done.
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That was a correct proof, but we just pulled a bunch of theorems out of
nowhere, and non-analysts might not be sufficiently convinced. We now look
at an explicit example, namely the torus, and sketch a direct proof of Hodge
decomposition. In this case, what we needed for the proof reduces to the fact
Fourier series and Green’s functions work, which is IB Methods.

Consider M = Tn = Rn/(2πZ)n, the n-torus with flat metric. This has local
coordinates (x1, · · · , xn), induced from the Euclidean space. This is convenient
because

∧
pT ∗M is trivialized by {dxi1 ∧ · · ·dxip}. Moreover, the Laplacian is

just given by

∆(α dxi1 ∧ · · · ∧ dxip) = −
n∑
i=1

∂2α

∂x2
i

dxi1 ∧ · · · ∧ dxip .

So to do Hodge decomposition, it suffices to consider the case p = 0, and we are
just looking at functions C∞(Tn), namely the 2π-periodic functions on R.

Here we will quote the fact that Fourier series work.

Fact. Let ϕ ∈ C∞(Tn). Then it can be (uniquely) represented by a convergent
Fourier series

ϕ(x) =
∑
k∈Zn

ϕke
ik·x,

where k and x are vectors, and k · x is the standard inner product, and this is
uniformly convergent in all derivatives. In fact, ϕk can be given by

ϕk =
1

(2π)n

∫
Tn

ϕ(x)e−ik·x dx.

Consider the inner product

〈ϕ,ψ〉 = (2π)n
∑

ϕ̄kψk.

on `2, and define the subspace

H∞ =
{

(ϕk) ∈ `2 : ϕk = o(|k|m) for all m ∈ Z
}
.

Then the map

F : C∞(Tn)→ `2

ϕ 7→ (ϕk).

is an isometric bijection onto H∞.

So we have reduced our problem of working with functions on a torus to
working with these infinite series. This makes our calculations rather more
explicit.

The key property is that the Laplacian is given by

F(∆ϕ) = (−|k|2ϕk).

In some sense, F “diagonalizes” the Laplacian. It is now clear that

H0 = {ϕ ∈ C∞(Tn) : ϕk = 0 for all k 6= 0}
(H0)⊥ = {ϕ ∈ C∞(Tn) : ϕ0 = 0}.

Moreover, since we can divide by |k|2 whenever k is non-zero, it follows that
(H0)⊥ = ∆C∞(Tn).
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4.3 Divergence

In ordinary multi-variable calculus, we had the notion of the divergence. This
makes sense in general as well. Given any X ∈ Vect(M), we have

∇X ∈ Γ(TM ⊗ T ∗M) = Γ(EndTM).

Now we can take the trace of this, because the trace doesn’t depend on the
choice of the basis.

Definition (Divergence). The divergence of a vector field X ∈ Vect(M) is

divX = tr(∇X).

It is not hard to see that this extends the familiar definition of the divergence.
Indeed, by definition of trace, for any local frame field {ei}, we have

divX =

n∑
i=1

g(∇eiX, ei).

It is straightforward to prove from definition that

Proposition.

div(fX) = tr(∇(fX)) = fdivX + 〈df,X〉.

The key result about divergence is the following:

Theorem. Let θ ∈ Ω1(M), and let Xθ ∈ Vect(M) be such that 〈θ, V 〉 =
g(Xθ, V ) for all V ∈ TM . Then

δθ = −divXθ.

So the divergence isn’t actually a new operator. However, we have some
rather more explicit formulas for the divergence, and this helps us understand δ
better.

To prove this, we need a series of lemmas.

Lemma. In local coordinates, for any p-form ψ, we have

dψ =

n∑
k=1

dxk ∧∇kψ.

Proof. We fix a point x ∈M , and we may wlog we work in normal coordinates
at x. By linearity and change of coordinates, we wlog

ψ = f dx1 ∧ · · · ∧ dxp.

Now the left hand side is just

dψ =

n∑
k=p+1

∂f

∂xk
dxk ∧ dx1 ∧ · · · ∧ dxp.

But this is also what the RHS is, because ∇k = ∂k at p.
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To prove this, we first need a lemma, which is also useful on its own right.

Definition (Interior product). Let X ∈ Vect(M). We define the interior product
i(X) : Ωp(M)→ Ωp−1(M) by

(i(X)ψ)(Y1, · · · , Yp−1) = ψ(X,Y1, · · · , Yp−1).

This is sometimes written as i(X)ψ = Xyψ.

Lemma. We have
(divX) ωg = d(i(X) ωg),

for all X ∈ Vect(M).

Proof. Now by unwrapping the definition of i(X), we see that

∇Y (i(X)ψ) = i(∇YX)ψ + i(X)∇Y ψ.

From example sheet 3, we know that ∇ωg = 0. So it follows that

∇Y (i(X) ωg) = i(∇YX) ωg.

Therefore we obtain

d(i(X)ωg)

=

n∑
k=1

dxk ∧∇k(i(X)ωg)

=

n∑
k=1

dxk ∧ i(∇kX)ωg

=

n∑
k=1

dxk ∧ i(∇kX)(
√
|g|dx1 ∧ · · · ∧ dxn)

= dxk(∇kX) ωg

= (divX) ωg.

Note that this requires us to think carefully how wedge products work (i(X)(α∧β)
is not just α(X)β, or else α ∧ β would not be anti-symmetric).

Corollary (Divergence theorem). For any vector field X, we have∫
M

div(X) ωg =

∫
M

d(i(X) ωg) = 0.

We can now prove the theorem.

Theorem. Let θ ∈ Ω1(M), and let Xθ ∈ Vect(M) be such that 〈θ, V 〉 =
g(Xθ, V ) for all V ∈ TM . Then

δθ = −divXθ.
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Proof. By the formal adjoint property of δ, we know that for any f ∈ C∞(M),
we have ∫

M

g(df, θ) ωg =

∫
M

fδθ ωg.

So we want to show that∫
M

g(df, θ) ωg = −
∫
M

fdivXω ωg.

But by the product rule, we have∫
M

div(fXθ) ωg =

∫
M

g(df, θ) ωg +

∫
M

fdivXθ ωg.

So the result follows by the divergence theorem.

We can now use this to produce some really explicit formulae for what δ is,
which will be very useful next section.

Corollary. If θ is a 1-form, and {ek} is a local orthonormal frame field, then

δθ = −
n∑
k=1

i(ek)∇eiθ = −
n∑
k=1

〈∇ekθ, ek〉.

Proof. We note that

ei〈θ, ei〉 = 〈∇eiθ, ei〉+ 〈θ,∇eiei〉
eig(Xθ, ei) = g(∇eiXθ, ei) + g(Xθ,∇eiei).

By definition of Xθ, this implies that

〈∇eiθ, ei〉 = g(∇eiXθ, ei).

So we obtain

δθ = −divXθ = −
n∑
i=1

g(∇eiXθ, ei) = −
n∑
k=1

〈∇eiθ, ei〉,

We will assume a version for 2-forms (the general result is again on the third
example sheet):

Proposition. If β ∈ Ω2(M), then

(δβ)(Y ) = −
n∑
k=1

(∇ekβ)(ek, Y ).

In other words,

δβ = −
n∑
k=1

i(ek)(∇ekβ).
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4.4 Introduction to Bochner’s method

How can we apply the Hodge decomposition theorem? The Hodge decomposition
theorem tells us the de Rham cohomology group is the kernel of the Laplace–
Beltrami operator ∆. So if we want to show, say, H1

dR(M) = 0, then we want to
show that ∆α 6= 0 for all non-zero α ∈ Ω1(M). The strategy is to show that

〈〈α,∆α〉〉 6= 0

for all α 6= 0. Then we have shown that H1
dR(M) = 0. In fact, we will show that

this inner product is positive. To do so, the general strategy is to introduce an
operator T with adjoint T ∗, and then write

∆ = T ∗T + C

for some operator C. We will choose T cleverly such that C is very simple.
Now if we can find a manifold such that C is always positive, then since

〈〈T ∗Tα, σ〉〉 = 〈〈Tα, Tα〉〉 ≥ 0,

it follows that ∆ is always positive, and so H1
dR(M) = 0.

Our choice of T will be the covariant derivative ∇ itself. We can formulate
this more generally. Suppose we have the following data:

– A Riemannian manifold M .

– A vector bundle E →M .

– An inner product h on E.

– A connection ∇ = ∇E : Ω0(E)→ Ω1(E) on E.

We are eventually going to take E = T ∗M , but we can still proceed in the
general setting for a while.

The formal adjoint (∇E)∗ : Ω1(E)→ Ω0(E) is defined by the relation∫
M

〈∇α, β〉E,g ωg =

∫
M

〈α,∇∗β〉E ωg

for all α ∈ Ω0(E) and β ∈ Ω1(E). Since h is non-degenerate, this defines ∇∗
uniquely.

Definition (Covariant Laplacian). The covariant Laplacian is

∇∗∇ : Γ(E)→ Γ(E)

We are now going to focus on the case E = T ∗M . It is helpful to have the
following explicit formula for ∇∗, which we shall leave as an exercise:

As mentioned, the objective is to understand ∆−∇∗∇. The theorem is that
this difference is given by the Ricci curvature.

This can’t be quite right, because the Ricci curvature is a bilinear form on
TM2, but ∆−∇∗∇ is a linear endomorphism Ω1(M)→ Ω1(M). Thus, we need
to define an alternative version of the Ricci curvature by “raising indices”. In
coordinates, we consider gjk Ricik instead.
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We can also define this Ricik without resorting to coordinates. Recall that
given an α ∈ Ω1(M), we defined Xα ∈ Vect(M) to be the unique field such that

α(z) = g(Xα, Z)

for all Z ∈ Vect(M). Then given α ∈ Ω1(M), we define Ric(α) ∈ Ω1(M) by

Ric(α)(X) = Ric(X,Xα).

With this notation, the theorem is

Theorem (Bochner–Weitzenböck formula). On an oriented Riemannian mani-
fold, we have

∆ = ∇∗∇+ Ric .

Before we move on to the proof of this formula, we first give an application.

Corollary. Let (M, g) be a compact connected oriented manifold. Then

– If Ric(g) > 0 at each point, then H1
dR(M) = 0.

– If Ric(g) ≥ 0 at each point, then b1(M) = dimH1
dR(M) ≤ n.

– If Ric(g) ≥ 0 at each point, and b1(M) = n, then g is flat.

Proof. By Bochner–Weitzenböck, we have

〈〈∆α, α〉〉 = 〈〈∇∗∇α, α〉〉+

∫
M

Ric(α, α) ωg

= ‖∇α‖22 +

∫
M

Ric(α, α) ωg.

– Suppose Ric > 0. If α 6= 0, then the RHS is strictly positive. So the
left-hand side is non-zero. So ∇α 6= 0. So H1

M
∼= H1

dR(M) = 0.

– Suppose α is such that ∆α = 0. Then the above formula forces ∇α = 0.
So if we know α(x) for some fixed x ∈ M , then we know the value of
α everywhere by parallel transport. Thus α is determined by the initial
condition α(x), Thus there are ≤ n = dimT ∗xM linearly independent such
α.

– If b1(M) = n, then we can pick a basis α1, · · · , αn of H1
M . Then as above,

these are parallel 1-forms. Then we can pick a dual basis X1, · · · , Xn ∈
Vect(M). We claim they are also parallel, i.e. ∇Xi = 0. To prove this, we
note that

〈αj ,∇Xi〉+ 〈∇αj , Xi〉 = ∇〈αj , Xi〉.

But 〈αj , Xi〉 is constantly 0 or 1 depending on i and j, So the RHS vanishes.
Similarly, the second term on the left vanishes. Since the αj span, we know
we must have ∇Xi = 0.

Now we have

R(Xi, Xj)Xk = (∇[Xi,Xj ] − [∇Xi,∇Xj
])Xk = 0,

Since this is valid for all i, j, k, we know R vanishes at each point. So we
are done.
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Bochner–Weitzenböck can be exploited in a number of similar situations.
In the third part of the theorem, we haven’t actually proved the optimal

statement. We can deduce more than the flatness of the metric, but requires
some slightly advanced topology. We will provide a sketch proof of the theorem,
making certain assertions about topology.

Proposition. In the case of (iii), M is in fact isometric to a flat torus.

Proof sketch. We fix p ∈M and consider the map M → Rn given by

x 7→
(∫ x

p

αi

)
i=1,··· ,n

∈ Rn,

where the αi are as in the previous proof. The integral is taken along any path
from p to x, and this is not well-defined. But by Stokes’ theorem, and the fact
that dαi = 0, this only depends on the homotopy class of the path.

In fact,
∫ x
p

depends only on γ ∈ H1(M), which is finitely generated. Thus,∫ x
p
αi is a well-defined map to S1 = R/λiZ for some λi 6= 0. Therefore we obtain

a map M → (S1)n = Tn. Moreover, a bit of inspection shows this is a local
diffeomorphism. But since the spaces involved are compact, it follows by some
topology arguments that it must be a covering map. But again by compactness,
this is a finite covering map. So M must be a torus. So we are done.

We only proved this for 1-forms, but this is in fact fact valid for forms of any
degree. To do so, we consider E =

∧
pT ∗M , and then we have a map

∇ : Ω0
M (E)→ Ω1

M (E),

and this has a formal adjoint

∇∗ : Ω1
M (E)→ Ω0

M (E).

Now if α ∈ Ωp(M), then it can be shown that

∆α = ∇∗∇α+ R(α),

where R is a linear map Ωp(M)→ Ωp(M) depending on the curvature. Then
by the same proof, it follows that if R > 0 at all points, then Hk(M) = 0 for all
k = 1, · · · , n− 1.

If R ≥ 0 only, which in particular is the case if the space is flat, then we have

bk(M) ≤
(
n

k

)
= dim

∧kT ∗M,

and moreover ∆α = 0 iff ∇α = 0.

Proof of Bochner–Weitzenböck

We now move on to actually prove Bochner–Weitzenböck. We first produce an
explicit formula for ∇∗, and hence ∇∗∇.
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Proposition. Let e1, · · · , en be an orthonormal frame field, and β ∈ Ω1(T ∗M).
Then we have

∇∗β = −
n∑
i=1

i(ei)∇eiβ.

Proof. Let α ∈ Ω0(T ∗M). Then by definition, we have

〈∇α, β〉 =

n∑
i=1

〈∇eiα, β(ei)〉.

Consider the 1-form given by

θ(Y ) = 〈α, β(Y )〉.

Then we have

divXθ =

n∑
i=1

〈∇eiXθ, ei〉

=

n∑
i=1

∇ei〈Xθ, ei〉 − 〈Xθ,∇eiei〉

=

n∑
i=1

∇ei〈α, β(ei)〉 − 〈α, β(∇eiei)〉

=

n∑
i=1

〈∇eiα, β(ei)〉+ 〈α,∇ei(β(ei))〉 − 〈α, β(∇eiei)〉

=

n∑
i=1

〈∇eiα, β(ei)〉+ 〈α, (∇eiβ)(ei)〉.

So by the divergence theorem, we have∫
M

〈∇α, β〉 ωg =

∫
M

n∑
i=1

〈α, (∇eiβ)(ei)〉 ωg.

So the result follows.

Corollary. For a local orthonormal frame field e1, · · · , en, we have

∇∗∇α = −
n∑
i=1

∇ei∇eiα.

We next want to figure out more explicit expressions for dδ and δd. To make
our lives much easier, we will pick a normal frame field:

Definition (Normal frame field). A local orthonormal frame {ek} field is normal
at p if further

∇ek|p = 0

for all k.
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It is a fact that normal frame fields exist. From now on, we will fix a point
p ∈M , and assume that {ek} is a normal orthonormal frame field at p. Thus, the
formulae we derive are only valid at p, but this is fine, because p was arbitrary.

The first term dδ is relatively straightforward.

Lemma. Let α ∈ Ω1(M), X ∈ Vect(M). Then

〈dδα,X〉 = −
n∑
i=1

〈∇X∇eiα, ei〉.

Proof.

〈dδα,X〉 = X(δα)

= −
n∑
i=1

X〈∇eiα, ei〉

= −
n∑
i=1

〈∇X∇eiα, ei〉.

This takes care of one half of ∆ for the other half, we need a bit more work.
Recall that we previously found a formula for δ. We now re-express the formula
in terms of this local orthonormal frame field.

Lemma. For any 2-form β, we have

(δβ)(X) =

n∑
k=1

−ek(β(ek, X)) + β(ek,∇ekX).

Proof.

(δβ)(X) = −
n∑
k=1

(∇ekβ)(ek, X)

=

n∑
k=1

−ek(β(ek, X)) + β(∇ekek, X) + β(ek,∇ekX)

=

n∑
k=1

−ek(β(ek, X)) + β(ek,∇ekX).

Since we want to understand δdα for α a 1-form, we want to find a decent
formula for dα.

Lemma. For any 1-form α and vector fields X,Y , we have

dα(X,Y ) = 〈∇Xα, Y 〉 − 〈∇Y α,X〉.
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Proof. Since the connection is torsion-free, we have

[X,Y ] = ∇XY −∇YX.

So we obtain

dα(X,Y ) = X〈α, Y 〉 − Y 〈α,X〉 − 〈α, [X,Y ]〉
= 〈∇Xα, Y 〉 − 〈∇Y α,X〉.

Finally, we can put these together to get

Lemma. For any 1-form α and vector field X, we have

〈δdα,X〉 = −
n∑
k=1

〈∇ek∇ekα,X〉+

n∑
k=1

〈∇ek∇Xα, ek〉 −
n∑
k=1

〈∇∇ek
Xα, ek〉.

Proof.

〈δdα,X〉 =

n∑
k=1

[
− ek(dα(ek, X)) + dα(ek,∇ekX)

]
=

n∑
k=1

[
− ek(〈∇ekα,X〉 − 〈∇Xα, ek〉)

+ 〈∇ekα,∇ekX〉 − 〈∇∇ek
Xα, ek〉

]
=

n∑
k=1

[
− 〈∇ek∇ekα,X〉 − 〈∇ekα,∇ekX〉+ 〈∇ek∇Xα, ek〉)

+ 〈∇ekα,∇ekX〉 − 〈∇∇ek
Xα, ek〉

]
= −

n∑
k=1

〈∇ek∇ekα,X〉+

n∑
k=1

〈∇ek∇Xα, ek〉 −
n∑
k=1

〈∇∇ek
Xα, ek〉.

What does this get us? The first term on the right is exactly the ∇∗∇ term
we wanted. If we add dδα to this, then we get

n∑
k=1

〈([∇ek ,∇X ]−∇∇ek
X)α, ek〉.

We notice that
[ek, X] = ∇ekX −∇Xek = ∇ekX.

So we can alternatively write the above as

n∑
k=1

〈([∇ek ,∇X ]−∇[ek,X])α, ek〉.

The differential operator on the left looks just like the Ricci curvature. Recall
that

R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ].
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Lemma (Ricci identity). Let M be any Riemannian manifold, and X,Y, Z ∈
Vect(M) and α ∈ Ω1(M). Then

〈([∇X ,∇Y ]−∇[X,Y ])α,Z〉 = 〈α,R(X,Y )Z〉.

Proof. We note that

〈∇[X,Y ]α,Z〉+〈α,∇[X,Y ]Z〉 = [X,Y ]〈α,Z〉 = 〈[∇X ,∇Y ]α,Z〉+〈α, [∇X ,∇Y ]Z〉.

The second equality follows from writing [X,Y ] = XY −Y X. We then rearrange
and use that R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ].

Corollary. For any 1-form α and vector field X, we have

〈∆α,X〉 = 〈∇∗∇α,X〉+ Ric(α)(X).

This is the theorem we wanted.

Proof. We have found that

〈∆α,X〉 = 〈∇∗∇α,X〉+

n∑
i=1

〈α,R(ek, X)ek〉.

We have

n∑
i=1

〈α,R(ek, X)ek〉 =

n∑
i=1

g(Xα, R(ek, X)ek) = Ric(Xα, X) = Ric(α)(X).

So we are done.
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5 Riemannian holonomy groups

Again let M be a Riemannian manifold, which is always assumed to be connected.
Let x ∈ M , and consider a path γ ∈ Ω(x, y), γ : [0, 1] → M . At the rather
beginning of the course, we saw that γ gives us a parallel transport from TxM
to TyM . Explicitly, given any X0 ∈ TxM , there exists a unique vector field X
along γ with

∇X
dt

= 0, X(0) = X0.

Definition (Holonomy transformation). The holonomy transformation P (γ)
sends X0 ∈ TxM to X(1) ∈ TyM .

We know that this map is invertible, and preserves the inner product. In
particular, if x = y, then P (γ) ∈ O(TxM) ∼= O(n).

Definition (Holonomy group). The holonomy group of M at x ∈M is

Holx(M) = {P (γ) : γ ∈ Ω(x, x)} ⊆ O(TxM).

The group operation is given by composition of linear maps, which corresponds
to composition of paths.

We note that this group doesn’t really depend on the point x. Given any
other y ∈M , we can pick a path β ∈ Ω(x, y). Writing Pβ instead of P (β), we
have a map

Holx(M) Holy(M)

Pγ Pβ ◦ Pγ ◦ Pβ−1 ∈ Holy(M)

.

So we see that Holx(M) and Holy(M) are isomorphic. In fact, after picking an
isomorphism O(TxM) ∼= O(TyM) ∼= O(N), these subgroups are conjugate as
subgroups of O(n). We denote this class by Hol(M).

Note that depending of what we want to emphasize, we write Hol(M, g), or
even Hol(g) instead.

Really, Hol(M) is a representation (up to conjugacy) induced by the standard
representation of O(n) on Rn.

Proposition. If M is simply connected, then Holx(M) is path connected.

Proof. Holx(M) is the image of Ω(x, x) in O(n) under the map P , and this map
is continuous from the standard theory of ODE’s. Simply connected means
Ω(x, x) is path connected. So Holx(M) is path connected.

It is convenient to consider the restricted holonomy group.

Definition (Restricted holonomy group). We define

Hol0x(M) = {P (γ) : γ ∈ Ω(x, x) nullhomotopic}.

As before, this group is, up to conjugacy, independent of the choice of the
point in the manifold. We write this group as Hol0(M).

Of course, Hol0(M) ⊆ Hol(M), and if π1(M) = 0, then they are equal.

Corollary. Hol0(M) ⊆ SO(n) .
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Proof. Hol0(M) is connected, and thus lies in the connected component of the
identity in O(n).

Note that there is a natural action of Holx(M) and Hol0x(M) on T ∗xM ,∧
pT ∗M for all p, and more generally tensor products of TxM .

Fact.

– Hol0(M) is the connected component of Hol(M) containing the identity
element.

– Hol0(M) is a Lie subgroup of SO(n), i.e. it is a subgroup and an immersed
submanifold. Thus, the Lie algebra of Hol0(M) is a Lie subalgebra of
so(n), which is just the skew-symmetric n× n matrices.

This is a consequence of Yamabe theorem, which says that a path-connected
subgroup of a Lie group is a Lie subgroup.

We will not prove these.

Proposition (Fundamental principle of Riemannian holonomy). Let (M, g) be
a Riemannian manifold, and fix p, q ∈ Z+ and x ∈M . Then the following are
equivalent:

(i) There exists a (p, q)-tensor field α on M such that ∇α = 0.

(ii) There exists an element α0 ∈ (TxM)⊗p⊗(T ∗xM)⊗q such that α0 is invariant
under the action of Holx(M).

Proof. To simplify notation, we consider only the case p = 0. The general case
works exactly the same way, with worse notation. For α ∈ (T ∗xM)q, we have

(∇Xα)(X1, · · · , Xq) = X(α(X1, · · · , Xq))−
q∑
i=1

α(X1, · · · ,∇XXi, · · · , Xq).

Now consider a loop γ : [0, 1]→M be a loop at x. We choose vector fields Xi

along γ for i = 1, · · · , q such that

∇Xi

dt
= 0.

We write
Xi(γ(0)) = X0

i .

Now if ∇α = 0, then this tells us

∇α
dt

(X1, · · · , Xq) = 0.

By our choice of Xi, we know that α(X1, · · · , Xq) is constant along γ. So we
know

α(X0
1 , · · · , X0

q ) = α(Pγ(X0
1 ), · · · , Pγ(X0

q )).

So α is invariant under Holx(M). Then we can take α0 = αx.
Conversely, if we have such an α0, then we can use parallel transport to

transfer it to everywhere in the manifold. Given any y ∈M , we define αy by

αy(X1, · · · , Xq) = α0(Pγ(X1), · · · , Pγ(Xq)),
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where γ is any path from y to x. This does not depend on the choice of γ
precisely because α0 is invariant under Holx(M).

It remains to check that α is C∞ with ∇α = 0, which is an easy exercise.

Example. Let M be oriented. Then we have a volume form ωg. Since ∇ωg = 0,
we can take α = ωg. Here p = 0 and q = n. Also, its stabilizer is H = SO(n).
So we know Hol(M) ⊆ SO(n) if (and only if) M is oriented.

The “only if” part is not difficult, because we can use parallel transport to
transfer an orientation at a particular point to everywhere.

Example. Let x ∈M , and suppose

Holx(M) ⊆ U(n) = {g ∈ SO(2n) : gJ0g
−1 = J0},

where

J0 =

(
0 I
−I 0

)
.

By looking at α0 = J0, we obtain α = J ∈ Γ(EndTM) with ∇J = 0 and
J2 = −1. This is a well-known standard object in complex geometry, and such
a J is an instance of an almost complex structure on M .

Example. Recall (from the theorem on applications of Bochner–Weitzenböck)
that a Riemannian manifold (M, g) is flat (i.e. R(g) ≡ 1) iff around each point
x ∈M , there is a parallel basis of parallel vector fields. So we find that (M, g)
is flat iff Hol0(M, g) = {id}.

It is essential that we use Hol0(M, g) rather than the full Hol(M, g). For
example, we can take the Klein bottle

γ

with the flat metric. Then parallel transport along the closed loop γ has

Pγ =

(
1 0
0 −1

)
.

In fact, we can check that Hol(K) = Z2. Note that here K is non-orientable.

Since we know that Hol(M) is a Lie group, we can talk about its Lie algebra.

Definition (Holonomy algebra). The holonomy algebra hol(M) is the Lie algebra
of Hol(M).

Thus hol(M) ≤ so(n) up to conjugation.
Now consider some open coordinate neighbourhood U ⊆M with coordinates

x1, · · · , xn. As before, we write

∂i =
∂

∂xi
, ∇i = ∇∂i .
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The curvature may also be written in terms of coordinates R = Rij,k`, and we
also have

R(∂k, ∂`) = −[∇k,∇`].

Thus, hol(M) contains
d

dt

∣∣∣∣
t=0

P (γt),

where γt is the square

xk

x`

√
t

√
t

By a direct computation, we find

P (γt) = I + λtR(∂k, ∂`) + o(t).

Here λ ∈ R is some non-zero absolute constant that doesn’t depend on anything
(except convention).

Differentiating this with respect to t and taking the limit t→ 0, we deduce
that at for p ∈ U , we have

Rp = (Rij,k`)p ∈
∧2T ∗pM ⊗ holp(M),

where we think holp(M) ⊆ EndTpM . Recall we also had the Rij,k` version, and
because of the nice symmetric properties of R, we know

(Rij,k`)p ∈ S2holp(M) ⊆
∧2T ∗pM ⊗

∧2T ∗pM.

Strictly speaking, we should write

(Rij
k
`)p ∈ S2holp(M),

but we can use the metric to go between TpM and T ∗pM .
So far, what we have been doing is rather tautological. But it turns out this

allows us to decompose the de Rham cohomology groups.
In general, consider an arbitrary Lie subgroup G ⊆ GLn(R). There is a

standard representation ρ of GLn(R) on Rn, which restricts to a representation
(ρ,Rn) of G. This induces a representation (ρk,

∧
k(R∗)) of G.

This representation is in general not irreducible. We decompose it into
irreducible components (ρki ,W

k
i ), so that∧k(R∗) =

⊕
i

W k
i .
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We can do this for bundles instead of just vector spaces. Consider a manifold M
with a G-structure, i.e. there is an atlas of coordinate neighbourhoods where the
transition maps satisfy (

∂xα
∂x′β

)
p

∈ G

for all p. Then we can use this to split our bundle of k-forms into well-defined
vector sub-bundles with typical fibers W k

i :∧kT ∗M =
⊕

Λki .

We can furthermore say that every G-equivariant linear map ϕ : W k
i → W `

j

induces a morphism of vector bundles φ : Λki → Λ`j .
Now suppose further that Hol(M) ≤ G ≤ O(n). Then we can show that

parallel transport preserves this decomposition into sub-bundles. So ∇ restricts
to a well-defined connection on each Λki .

Thus, if ξ ∈ Γ(Λki ), then∇ξ ∈ Γ(T ∗M⊗Λki ), and then we have∇∗∇ξ ∈ Γ(Λki ).
But we know the covariant Laplacian is related to Laplace–Beltrami via the
curvature. We only do this for 1-forms for convenience of notation. Then if
ξ ∈ Ω1(M), then we have

∆ξ = ∇∗∇ξ + Ric(ξ).

We can check that Ric also preserves these subbundles. Then it follows that
∆ : Γ(Λ1

j )→ Γ(Λ1
j ) is well-defined.

Thus, we deduce

Theorem. Let (M, g) be a connected and oriented Riemannian manifold, and
consider the decomposition of the bundle of k-forms into irreducible representa-
tions of the holonomy group, ∧kT ∗M =

⊕
i

Λki .

In other words, each fiber (Λki )x ⊆
∧
kT ∗xM is an irreducible representation of

Holx(g). Then

(i) For all α ∈ Ωki (M) ≡ Γ(Λli), we have ∆α ∈ Ωki (M).

(ii) If M is compact, then we have a decomposition

Hk
dR(M) =

⊕
Hk
i,dR(M),

where
Hk
i,dR(M) = {[α] : α ∈ Ωki (M),∆α = 0}.

The dimensions of these groups are known as the refined Betti numbers.

We have only proved this for k = 1, but the same proof technique can be
used to do it for arbitrary k.

Our treatment is rather abstract so far. But for example, if we are dealing
with complex manifolds, then we know that Hol(M) ≤ U(n). So this allows us
to have a canonical refinement of the de Rham cohomology, and this is known
as the Lefschetz decomposition.
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6 The Cheeger–Gromoll splitting theorem

We will talk about the Cheeger–Gromoll splitting theorem. This is a hard
theorem, so we will not prove it. However, we will state it, and discuss a bit
about it. To state the theorem, we need some preparation.

Definition (Ray). Let (M, g) be a Riemannian manifold. A ray is a map
r(t) : [0,∞) → M if r is a geodesic, and minimizes the distance between any
two points on the curve.

Definition (Line). A line is a map `(t) : R→ M such that `(t) is a geodesic,
and minimizes the distance between any two points on the curve.

We have seen from the first example sheet that if M is a complete unbounded
manifold, then M has a ray from each point, i.e. for all x ∈ M , there exists a
ray r such that r(0) = x.

Definition (Connected at infinity). A complete manifold is said to be connected
at infinity if for all compact set K ⊆ M , there exists a compact C ⊇ K such
that for every two points p, q ∈M \ C, there exists a path γ ∈ Ω(p, q) such that
γ(t) ∈M \K for all t.

We say M is disconnected at infinity if it is not connected at infinity.

Note that if M is disconnected at infinity, then it must be unbounded, and
in particular non-compact.

Lemma. If M is disconnected at infinity, then M contains a line.

Proof. Note that M is unbounded. Since M is disconnected at infinity, we can
find a compact subset K ⊆M and sequences pm, qm →∞ as m→∞ (to make
this precise, we can pick some fixed point x, and then require d(x, pm), d(x, qm)→
∞) such that every γm ∈ Ω(pm, qm) passes through K.

In particular, we pick γm to be a minimal geodesic from pm to qm parametrized
by arc-length. Then γm passes through K. By reparametrization, we may assume
γm(0) ∈ K.

Since K is compact, we can pass to a subsequence, and wlog γm(0)→ x ∈ K
and γ̇m(0)→ a ∈ TxM (suitably interpreted).

Then we claim the geodesic γx,a(t) is the desired line. To see this, since
solutions to ODE’s depend smoothly on initial conditions, we can write the line
as

`(t) = lim
m→∞

γm(t).

Then we know

d(`(s), `(t)) = lim
m→∞

d(γm(s), γm(t)) = |s− t|.

So we are done.

Let’s look at some examples.

Example. The elliptic paraboloid

{z = x2 + y2} ⊆ R3

with the induced metric does not contain a line. To prove this, we can show that
any geodesic that is not a meridian must intersect itself.
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Example. Any complete metric g on Sn−1 × R contains a line since it is
disconnected at ∞.

Theorem (Cheeger–Gromoll line-splitting theorem (1971)). If (M, g) is a com-
plete connected Riemannian manifold containing a line, and has Ric(g) ≥ 0 at
each point, then M is isometric to a Riemannian product (N × R, g0 + dt2) for
some metric g0 on N .

We will not prove this, but just see what the theorem can be good for.
First of all, we can slightly improve the statement. After applying the

theorem, we can check again if N contains a line or not. We can keep on
proceeding and splitting lines off. Then we get

Corollary. Let (M, g) be a complete connected Riemannian manifold with
Ric(g) ≥ 0. Then it is isometric to X × Rq for some q ∈ N and Riemannian
manifold X, where X is complete and does not contain any lines.

Note that if X is zero-dimensional, since we assume all our manifolds are
connected, then this implies M is flat. If dimX = 1, then X ∼= S1 (it can’t be a
line, because a line contains a line). So again M is flat.

Now suppose that in fact Ric(g) = 0. Then it is not difficult to see from the
definition of the Ricci curvature that Ric(X) = 0 as well. If we know dimX ≤ 3,
then M has to be flat, since in dimensions ≤ 3, the Ricci curvature determines
the full curvature tensor.

We can say a bit more if we assume more about the manifold. Recall (from
example sheets) that a manifold is homogeneous if the group of isometries
acts transitively. In other words, for any p, q ∈ M , there exists an isometry
φ : M →M such that φ(p) = q. This in particular implies the metric is complete.

It is not difficult to see that if M is homogeneous, then so is X. In this case,
X must be compact. Suppose not. Then X is unbounded. We will obtain a line
on X.

By assumption, for all n = 1, 2, · · · , we can find pn, qn with d(pn, qn) ≥ 2n.
Since X is complete, we can find a minimal geodesic γn connecting these two
points, parametrized by arc length. By homogeneity, we may assume that the
midpoint γn(0) is at a fixed point x0. By passing to a subsequence, we wlog
γ̇n(0) converges to some a ∈ Tx0(X. Then we use a as an initial condition for
our geodesic, and this will be a line.

A similar argument gives

Lemma. Let (M, g) be a compact Riemannian manifold, and suppose its uni-
versal Riemannian cover (M̃, g̃) is non-compact. Then (M̃, g̃) contains a line.

Proof. We first find a compact K ⊆ M̃ such that π(K) = M . Since M̃ must be
complete, it is unbounded. Choose pn, qn, γn like before. Then we can apply deck
transformations so that the midpoint lies inside K, and then use compactness of
K to find a subsequence so that the midpoint converges.

We do more applications.

Corollary. Let (M, g) be a compact, connected manifold with Ric(g) ≥ 0. Then

– The universal Riemannian cover is isometric to the Riemannian product
X × RN , with X compact, π1(X) = 1 and Ric(gX) ≥ 0.
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– If there is some p ∈M such that Ric(g)p > 0, then π1(M) is finite.

– Denote by I(M̃) the group of isometries M̃ → M̃ . Then I(M̃) = I(X)×
E(Rq), where E(Rq) is the group of rigid Euclidean motions,

y 7→ Ay + b

where b ∈ Rn and A ∈ O(q).

– If M̃ is homogeneous, then so is X.

Proof.

– This is direct from Cheeger–Gromoll and the previous lemma.

– If there is a point with strictly positive Ricci curvature, then the same is
true for the universal cover. So we cannot have any non-trivial splitting.
So by the previous part, M̃ must be compact. By standard topology,
|π1(M)| = |π−1({p})|.

– We use the fact that E(Rq) = I(Rq). Pick a g ∈ I(M̃). Then we know g
takes lines to lines. Now use that all lines in M̃ ×Rq are of the form p×R
with p ∈ X and R ⊆ Rq an affine line. Then

g(p× R) = p′ × R,

for some p′ and possibly for some other copy of R. By taking unions, we
deduce that g(p× Rq) = p′ × Rq. We write h(p) = p′. Then h ∈ I(X).

Now for any X × a with a ∈ Rq, we have X × a ⊥ p × Rq for all p ∈ X.
So we must have

g(X × a) = X × b

for some b ∈ Rq. We write e(a) = b. Then

g(p, a) = (h(p), e(a)).

Since the metric of X and Rq are decoupled, it follows that h and e must
separately be isometries.

We can look at more examples.

Proposition. Consider Sn × R for n = 2 or 3. Then this does not admit any
Ricci-flat metric.

Proof. Note that Sn × R is disconnected at ∞. So any metric contains a line.
Then by Cheeger–Gromoll, R splits as a Riemannian factor. So we obtain
Ric = 0 on the Sn factor. Since we are in n = 2, 3, we know Sn is flat, as the
Ricci curvature determines the full curvature. So Sn is the quotient of Rn by a
discrete group, and in particular π1(Sn) 6= 1. This is a contradiction.

Let G be a Lie group with a bi-invariant metric g. Suppose the center Z(G)
is finite. Then the center of g is trivial (since it is the Lie algebra of G/Z(G),
which has trivial center). From sheet 2, we find that Ric(g) > 0 implies π1(G) is
finite. The converse is also true, but is harder. This is done on Q11 of sheet 3 —
if π1(G) is finite, then Z(G) is finite.
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Bonnet–Myers theorem, 40
bounded, 50

Cheeger–Gromoll line-splitting
theorem, 69

Christoffel symbols, 5
co-closed, 47
co-differential, 45
compatible connection, 5
complete

geodesically, 28
conjugate points, 36
connected at infinity, 68
connection

compatible with metric, 5
symmetric, 5
torsion-free, 5

covariant derivative, 13
covariant Laplacian, 56
cover

Riemannian, 40
covering map

Riemannian, 40
curvature, 7

Ricci, 11

curvature 2-form, 7

diameter, 40
distance, 25
divergence, 53
divergence theorem, 54

energy, 30
exponential map, 15

first Bianchi identity, 7
first fundamental form, 11
first variation formula

geodesic, 31
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Levi-Civita connection, 5
Lie algebra, 4
lift, 12

horizontal, 13
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minimal geodesic, 26

normal coordinates, 16
normal frame field, 59

parallel transport, 13

ray, 68
refined Betti numbers, 67
restricted holonomy group, 63
Ricci curvature, 11
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Riemannian cover, 40
Riemannian covering, 40

Riemannian covering map, 40
Riemannian manifold, 3
Riemannian metric, 3

scalar curvature, 11
second variation formula
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