
Part III — Positivity in Algebraic Geometry

Theorems with proof

Based on lectures by S. Svaldi
Notes taken by Dexter Chua

Lent 2018

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

This class aims at giving an introduction to the theory of divisors, linear systems and
their positivity properties on projective algebraic varieties.

The first part of the class will be dedicated to introducing the basic notions and results
regarding these objects and special attention will be devoted to discussing examples in
the case of curves and surfaces.

In the second part, the course will cover classical results from the theory of divisors
and linear systems and their applications to the study of the geometry of algebraic
varieties.

If time allows and based on the interests of the participants, there are a number of
more advanced topics that could possibly be covered: Reider’s Theorem for surfaces,
geometry of linear systems on higher dimensional varieties, multiplier ideal sheaves and
invariance of plurigenera, higher dimensional birational geometry.

Pre-requisites

The minimum requirement for those students wishing to enroll in this class is their
knowledge of basic concepts from the Algebraic Geometry Part 3 course, i.e. roughly
Chapters 2 and 3 of Hartshorne’s Algebraic Geometry.

Familiarity with the basic concepts of the geometry of algebraic varieties of dimension 1
and 2 — e.g. as covered in the preliminary sections of Chapters 4 and 5 of Hartshorne’s
Algebraic Geometry — would be useful but will not be assumed — besides what was
already covered in the Michaelmas lectures.

Students should have also some familiarity with concepts covered in the Algebraic

Topology Part 3 course such as cohomology, duality and characteristic classes.
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1 Divisors III Positivity in Algebraic Geometry (Theorems with proof)

1 Divisors

1.1 Projective embeddings

Theorem. Let A be any ring, and X a scheme over A.

(i) If ϕ : X → Pn is a morphism over A, then ϕ∗OPn(1) is an invertible sheaf
on X, generated by the sections ϕ∗x0, . . . , ϕ

∗xn ∈ H0(X,ϕ∗OPn(1)).

(ii) If L is an invertible sheaf on X, and if s0, . . . , sn ∈ H0(X,L) which generate
L, then there exists a unique morphism ϕ : X → Pn such that ϕ∗O(1) ∼= L
and ϕ∗xi = si.

Proof.

(i) The pullback of an invertible sheaf is an invertible, and the pullbacks of
x0, . . . , xn generate ϕ∗OPn(1).

(ii) In short, we map x ∈ X to [s0(x) : · · · : sn(x)] ∈ Pn.

In more detail, define

Xsi = {p ∈ X : si 6∈ mpLp}.

This is a Zariski open set, and si is invertible on Xsi . Thus there is a dual
section s∨i ∈ L∨ such that si ⊗ s∨i ∈ L ⊗ L∨ ∼= OX is equal to 1. Define
the map Xsi → An by the map

K[An]→ H0(Xsi ,Osi)
yi 7→ sj ⊗ s∨i .

Since the si generate, they cannot simultaneously vanish on a point. So
X =

⋃
Xsi . Identifying An as the chart of Pn where xi 6= 0, this defines

the desired map X → Pn.

Proposition. Let K = K̄, and X a projective variety over K. Let L be an
invertible sheaf on X, and s0, . . . , sn ∈ H0(X,L) generating sections. Write
V = 〈s0, . . . , sn〉 for the linear span. Then the associated map ϕ : X → Pn is a
closed embedding iff

(i) For every distinct closed points p 6= q ∈ X, there exists sp,q ∈ V such that
sp,q ∈ mpLp but sp,q 6∈ mqLq.

(ii) For every closed point p ∈ X, the set {s ∈ V | s ∈ mpLp} spans the vector
space mpLp/m2

pLp.

Proof.

(⇒) Suppose φ is a closed immersion. Then it is injective on points. So suppose
p 6= q are (closed) points. Then there is some hyperplane Hp,q in Pn
passing through p but not q. The hyperplane Hp,q is the vanishing locus
of a global section of O(1). Let sp,q ∈ V ⊆ H0(X,L) be the pullback of
this section. Then sp,q ∈ mpLp and sp,q 6∈ mqLq. So (i) is satisfied.

To see (ii), we restrict to the affine patch containing p, and X is a closed
subvariety of An. The result is then clear since mpLp/m2

pLp is exactly the

span of s0, . . . , sn. We used K = K̄ to know what the closed points of Pn
look like.
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1 Divisors III Positivity in Algebraic Geometry (Theorems with proof)

(⇐) We first show that ϕ is injective on closed points. For any p 6= q ∈ X,
write the given sp,q as

sp,q =
∑

λisi =
∑

λiϕ
∗xi = ϕ∗

∑
λixi

for some λi ∈ K. So we can take Hp,q to be given by the vanishing set
of
∑
λixi, and so it is injective on closed point. It follows that it is also

injective on schematic points. Since X is proper, so is ϕ, and in particular
ϕ is a homeomorphism onto the image.

To show that ϕ is in fact a closed immersion, we need to show that
OPn → ϕ∗OX is surjective. As before, it is enough to prove that it holds
at the level of stalks over closed points. To show this, we observe that
Lp is trivial, so mpLp/m2

pLp ∼= mp/m
2
p (unnaturally). We then apply the

following lemma:

Lemma. Let f : A→ B be a local morphism of local rings such that

◦ A/mA → B/mB is an isomorphism;

◦ mA → mB/m
2
B is surjective; and

◦ B is a finitely-generated A-module.

Then f is surjective.

To check the first condition, note that we have

Op,Pn

mp,Pn

∼=
Op,X
mp,X

∼= K.

Now since mp,Pn is generated by x0, . . . , xn, the second condition is the
same as saying

mp,Pn → mp,X
m2
p,X

is surjective. The last part is immediate.

Theorem (Serre). Let X be a projective scheme over a Noetherian ring A, L be
a very ample invertible sheaf, and F a coherent OX -module. Then there exists
a positive integer n0 = n0(F ,L) such that for all n ≥ n0, the twist F ⊗ Ln is
generated by global sections.

Theorem (Serre). Let X be a scheme of finite type over a Noetherian ring A,
and L an invertible sheaf on X. Then L is ample iff there exists m > 0 such
that Lm is very ample.

Proof.

(⇐) Let Lm be very ample, and F a coherent sheaf. By Serre’s theorem, there
exists n0 such that for all j ≥ j0, the sheafs

F ⊗ Lmj , (F ⊗ L)⊗ Lmj , . . . , (F ⊗ Lm−1)⊗ Lmj

are all globally generated. So F ⊗ Ln is globally generated for n ≥ mj0.
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1 Divisors III Positivity in Algebraic Geometry (Theorems with proof)

(⇒) Suppose L is ample. Then Lm is globally generated for m sufficiently large.
We claim that there exists t1, . . . , tn ∈ H0(X,LN ) such that L|Xti

are all
trivial (i.e. isomorphic to OXti

), and X =
⋃
Xti .

By compactness, it suffices to show that for each p ∈ X, there is some
t ∈ H0(X,Ln) (for some n) such that p ∈ Xti and L is trivial on Xti . First
of all, since L is locally free by definition, we can find an open affine U
containing p such that L|U is trivial.

Thus, it suffices to produce a section t that vanishes on Y = X − U but
not at p. Then p ∈ Xt ⊆ U and hence L is trivial on Xt. Vanishing on
Y is the same as belonging to the ideal sheaf IY . Since IY is coherent,
ampleness implies there is some large n such that IY ⊗Ln is generated by
global sections. In particular, since IY ⊗Ln doesn’t vanish at p, we can
find some t ∈ Γ(X, IY ⊗ LN ) such that t 6∈ mp(IY ⊗ Ln)p. Since IY is a
subsheaf of OX , we can view t as a section of Ln, and this t works.

Now given the Xti , for each fixed i, we let {bij} generate OXti
as an

A-algebra. Then for large n, cij = tni bij extends to a global section
cij ∈ Γ(X,Ln) (by clearing denominators). We can pick an n large enough
to work for all bij . Then we use {tni , cij} as our generating sections
to construct a morphism to PN , and let {xi, xij} be the corresponding
coordinates. Observe that

⋃
Xti = X implies the tni already generate Ln.

Now each xti gets mapped to Ui ⊆ PN , the vanishing set of xi. The map
OUi → ϕ∗OXti

corresponds to the map

A[yi, yij ]→ OXti
,

where yij is mapped to cij/t
n
i = bij . So by assumption, this is surjective,

and so we have a closed embedding.

Proposition. Let L be a sheaf over X (which is itself a projective variety over
K). Then the following are equivalent:

(i) L is ample.

(ii) Lm is ample for all m > 0.

(iii) Lm is ample for some m > 0.

Theorem (Serre). Let X be a projective scheme over a Noetherian ring A, and
L is very ample on X. Let F be a coherent sheaf. Then

(i) For all i ≥ 0 and n ∈ N, Hi(F ⊗ Ln) is a finitely-generated A-module.

(ii) There exists n0 ∈ N such that for all n ≥ n0, Hi(F ⊗ Ln) = 0 for all
i > 0.

Theorem. Let X be a proper scheme over a Noetherian ring A, and L an
invertible sheaf. Then the following are equivalent:

(i) L is ample.

(ii) For all coherent F on X, there exists n0 ∈ N such that for all n ≥ n0, we
have Hi(F ⊗ Ln) = 0.
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1 Divisors III Positivity in Algebraic Geometry (Theorems with proof)

Proof. Proving (i) ⇒ (ii) is the same as the first part of the theorem last time.
To prove (ii) ⇒ (i), fix a point x ∈ X, and consider the sequence

0→ mxF → F → Fx → 0.

We twist by Ln, where n is sufficiently big, and take cohomology. Then we have
a long exact sequence

0→ H0(mxF(n))→ H0(F(n))→ H0(Fx(n))→ H1(mxF(n)) = 0.

In particular, the map H0(F(n)) → H0(Fx(n)) is surjective. This mean at
x, F(n) is globally generated. Then by compactness, there is a single n large
enough such that F(n) is globally generated everywhere.

1.2 Weil divisors

Theorem (Hartog’s lemma). Let X be normal, and f ∈ O(X \ V ) for some
V ≥ 2. Then f ∈ OX . Thus, div(f) = 0 implies f ∈ O×X .

1.3 Cartier divisors

Proposition. If X is normal, then

div : {rational sections of L} →WDiv(X).

is well-defined, and two sections have the same image iff they differ by an element
of O∗X .

Corollary. If X is normal and proper, then there is a map

div{rational sections of L}/K∗ →WDiv(X).

Proof. Properness implies O∗X = K∗.

Proposition. OX(D) is a rank 1 quasicoherent OX -module. .

Proposition. If D is locally principal at every point x, then OX(D) is an
invertible sheaf.

Proof. If U ⊆ X is such that D|U = div(f)|U , then there is an isomorphism

OX |U → OX(D)|U
g 7→ g/f.

Proposition. If D1, D2 are Cartier divisors, then

(i) OX(D1 +D2) = OX(D1)⊗OX(D2).

(ii) OX(−D) ∼= OX(D)∨.

(iii) If f ∈ K(X), then OX(div(f)) ∼= OX .

Proposition. Let X be a Noetherian, normal, integral scheme. Assume that X
is factorial , i.e. every local ring OX,x is a UFD. Then any Weil divisor is Cartier.
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1 Divisors III Positivity in Algebraic Geometry (Theorems with proof)

Proof. It is enough to prove the proposition when D is prime and effective. So
D ⊆ X is a codimension 1 irreducible subvariety. For x ∈ D

– If x 6∈ D, then 1 is a divisor equivalent to D near x.

– If x ∈ D, then ID,x ⊆ OX,x is a height 1 prime ideal. So ID,x = (f) for
f ∈ mX,x. Then f is the local equation for D.

Theorem. Let X be normal and L an invertible sheaf, s a rational section of
L. Then OX(div(s)) is invertible, and there is an isomorphism

OX(div(s))→ L.

Moreover, sending L to divs gives a map

Pic(X)→ Cl(X),

which is an isomorphism if X is factorial (and Noetherian and integral).

Proof. Given f ∈ H0(U,OX(div(s))), map it to f · s ∈ H0(U,L). This gives the
desired isomorphism.

If we have to sections s′ 6= s, then f = s′/s ∈ K(X). So div(s) = div(s′) +
div(f), and div(f) is principal. So this gives a well-defined map Pic(X) →
Cl(X).

1.4 Computations of class groups

Proposition. Let X be an integral scheme, regular in codimension 1. If Z ⊆ X
is an integral closed subscheme of codimension 1, then we have an exact sequence

Z→ Cl(X)→ Cl(X \ Z)→ 0,

where n ∈ Z is mapped to [nZ].

Proof. The map Cl(X)→ Cl(X \Z) is given by restriction. If S is a Weil divisor
on X \ Z, then S̄ ⊆ X maps to S under the restriction map. So this map is
surjective.

Also, that [nZ]|X\Z is trivial. So the composition of the first two maps
vanishes. To check exactness, suppose D is a Weil divisor on X, principal on
X \Z. Then D|X\Z = dim(f)|X\Z for some f ∈ K(X). Then D− div(f) is just
supported along Z. So it must be of the form nZ.

Proposition. If Z ⊆ X has codimension ≥ 2, then Cl(X) → Cl(X \ Z) is an
isomorphism.

Proposition. If A is a Noetherian ring, regular in codimension 1, then A is a
UFD iff A is normal and Cl(SpecA) = 0

Proof. If A is a UFD, then it is normal, and every prime ideal of height 1 is
principally generated. So if D ∈ SpecA is Weil and prime, then D = V (f) for
some f , and hence (f) = ID.

Conversely, if A is normal and Cl(SpecA) = 0, then every Weil divisor is
principal. So if I is a height 1 prime ideal, then V (I) = D for some Weil divisor
D. Then D is principal. So I = (f) for some f . So A is a Krull Noetherian
integral domain with principally generated height 1 prime ideals. So it is a
UFD.
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1 Divisors III Positivity in Algebraic Geometry (Theorems with proof)

Proposition. Let X be Noetherian and regular in codimension one. Then

Cl(X) = Cl(X × A1).

Proof. We have a projection map

pr∗1 : Cl(X)→ Cl(X × A1)

[Di] 7→ [Di × A1]

It is an exercise to show that is injective. ‘
To show surjectivity, first note that we can the previous exact sequence and

the 4-lemma to assume X is affine.
We consider what happens when we localize a prime divisor D at the generic

point of X. Explicitly, suppose ID is the ideal of D in K[X × A1], and let I0
D

be the ideal of K(X)[t] generated b ID under the inclusion

K[X × A1] = K[X][t] ⊆ K(X)[t].

If I0
D = 1, then ID contains some function f ∈ K(X). Then D ⊆ V (f)

as a subvariety of X × A1. So D is an irreducible component of V (f), and in
particular is of the form D′ × A1.

If not, then I0
D = (f) for some f ∈ K(X)[t], since K(X)[t] is a PID. Then

divf is a principal divisor of X ×A1 whose localization at the generic point is D.
Thus, divf is D plus some other divisors of the form D′ × A1. So D is linearly
equivalent to a sum of divisors of the form D′ × A1.

1.5 Linear systems

Proposition. Let X be a smooth projective variety over an algebraically closed
field. Let D0 be a divisor on X.

(i) For all s ∈ H0(X,OX(D)), div(s) is an effective divisor linearly equivalent
to D.

(ii) If D ∼ D0 and D ≥ 0, then there is s ∈ H0(OX(D0)) such that div(s) = D

(iii) If s, s′ ∈ H0(OX(D0)) and div(s) = div(s′), then s′ = λs for some λ ∈ K∗.

Proof.

(i) Done last time.

(ii) If D ∼ D0, then D−D0 = div(f) for some f ∈ K(X). Then (f) +D0 ≥ 0.
So f induces a section s ∈ H0(OX(D0)). Then div(s) = D.

(iii) We have s′

s ∈ K(X)∗. So div
(
s′

s

)
. So s′

s ∈ H
0(O∗) = K∗.

Theorem (Riemann–Roch theorem). If C is a smooth projective curve, then

χ(L) = deg(L) + 1− g(C).

Proposition. Let D be a Cartier divisor on a projective normal scheme .Then
D ∼ H1 −H2 for some very ample divisors Hi. We can in fact take Hi to be
effective, and if X is smooth, then we can take Hi to be smooth and intersecting
transversely.
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1 Divisors III Positivity in Algebraic Geometry (Theorems with proof)

Theorem (Bertini). Let X be a smooth projective variety over an algebraically
closed field K, and D a very ample divisor. Then there exists a Zariski open set
U ⊆ |D| such that for all H ∈ U , H is smooth on X and if H1 6= H2, then H1

and H2 intersect transversely.
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2 Surfaces III Positivity in Algebraic Geometry (Theorems with proof)

2 Surfaces

2.1 The intersection product

Proposition.

(i) The product D1 ·D2 depends only on the classes of D1, D2 in Pic(X).

(ii) D1 ·D2 = D2 ·D1.

(iii) D1 ·D2 = |D1 ∩D2| if D1 and D2 are curves intersecting transversely.

(iv) The intersection product is bilinear.

Proof. Only (iv) requires proof. First observe that if H is a very ample divisor
represented by a smooth curve, then we have

H ·D = degH(OH(D)),

and this is linear in D.
Next, check that D1 ·(D2 +D3)−D1 ·D2−D1 ·D3 is symmetric in D1, D2, D3.

So

(a) Since this vanishes when D1 is very ample, it also vanishes if D2 or D3 is
very ample.

(b) Thus, if H is very ample, then D · (−H) = −(D ·H).

(c) Thus, if H is very ample, then (−H) ·D is linear in D.

(d) If D is any divisor, write D = H1−H2 for H1, H2 very ample and smooth.
Then D ·D′ = H1 ·D′ −H2 ·D′ by (a), and thus is linear in D′.

Theorem (Riemann–Roch for surfaces). Let D ∈ Div(X). Then

χ(X,OX(D)) =
D · (D −KX)

2
+ χ(OX),

where KX is the canonical divisor .

Theorem (Adjunction formula). Let X be a smooth surface, and C ⊆ X a
smooth curve. Then

(OX(KX)⊗OX(C))|C ∼= OC(KC).

Proof. Let IC = OX(−C) be the ideal sheaf of C. We then have a short exact
sequence on C:

0→ OX(−C)|C ∼= IC/I2
C → Ω1

X |C → Ω1
C → 0,

where the left-hand map is given by d. To check this, note that locally on affine
charts, if C is cut out by the function f , then smoothness of C implies the kernel
of the second map is the span of df .

By definition of the canonical divisor, we have

OX(KX) = det(Ω1
X).

Restricting to C, we have

OX(KX)|C = det(Ω1
X |C) = det(OX(−C)|C)⊗ det(Ω1

C) = OX(C)|∨C ⊗OC(KC).
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2 Surfaces III Positivity in Algebraic Geometry (Theorems with proof)

Proof of Riemann–Roch. We can assume D = H1 − H2 for very ample line
bundles H1, H2, which are smoothly irreducible curves that intersect transversely.
We have short exact sequences

0 OX(H1 −H2) OX(H1) OH2
(H1|H2

) 0

0 OX OX(H1) OH1
(H1) 0

where OH1(H1) means the restriction of the line bundle OX(H1) to H1. We can
then compute

χ(H1 −H2) = χ(OX(H1))− χ(H2,OH2
(H1|H2

))

= χ(OX) + χ(H1,OH1
(H1))− χ(H2,OH2

(H1|H2
)).

The first term appears in our Riemann–Roch theorem, so we leave it alone. We
then use Riemann–Roch for curves to understand the remaining. It tells us

χ(Hi,OHi(H1)) = deg(OHi(H1)) + 1− g(Hi) = (Hi ·H1) + 1− g(Hi).

By definition of genus, we have

2g(Hi)− 2 = deg(KHi).

and the adjunction formula lets us compute deg(KHi
) by

deg(KHi
) = Hi · (KX +Hi).

Plugging these into the formula and rearranging gives the desired result.

Theorem (Hodge index theorem). Let X be a projective surface, and H be a
(very) ample divisor on X. Let D be a divisor on X such that D ·H = 0 but
D 6≡ 0. Then D2 < 0.

Proof. Before we begin the proof, observe that if H ′ is very ample and D′

is (strictly) effective, then H ′ · D′ > 0, since this is given by the number of
intersections between D′ and any hyperplane in the projective embedding given
by H ′.

Now assume for contradiction that D2 ≥ 0.

– If D2 > 0, fix an n such that Hn = D+nH is very ample. Then Hn ·D > 0
by assumption.

We use Riemann–Roch to learn that

χ(X,OX(mD)) =
m2D2 −mKX ·D

2
+ χ(OX).

We first consider the H2(OX(mD)) term in the left-hand side. By Serre
duality, we have

H2(OX(mD)) = H0(KX −mD).

Now observe that for large m, we have

Hn · (KX −mD) < 0.
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2 Surfaces III Positivity in Algebraic Geometry (Theorems with proof)

Since Hn is very ample, it cannot be the case that KX −mD is effective.
So H0(KX −D) = 0.

Thus, for m sufficiently large, we have

h0(mD)− h1(mD) > 0.

In particular, mD is (strictly) effective for m� 0. But then H ·mD > 0
since H is very ample and mD is effective. This is a contradiction.

– If D2 = 0. Since D is not numerically trivial, there exists a divisor E on
X such that D · E 6= 0. We define

E′ = (H2)E − (E ·H)H.

It is then immediate that E′ ·H = 0. So D′n = nD+E′ satisfies D′n ·H = 0.
On the other hand,

(D′n)2 = (E′)2 + 2nD · E′ > 0

for n large enough. This contradicts the previous part.

2.2 Blow ups

Lemma.
π∗C = C̃ +mE,

where m is the multiplicity of C at p.

Proof. Choose local coordinates x, y at p and suppose the curve y = 0 is not
tangent to any branch of C at p. Then in the local ring ÔX,p, the equation of C
is given as

f = fm(x, y) + higher order terms,

where fm is a non-zero degree m polynomial. Then by definition, the multiplicity
is m. Then on Ū ⊆ (U × P1), we have the chart U × A1 where X 6= 0, with
coordinates

(x, y, Y/X = t).

Taking (x, t) as local coordinates, the map to U is given by (x, t) 7→ (x, xt).
Then

ε∗f = f(x, tx) = xmfm(1, t) + higher order terms = xm · h(x, t),

with h(0, 0) 6= 0. But then on Ūx 6=0, the curve x = 0 is just E. So this equation
has multiplicity m along E.

Proposition. Let X be a smooth projective surface, and x ∈ X. Let X̄ =
BlxX

π→ X. Then

(i) π∗Pic(X)⊕ Z[E] = Pic(X̄)

(ii) π∗D · π∗F = D · F , π∗D · E = 0, E2 = −1.

(iii) KX̄ = π∗(KX) + E.
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2 Surfaces III Positivity in Algebraic Geometry (Theorems with proof)

(iv) π∗ is defined on NS(X). Thus,

NS(X̄) = NS(X)⊕ Z[E].

Proof.

(i) Recall we had the localization sequence

Z→ Pic(X̄)→ Pic(X)→ 1

and there is a right splitting. To show the result, we need to show the
left-hand map is injective, or equivalently, mE 6∼ 0. This will follow from
the fact that E2 = −1.

(ii) For the first part, it suffices to show that π∗D · π∗F = D · F for D,F
very ample, and so we may assume D,F are curves not passing through x.
Then their pullbacks is just the pullback of the curve, and so the result is
clear. The second part is also clear.

Finally, pick a smooth curve C passing through E with multiplicity 1.
Then

π∗C = C̃ + E.

Then we have
0 = π∗C · E = C̃ · E + E2,

But C̃ and E intersect at exactly one point. So C̃ · E = 1.

(iii) By the adjunction formula, we have

(KX̄ + E) · E = deg(KP1) = −2.

So we know that KX̄ ·E = −1. Also, outside of E, KX̄ and KX agree. So
we have

KX̄ = π∗(KX) +mE

for some m ∈ Z. Then computing

−1 = KX̄ · E = π∗(KX) · E +mE2

gives m = 1.

(iv) We need to show that if D ∈ Num0(X), then π∗(D) ∈ Num0(X̄). But this
is clear for both things that are pulled back and things that are E. So we
are done.

Theorem (Elimination of indeterminacy). Let X be a sooth projective surface,
Y a projective variety, and ϕ : X → Y a rational map. Then there exists a
smooth projective surface X ′ and a commutative diagram

X ′

X Y

p

q

ϕ

where p : X ′ → X is a composition of blow ups, and in particular is birational.

13



2 Surfaces III Positivity in Algebraic Geometry (Theorems with proof)

Proof. We may assume Y = Pn, and X 99K Pn is non-degenerate. Then ϕ is
induced by a linear system |V | ⊆ H0(X,L). We first show that we may assume
the base locus has codimension > 1.

If not, every element of |V | is of the form C +D′ for some fixed C. Let |V ′|
be the set of all such D′. Then |V | and |V ′| give the same rational map. Indeed,
if V has basis f0, . . . , fn, and g is the function defining C, then the two maps
are, respectively,

[f0 : · · · : fn] and [f0/g : · · · : fn/g],

which define the same rational maps. By repeating this process, replacing V
with V ′, we may assume the base locus has codimension > 1.

We now want to show that by blowing up, we may remove all points from
the base locus. We pick x ∈ X in the base locus of |D|. Blow it up to get
X1 = BlxX → X. Then

π∗|D| = |D1|+mE,

where m > 0, and |D1| is a linear system which induces the map ϕ ◦ π1. If |D1|
has no basepoints, then we are done. If not, we iterate this procedure. The
procedure stops, because

0 ≤ D2
1 = (π∗1D

2 +m2E2) < D2.

Theorem. Let g : Z → X be a birational morphism of surfaces. Then g factors

as Z
g′→ X ′

p→ X, where p : X ′ → X is a composition of blow ups, and g′ is an
isomorphism.

Proof. Apply elimination of indeterminacy to the rational inverse to g to obtain
p : X ′ → X. There is then a lift of g′ to X ′ by the universal property, and these
are inverses to each otehr.

Theorem (Castelnuovo’s contractibility criterion). Let X be a smooth projective
surface over K = K̄. If there is a curve C ⊆ X such that C ∼= P1 and C2 = −1,
then there exists f : X → Y that exhibits X as a blow up of Y at a point with
exceptional curve C.

Corollary. A smooth projective surface is relatively minimal if and only if it
does not contain a (−1) curve.

Proof. The idea is to produce a suitable linear system |L|, giving a map f :
X → Pn, and then take Y to be the image. Note that f(C) = ∗ is the same as
requiring

OX(L)|C = OC .

After finding a linear system that satisfies this, we will do some work to show
that f is an isomorphism outside of C and has smooth image.

Let H be a very ample divisor on X. By Serre’s theorem, we may assume
H1(X,OX(H)) = 0. Let

H · C = K > 0.

Consider divisors of the form H + iC. We can compute

degC(H + iC)|C = (H + iC) · C = K − i.

14



2 Surfaces III Positivity in Algebraic Geometry (Theorems with proof)

Thus, we know degC(H +KC)|C = 0, and hence

OX(H +KC)|C ∼= OC .

We claim that OX(H +KC) works. To check this, we pick a fairly explicit
basis of H0(H +KC). Consider the short exact sequence

0→ OX(H + (i− 1)C)→ OX(H + iC)→ OC(H + iC)→ 0,

inducing a long exact sequence

0→ H0(H + (i− 1)C)→ H0(H + iC)→ H0(C, (H + iC)|C)

→ H1(H + (i− 1)C)→ H1(H + iC)→ H1(C, (H + iC)|C)→ · · ·

We know OX(H + iC)|C = OP1(K − i). So in the range i = 0, . . . ,K, we have
H1(C, (H + iC)|C) = 0. Thus, by induction, we find that

H1(H + iC) = 0 for i = 0, . . . ,K.

As a consequence of this, we know that for i = 1, . . . ,K, we have a short
exact sequence

H0(H + (i− 1)C) ↪→ H0(H + iC)� H0(C, (H + iC)|C) = H0(OP1(K − i)).

Thus, H0(H + iC) is spanned by the image of H0(H + (i− 1)C) plus a lift of a
basis of H0(OP1(K − i)).

For each i > 0, pick a lift y
(i)
0 , . . . , y

(i)
K−i of a basis of H0(OP1(K − i)) to

H0(H+ iC), and take the image in H0(H+KC). Note that in local coordinates,
if C is cut out by a function g, then the image in H0(H +KC) is given by

gK−iy
(i)
0 , . . . , gK−iy

(i)
K−i.

For i = 0, we pick a basis of H0(H), and then map it down to H0(H + KC).
Taking the union over all i of these elements, we obtain a basis of H0(H +KC).
Let f be the induced map to Pr.

For concreteness, list the basis vectors as x1, . . . , xr, where xr is a lift of

1 ∈ OP1 to H0(H +KC), and xr−1, xr−2 are gy
(K−1)
0 , gy

(K−1)
1 .

First observe that x1, . . . , xr−1 vanish at C. So

f(C) = [0 : · · · : 0 : 1] ≡ p,

and C is indeed contracted to a point.
Outside of C, the function g is invertible, so just the image of H0(H) is

enough to separate points and tangent vectors. So f is an isomorphism outside
of C.

All the other basis elements of H +KC are needed to make sure the image is
smooth, and we only have to check this at the point p. This is done by showing
that dimmY,p/m

2
Y,p ≤ 2, which requires some “infinitesimal analysis” we will not

perform.
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3 Projective varietiesIII Positivity in Algebraic Geometry (Theorems with proof)

3 Projective varieties

3.1 The intersection product

Lemma. Assume D ≡ 0. Then for all D2, . . . , DdimX , we have

D ·D2 · . . . ·DdimX = 0.

Proof. We induct on n. As usual, we can assume that the Di are very ample.
Then

D ·D2 · · · ·DdimX = D|D2
·D3|D2

· · · · ·DdimX |D2
.

Now if D ≡ 0 on X, then D|D2
≡ 0 on D2. So we are done.

Theorem (Severi). Let X be a projective variety over an algebraically closed
field. Then N1(X) is a finitely-generated torsion free abelian group, hence of
the form Zn.

Theorem (Asymptotic Riemann–Roch). Let X be a projective normal variety
over K = K̄. Let D be a Cartier divisor, and E a Weil divisor on X. Then
χ(X,OX(mD + E)) is a numerical polynomial in m (i.e. a polynomial with
rational coefficients that only takes integral values) of degree at most n = dimX,
and

χ(X,OX(mD + E)) =
Dn

n!
mn + lower order terms.

Proof. By induction on dimX, we can assume the theorem holds for normal
projective varieties of dimension < n. We fix H on X very ample such that
H +D is very ample. Let H ′ ∈ |H| and G ∈ |H +D| be sufficiently general. We
then have short exact sequences

0→ OX(mD + E)→ OX(mD + E +H)→ OH′((mD + E +H)|H′)→ 0

0→ OX((m− 1)D + E)→ OX(mD + E +H)→ OG((mD + E +H)|G)→ 0.

Note that the middle term appears in both equations. So we find that

χ(X,OX(mD + E)) + χ(H ′,OH′((mD + E +H)|H))

= χ(X,OX((m− 1)D + E)) + χ(H ′,OG((mD + E +H)|G))

Rearranging, we get

χ(OX(mD − E))− χ(OX((m− 1)D − E))

= χ(G,OG(mD + E +H))− χ(H ′,OH′(mD + E +H)).

By induction (see proposition below) the right-hand side is a numerical polyno-
mial of degree at most n− 1 with leading term

Dn−1 ·G−Dn−1 ·H
(n− 1)!

mn−1 + lower order terms,

since Dn−1 ·G is just the (n− 1) self-intersection of D along G. But G−H = D.
So the LHS is

Dn

(n− 1)!
mn−1 + lower order terms,

so we are done.
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3 Projective varietiesIII Positivity in Algebraic Geometry (Theorems with proof)

Proposition. Let X be a normal projective variety, and |H| a very ample
linear system. Then for a general element G ∈ |H|, G is a normal projective
variety.

Proposition. Let X be a normal projective variety.

(i) If H is a very ample Cartier divisor, then

h0(X,mH) =
Hn

n!
mn + lower order terms for m� 0.

(ii) If D is any Cartier divisor, then there is some C ∈ R>0 such that

h0(mD) ≤ C ·mn for m� 0.

Proof.

(i) By Serre’s theorem, Hi(Ox(mH)) = 0 for i > 0 and m� 0. So we apply
asymptotic Riemann Roch.

(ii) There exists a very ample Cartier divisor H ′ on X such that H ′ + D is
also very ample. Then

h0(mD) ≤ h0(m(H ′ +D)).

3.2 Ample divisors

Lemma. Let X,Y be projective schemes. If f : X → Y is a finite morphism of
schemes, and D is an ample Cartier divisor on Y , then so is f∗D.

Proof. Let F be a coherent sheaf on X. Since f is finite, we have Rif∗F = 0
for all i > 0. Then

Hi(F ⊗ f∗OX(mD)) = Hi(f∗F ⊗OY (mD)) = 0

for all i > 0 and m� 0. So by Serre’s theorem, we know f∗D is ample.

Proposition. Let X be a proper scheme, and L an invertible sheaf. Then L is
ample iff L|Xred

is ample.

Proof.

(⇒) If L induces a closed embedding of X, then map given by L|Xred
is given

by the composition with the closed embedding Xred ↪→ X.

(⇐) Let J ⊆ OX be the nilradical. By Noetherianness, there exists n such that
J n = 0.

Fix F a coherent sheaf. We can filter F using

F ⊇ JF ⊇ J 2F ⊇ · · · ⊇ J n−1F ⊇ J nF = 0.

For each j, we have a short exact sequence

0→ J j+1F → J jF → Gj → 0.

This Gi is really a sheaf on the reduced structure, since J acts trivially.
Thus Hi(Gj ⊗ Lm) for j > 0 and large m. Thus inducting on j ≥ 0, we
find that for i > 0 and m� 0, we have

Hi(J jF ⊗ Lm) = 0.
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3 Projective varietiesIII Positivity in Algebraic Geometry (Theorems with proof)

Theorem (Nakai’s criterion). Let X be a projective variety. Let D be a Cartier
divisor on X. Then D is ample iff for all V ⊆ X integral proper subvariety
(proper means proper scheme, not proper subset), we have

(D|V )dimV = DdimV [V ] > 0.

Corollary. Let X be a projective variety. Then ampleness is a numerical
condition, i.e. for any Cartier divisors D1, D2, if D1 ≡ D2, then D1 is ample iff
D2 is ample.

Corollary. Let X,Y be projective variety. If f : X → Y is a surjective finite
morphism of schemes, and D is a Cartier divisor on Y . Then D is ample iff f∗D
is ample.

Proof. It remains to prove ⇐. If f is finite and surjective, then for all V ⊆ Y ,
there exists V ′ ⊆ f−1(V ) ⊆ X such that f |V ′ : V ′ → V is a finite surjective
morphism. Then we have

(f∗D)dimV ′ [V ′] = deg f |V ′DdimV [V ],

which is clear since we only have to prove this for very ample D.

Corollary. If X is a projective variety, D a Cartier divisor and OX(D) globally
generated, and

Φ : X → P(H0(X,OX(D))∗)

the induced map. Then D is ample iff Φ is finite.

Proof.

(⇐) If X → Φ(X) is finite, then D = Φ∗O(1). So this follows from the previous
corollary.

(⇒) If Φ is not finite, then there exists C ⊆ X such that Φ(C) is a point.
Then D · [C] = Φ∗O(1) · [C] = 0, by the push-pull formula. So by Nakai’s
criterion, D is not ample.

Proof of Nakai’s criterion.

(⇒) If D is ample, then mD is very ample for some m. Then by multilinearity,
we may assume D is very ample. So we have a closed embedding

Φ : X → P(H0(D)∗).

If V ⊆ X is a closed integral subvariety, then DdimV · [V ] = (D|V )dimV .
But this is just degΦ(V )O(1) > 0.

(⇐) We proceed by induction on dimX, noting that dimX = 1 is trivial. By
induction, for any proper subvariety V , we know that D|V is ample.

The key of the proof is to show that OX(mD) is globally generated for
large m. If so, the induced map X → P(|mD|) cannot contract any curve
C, or else mD · C = 0. So this is a finite map, and mD is the pullback of
the ample divisor OP(|mD|)(1) along a finite map, hence is ample.
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We first reduce to the case whereD is effective. As usual, writeD ∼ H1−H2

with Hi very ample effective divisors. We have exact sequences

0→ OX(mD −H1)→ OX(mD)→ OH1
(mD)→ 0

0→ OX(mD −H1)→ OX((m− 1)D)→ OH2
((m− 1)D)→ 0.

We know D|Hi is ample by induction. So the long exact sequences implies
that for all m� 0 and j ≥ 2, we have

Hj(mD) ∼= Hj(mD −H1) = Hj((m− 1)D).

So we know that

χ(mD) = h0(mD)− h1(mD) + constant

for all m � 0. On the other hand, since X is an integral subvariety of
itself, Dn > 0, and so asymptotic Riemann–Roch tells us h0(mD) > 0 for
all m� 0. Since D is ample iff mD is ample, we can assume D is effective.

To show that mD is globally generated, we observe that it suffices to show
that this is true in a neighbourhood of D, since outside of D, the sheaf
is automatically globally generated by using the tautological section that
vanishes at D with multiplicity m.

Moreover, we know mD|D is very ample, and in particular globally gener-
ated for large m by induction (the previous proposition allows us to pass
to D|red if necessary). Thus, it suffices to show that

H0(OX(mD))→ H0(OD(mD))

is surjective.

To show this, we use the short exact sequence

0→ OX((m− 1)D)→ OX(mD)→ OD(mD)→ 0.

For i > 0 and large m, we know Hi(OD(mD)) = 0. So we have surjections

H1((m− 1)D)� H1(mD)

for m large enough. But these are finite-dimensional vector spaces. So for
m sufficiently large, this map is an isomorphism. Then H0(OX(mD))→
H0(OD(mD)) is a surjection by exactness.

Proposition. Let D ∈ CaDivQ(X) Then the following are equivalent:

(i) cD is an ample integral divisor for some c ∈ N>0.

(ii) D =
∑
ciDi, where ci ∈ Q>0 and Di are ample Cartier divisors.

(iii) D satisfies Nakai’s criterion. That is, DdimV [V ] > 0 for all integral
subvarieties V ⊆ X.

Proof. It is easy to see that (i) and (ii) are equivalent. It is also easy to see that
(i) and (iii) are equivalent.
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Lemma. A positive linear combination of ample divisors is ample.

Proof. Let H1, H2 be ample. Then for λ1, λ2 > 0, we have

(λ1H1 + λ2H2)dimV [V ] =

(∑(
dimV

p

)
λp1λ

dimV−p
2 Hp

1 ·H
dimV−p
2

)
[V ]

Since any restriction of an ample divisor to an integral subscheme is ample, and
multiplying with H is the same as restricting to a hyperplane cuts, we know all
the terms are positive.

Proposition. Ampleness is an open condition. That is, if D is ample and
E1, . . . Er are Cartier divisors, then for all |εi| � 1, the divisor D + εiEi is still
ample.

Proof. By induction, it suffices to check it in the case n = 1. Take m ∈ N such
that mD ± E1 is still ample. This is the same as saying D ± 1

mE1 is still ample.
Then for |ε1| < 1

m , we can write

D + εE1 = (1− q)D + q

(
D +

1

m
E1

)
for some q < 1.

Proposition. Being ample is a numerical property over R, i.e. if D1, D2 ∈
CaDivR(X) are such that D1 ≡ D2, then D1 is ample iff D2 is ample.

Proof. We already know that this is true over Q by Nakai’s criterion. Then for
real coefficients, we want to show that if D is ample, E is numerically trivial
and t ∈ R, then D + tE is ample. To do so, pick t1 < t < t2 with ti ∈ Q, and
then find λ, µ > 0 such that

λ(D1 + t1E) + µ(D1 + t2E) = D1 + tE.

Then we are done by checking Nakai’s criterion.

Proposition. Let H be an ample R-divisor. Then for all R-divisors E1, . . . , Er,
for all ‖εi‖ ≤ 1, the divisor H +

∑
εiEi is still ample.

3.3 Nef divisors

Proposition.

(i) D is nef iff D|Xred
is nef.

(ii) D is nef iff D|Xi is nef for all irreducible components Xi.

(iii) If V ⊆ X is a proper subscheme, and D is nef, then D|V is nef.

(iv) If f : X → Y is a finite morphism of proper schemes, and D is nef on Y ,
then f∗D is nef on X. The converse is true if f is surjective.

Theorem (Kleinmann’s criterion). Let X be a proper scheme, and D an R-
Cartier divisor. Then D is nef iff DdimV [V ] ≥ 0 for all proper irreducible
subvarieties.
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Corollary. Let X be a projective scheme, and D be a nef R-divisor on X, and
H be a Cartier divisor on X.

(i) If H is ample, then D + εH is also ample for all ε > 0.

(ii) If D + εH is ample for all 0 < ε� 1, then D is nef.

Proof.

(i) We may assume H is very ample. By Nakai’s criterion this is equivalent
to requiring

(D + εH)dimV · [V ] =

(∑(
dimV

p

)
εpDdimV−pHp

)
[V ] > 0.

Since any restriction of a nef divisor to any integral subscheme is also nef,
and multiplying with H is the same as restricting to a hyperplane cuts, we
know the terms that involve D are non-negative. The Hp term is positive.
So we are done.

(ii) We know (D + εH) · C > 0 for all positive ε sufficiently small. Taking
ε→ 0, we know D · C ≥ 0.

Corollary. Nef(X) = Amp(X) and int(Nef(X)) = Amp(X).

Proof. We know Amp(X) ⊆ Nef(X) and Amp(X) is open. So this implies
Amp(X) ⊆ int(Nef(X)), and thus Amp(X) ⊆ Nef(X).

Conversely, if D ∈ int(Nef(X)), we fix H ample. Then D − tH ∈ Nef(X)
for small t, by definition of interior. Then D = (D − tH) + tH is ample. So
Amp(X) ⊇ int(Nef(X)).

Proof of Kleinmann’s criterion. We may assume that X is an integral projective
scheme. The ⇐ direction is immediate. To prove the other direction, since the
criterion is a closed condition, we may assume D ∈ DivQ(X). Moreover, by
induction, we may assume that DdimV [V ] ≥ 0 for all V strictly contained in X,
and we have to show that DdimX ≥ 0. Suppose not, and DdimX < 0.

Fix a very ample Cartier divisor H, and consider the polynomial

P (t) = (D + tH)dimX = DdimX +

dimX−1∑
i=1

ti
(

dimX

i

)
HiDdimX−i

+ tdimXHdimX .

The first term is negative; the last term is positive; and the other terms are
non-negative by induction since H is very ample.

Then on R>0, this polynomial is increasing. So there exists a unique t such
that P (t) = 0. Let t̄ be the root. Then P (t̄) = 0. We can also write

P (t) = (D + tH) · (D + tH)dimX−1 = R(t) + tQ(t),

where

R(t) = D · (D + tH)dimX−1, Q(t) = H · (D + tH)dimX−1.

We shall prove that R(t̄) ≥ 0 and Q(t̄) > 0, which is a contradiction.

21
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We first look at Q(t), which is

Q(t) =

dimX−1∑
i=0

ti
(

dimX − 1

i

)
Hi+1DdimX−i,

which, as we argued, is a sum of non-negative terms and a positive term.
To understand R(t), we look at

R(t) = D · (D + tH)dimX−1.

Note that so far, we haven’t used the assumption that D is nef. If t > t̄, then
(D + tH)dimX > 0, and (D + tH)dimV [V ] > 0 for a proper integral subvariety,
by induction (and binomial expansion). Then by Nakai’s criterion, D + tH is
ample. So the intersection (D + tH)dimX−1 is essentially a curve. So we are
done by definition of nef. Then take the limit t→ t̄.

Proposition. Nef(X) = NE(X)∨.

Proposition. NE(X) = Nef(X)∨.

Theorem (Kleinmann’s criterion). If X is a projective scheme and D ⊆
CaDivR(X). Then the following are equivalent:

(i) D is ample

(ii) D|
NE(X)

> 0, i.e. D · γ > 0 for all γ ∈ NE(X).

(iii) S1 ∩ NE(X) ⊆ S1 ∩ D>0, where S1 ⊆ N1(X)R is the unit sphere under
some choice of norm.

Proof.

– (1) ⇒ (2): Trivial.

– (2) ⇒ (1): If D|
NE(X)

> 0, then D ∈ int(Nef(X)).

– (2) ⇔ (3): Similar.

Proposition. Let X be a projective scheme, and D,H ∈ N1
R(X). Assume that

H is ample. Then D is ample iff there exists ε > 0 such that

D · C
H · C

≥ ε.

Proof. The statement in the lemma is the same as (D − εH) · C ≥ 0.

Theorem (Cone theorem). Let X be a smooth projective variety over C. Then
there exists rational curves {Ci}i∈I such that

NE(X) = NEKX≥0 +
∑
i∈I

R+[Ci]

where NEKX≥0 = {γ ∈ NE(X) : KX · γ ≥ 0}. Further, we need at most
countably many Ci’s, and the accumulation points are all at K⊥X .
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3.4 Kodaira dimension

Theorem (Iitaka). Let X be a normal projective variety and L a line bundle
on X. Suppose there is an m such that |L⊗m| 6= 0. Then there exists X∞, Y∞,
a map ψ∞ : X∞ → Y∞ and a birational map U∞ : X∞ 99K X such that for
K � 0 such that |L⊗K | 6= 0, we have a commutative diagram

X Im(ϕ|L⊗K )

X∞ Y∞

ϕ|L⊗k|

U∞

ψ∞

where the right-hand map is also birational.
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