
Part III — Logic

Definitions

Based on lectures by T. E. Forster
Notes taken by Dexter Chua

Lent 2017

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

This course is the sequel to the Part II courses in Set Theory and Logic and in Automata
and Formal Languages lectured in 2015-6. (It is already being referred to informally
as “Son of ST&L and Automata & Formal Languages”). Because of the advent of
that second course this Part III course no longer covers elementary computability in
the way that its predecessor (“Computability and Logic”) did, and this is reflected in
the change in title. It will say less about Set Theory than one would expect from a
course entitled ‘Logic’; this is because in Lent term Benedikt Löwe will be lecturing a
course entitled ‘Topics in Set Theory’ and I do not wish to tread on his toes. Material
likely to be covered include: advanced topics in first-order logic (Natural Deduction,
Sequent Calculus, Cut-elimination, Interpolation, Skolemisation, Completeness and
Undecidability of First-Order Logic, Curry-Howard, Possible world semantics, Gödel’s
Negative Interpretation, Generalised quantifiers. . . ); Advanced Computability (λ-
representability of computable functions, Tennenbaum’s theorem, Friedberg-Muchnik,
Baker-Gill-Solovay. . . ); Model theory background (ultraproducts, Los’s theorem, ele-
mentary embeddings, omitting types, categoricity, saturation, Ehrenfeucht-Mostowski
theorem. . . ); Logical combinatorics (Paris-Harrington, WQO and BQO theory at least
as far as Kruskal’s theorem on wellquasiorderings of trees. . . ). This is a new syllabus
and may change in the coming months. It is entirely in order for students to contact
the lecturer for updates.

Pre-requisites

The obvious prerequisites from last year’s Part II are Professor Johnstone’s Set Theory

and Logic and Dr Chiodo’s Automata and Formal Languages, and I would like to

assume that everybody coming to my lectures is on top of all the material lectured

in those courses. This aspiration is less unreasonable than it may sound, since in

2016-7 both these courses are being lectured the term before this one, in Michaelmas;

indeed supervisions for Part III students attending them can be arranged if needed:

contact me or your director of studies. I am lecturing Part II Set Theory and Logic

and I am even going to be issuing a “Sheet 5” for Set Theory and Logic, of material

likely to be of interest to people who are thinking of pursuing this material at Part

III. Attending these two Part II courses in Michaelmas is a course of action that may

appeal particularly to students from outside Cambridge.
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1 Proof theory and constructive logic

1.1 Natural deduction

Definition (Harmony). We say rules for a connective $ are harmonious if φ$ψ
is the strongest assertion you can deduce from the assumptions in the rule of
$-introduction, and φ$ψ is the weakest thing that implies the conclusion of the
$-elimination rule.

Definition (Maximal formula). We say a formula in a derivation is maximal iff
it is both the conclusion of an occurrence of an introduction rule, and the major
premiss of an occurrence of the elimination rule for the same connective.

1.2 Curry–Howard correspondence

1.3 Possible world semantics

Definition (Possible world semantics). Let P be a collection of propositions.
A world is a subset w ⊆ P . A model is a collection W of worlds, and a partial
order ≥ on W called accessibility , satisfying the persistence property:

– If p ∈ P is such that p ∈ w and w′ ≥ w, then p ∈ w′.

Given any proposition ϕ, we define the relation w � ϕ by

– w 6� ⊥

– If ϕ is atomic (and not ⊥), then then w � ϕ iff ϕ ∈ w.

– w � ϕ ∧ ψ iff w � ϕ and w � ψ.

– w � ϕ ∨ ψ iff w � ϕ or w � ψ.

– w � ϕ→ ψ iff (for all w′ ≥ w, if w′ � ϕ, then w′ � ψ).

We will say that w “believes” ϕ if w � ϕ, and that w “sees” w′ if w′ ≥ w.
We also require that there is a designated minimum element under ≤, known

as the root world . We can think of a possible world model as a poset decorated
with worlds, and such a poset is called a frame.

Notation. If the root world of our model is w, then we write

� ϕ⇐⇒ w � ϕ.

Definition (Heyting algebra). A Heyting algebra is a poset with >, ⊥, ∧ and
∨ and an operator ⇒ such that A⇒ B is the largest C such that

C ∧A ≤ B.

1.4 Negative interpretation

Definition (Negative interpretation). Given a proposition φ, the interpretation
φ∗ is defined recursively by

– ⊥∗ = ⊥.
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– If ϕ is atomic, then ϕ∗ = ¬¬ϕ.

– If ϕ is negatomic, then ϕ∗ = ϕ.

– If ϕ = ψ ∧ θ, then ϕ∗ = ψ∗ ∧ θ∗.

– If ϕ = ψ ∨ θ, then ϕ∗ = ¬(¬ψ∗ ∧ ¬θ∗).

– If ϕ = ∀xψ(x), then (∀x)(ψ∗(x)).

– If ϕ = ψ → θ, then ϕ∗ = ¬(ψ∗ ∧ ¬θ∗).

– If ϕ = ∃xψ(x), then ϕ∗ = ¬∀x¬ψ∗(x).

Definition (Stable formula). A formula is stable if

` ϕ∗ → ϕ.

1.5 Constructive mathematics

Definition (Kuratowski finite). We define “finite” recursively: ∅ is Kuratowski
finite. If x is Kuratowski finite, then so is x ∪ {y}.

Definition (N -finite). ∅ is N -finite. If x is N -finite, and y 6∈ x, then x ∪ {y} is
N -finite.

Definition (Non-empty set). A set x is non-empty if ¬∀yy 6∈ x.

Definition (Inhabited set). A set x is inhabited if ∃yy ∈ x.
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2 Model theory

2.1 Universal theories

Definition (Universal theory). A universal theory is a theory that can be
axiomatized in a way such that all axioms are of the form

∀···(stuff not involving quantifiers) (∗)

Definition (Diagram). Let L be a language andM a structure of this language.
The diagram of M is the theory obtained by adding a constant symbol ax for
each x ∈M, and then taking the axioms to be all quantifier-free sentences that
are true in M . We will write the diagram as D(M).

2.2 Products

Definition (Product of structures). Suppose {Ai}i∈I is a family of structures
of the same signature. Then the product∏

i∈I
Ai

has carrier set the set of all functions

α : I →
⋃
i∈I

Ai

such that α(i) ∈ Ai.
Given an n-ary function f in the language, the interpretation in the product

is given pointwise by

f(α1, · · · , αn) = λi.f(α1(i), · · · , αn(i)).

Relations are defined by

ϕ(α1, · · · , αn) =
∧
i∈I

ϕ(α1(i), · · · , αn(i)).

Definition (Equational theory). An equational theory is a theory all of whose
axioms are of the form

∀x(w1(x) = w2(x)),

where wi are some terms in x.

Definition (Horn clause). A Horn clause is a disjunction of atomics and
negatomics of which at most one disjunct is atomic.

It is usually better to think of Horn clauses as formulae of the form(∧
ϕi

)
→ χ

where ϕi and χ are atomic formulae. Note that ⊥ is considered an atomic
formula.

A universal Horn clause is a universal quantifier followed by a Horn clause.
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2 Model theory III Logic (Definitions)

Definition (Filter). Let I be a set. A filter on I is a (non-empty) subset
F ⊆ P (I) such that F is closed under intersection and superset. A proper filter
is a filter F 6= P (I).

Definition (Principal filter). A principal filter is a filter of the form

F = {X ⊆ I : x 6∈ X}

for some x ∈ I.

Definition (Complete filter). A filter F is κ-complete if it is closed under
intersection of < κ many things.

Definition (Ultrafilter). An ultrafilter is a maximal filter.

Definition (Reduced product). let {Ai : i ∈ I} be a family of structures, and
F a filter on I. We define the reduced product∏

i∈I
Ai/F

as follows: the underlying set is the usual product
∏
Ai quotiented by the

equivalence relation

α ∼F β ⇐⇒ {i : α(i) = β(i)} ∈ F

Given a function symbol f , the interpretation of f in the reduced product is
induced by that on the product.

Given a relational symbol ϕ, we define

ϕ(α1, · · · , αn)⇐⇒ {i : ϕ(α1(i), · · · , αn(i))} ∈ F.

If F is an ultrafilter, then we call it the ultraproduct . If all the factors in an
ultraproduct are the same, then we call it an ultrapower .

2.3 Ehrenfeucht–Mostowski theorem

Definition (Skolem function). Skolem functions for a structure are functions
fϕ for each ϕ ∈ L such that if

M � ∀x∃yϕ(x,y),

then
M � ∀xϕ(x, fϕ(x)).

Definition (Skolem hull). The Skolem hull of a structure is obtained from the
constants term by closure under the Skolem functions.

Definition (Elementary embedding). Let Γ be a set of formulae. A function
i : M1 → M2 is Γ-elementary iff for all ϕ ∈ Γ we have M1 � ϕ(x) implies
M2 � ϕ(i(x)).

If Γ is the set of all formulae in the language, then we just say it is elementary.

Definition (Monadic first order logic). Monadic first-order logic is first order
logic with only one-place predicates, no equality and no function symbols.
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Definition (Set of indiscernibles). We say 〈I,≤I〉 is a set of indiscernibles for
L and a structure M with I ⊆ M if for any ϕ ∈ L(M) of arity n, and for all
increasing tuples x,y ∈ I,

M � ϕ(x)⇐⇒M � ϕ(y)

Definition (Colimit). Let {Ai : i ∈ I} be a family of structures index by a poset
〈I,≤〉, with a family of (structure-preserving) maps {σij : Ai ↪→ Aj | i ≤ j} such
that whenever i ≤ j ≤ k, we have

σjkσij = σik.

In particular σii is the identity. A colimit or direct limit of this family of
structures is a “minimal” structure A∞ with maps σi : Ai ↪→ A∞ such that
whenever i ≤ j, then the maps

Ai A∞

Aj

σij

σi

σj

commute.
By “minimal”, we mean if A′∞ is another structure with this property, then

there is a unique inclusion map A∞ ↪→ A′∞ such that for any i ∈ I, the maps

Ai A∞

A′∞

σi

σ′
i

2.4 The omitting type theorem

Definition (Type). A type is a set of formulae all with the same number of free
variables. An n-type is a set of formulae each with n free variables.

Definition (Realization of type). A model M realizes an n-type Σ if there
exists x1, · · · , xn ∈M such that for all σ ∈ Σ, we have

M � σ(x1, · · · , xn).

Definition (Omit a type). A model M omits an n-type Σ if for all x1, · · · , xn,
there exists σ ∈ Σ such that

M 6� σ(x1, · · · , xn).

Definition (Locally realize). We say ϕ realizes Σ locally if

T ` ∀x(ϕ(x)→ σ(x)).
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3 Computability theory

3.1 Computability

Definition (Primitive recursive functions). The class of primitive recursive
functions Nn → Nm for all n,m is defined inductively as follows:

– The constantly zero function f(x) = 0, f : Nn → N is primitive recursive.

– The successor function succ : N → N sending a natural number to its
successor (i.e. it “plus one”) is primitive recursive.

– The identity function id : N→ N is primitive recursive.

– The projection functions

projij(x) : Nj N

(x1, · · · , xj) xi

are primitive recursive.

Moreover,

– Let f : Nk → Nm and g1, · · · , gk : Nn → N be primitive recursive. Then
the function

(x1, · · · , xn) 7→ f(g1(x1, · · · , xn), · · · , gk(x1, · · · , xn)) : Nn → Nm

is primitive recursive.

Finally, we have closure under primitive recursion

– If g : Nk → Nm and f : Nm+k+1 → Nm are primitive recursive, then so is
the function h : Nk+1 → Nm defined by

h(0,x) = g(x)

h(succ n,x) = f(h(n,x), n,x).

Definition (Ackermann function). The Ackermann function is defined to be

A(0, n) = n+ 1

A(m, 0) = A(m− 1, 1)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n)).

Definition (Dominating function). Let f, g : N → N be functions. Then we
write f < g if for all sufficiently large integer n, we have f(n) < g(n). We say g
dominates f .

Notation. We write f(x) ↑ if f(x) is undefined, or alternatively, after we define
what this actually means, if the computation of f(x) doesn’t halt. We write
f(x) ↓ otherwise.

Definition (Partial recursive function). The class of partial recursive functions
is given inductively by
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– Every primitive recursive function is partial recursive.

– The inverse of every primitive recursive function is partial recursive, where if
f : Nk+n → Nm, then the/an inverse of f is the function f−1 : Nk+m → Nn
given by

f−1(x; y) =

{
min{z : f(x, z) = y} if exists

↑ otherwise
.

– The set of partial recursive functions is closed under primitive recursion
and composition.

3.2 Decidable and semi-decidable sets

Definition (Decidable set). A subset X ⊆ N is decidable if there is a total
computable function N→ N such that

f(n) =

{
1 n ∈ X
0 n 6∈ X

.

Definition (Semi-decidable set). We say a subset X ⊆ N is semi-decidable if it
satisfies one of the following equivalent definitions:

(i) X is the image of some partial computable function f : N→ N.

(ii) X is the image of some total computable function f : N→ N.

(iii) There is some partial computable function f : N→ N such that

X = {n ∈ N : f(n) ↓}

(iv) The function χX : N→ {0} given by

χX =

{
0 n ∈ X
↑ n 6∈ X

is computable.

Definition (Halting set). The halting set is

{〈p, i〉 : {p}(i) ↓} ⊆ N2.

Some people prefer to define it as

{m : {m}(m) ↓} ⊆ N

instead.

3.3 Computability elsewhere

3.4 Logic

Definition (Productive set). A set X ⊆ N is productive if there is a total
computable function f : N → N such that for all n ∈ N, we have f(n) ∈
X \ (im{n}).
Definition (Sound theory). A sound theory of arithmetic is one all of whose
axioms are true in N.
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3.5 Computability by λ-calculus

Definition (λ terms). The set Λ of λ terms is defined recursively as follows:

– If x is any variable, then x ∈ Λ.

– If x is a variable and g ∈ Λ, then λx. g ∈ Λ.

– If f, g ∈ Λ, then (f g) ∈ Λ.

Definition (Free and bound variables).

– In the λ term x, we say x is a free variable.

– In the λ term λx. g, the free variables are all free variables of g except x.

– In the λ term (f g), the free variables is the union of the free variables of
f and those of g,

The variables that are not free are said to be bound.

Definition (α-equivalence). We say two λ terms are α-equivalent if they are
the same up to renaming of bound variables.

Definition (β-reduction). If f = (λx. y(x))z and g = y(z), then we say g is
obtained from f via β-reduction.

Definition (η-reduction). η-conversion is the conversion from λx. (f x) to f ,
whenever x is not free in f .

Definition (β-normal form). We say a term is in β-normal form if it has no
possible β-reduction.

Notation ( ). We write f  g if f β-reduces to g.

Definition (Church numerals). We define

0 = K(id) = λf. λx. x : N

succ = λn. λf. λx. f ((n f) x) : N→ N

We write n = succn(0).
We can define arithmetic as follows:

plus = λn. λm. λf. λx. (n f) ((m f) x) : N→ N→ N

mult = λn. λm. λf. λx. (n (m f)) x : N→ N→ N

exp = λn. λm. λf. λx. ((n m) f)) x : N→ N→ N

Here expn m = nm.

Definition (Y-combinator). The Y-combinator is

Y = λf.
[
(λx.f(x x))(λx.f(x x))

]
.

3.6 Reducibility

Definition (Many-to-one reducibility). Let A,B ∈ N. We write B ≤m A if
there exists a total computable functions f : N→ N such that for all n ∈ N, we
have n ∈ B ↔ f(n) ∈ A.

Definition (Turing reducibility). We say B ≤T A, or simply B ≤ A, if it is
possible to determine membership of B whenever we have access to an oracle
that computes χA.
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4 Well-quasi-orderings

Definition (Quasi-order). An order 〈X,≤〉 is a quasi-order if it is transitive
and reflexive, i.e. for all a, b, c ∈ X,

– If a ≤ b and b ≤ c, then a ≤ c.

– We always have a ≤ a.

Definition (Well-founded relation). A relation R on X is said to be well-founded
if for all A ⊆ X non-empty, there is some x ∈ A such that for any y ∈ A, we
have ¬R(y, x).

Definition (Well-ordered quasi-order). A quasi-order is well-ordered if there is
no strictly decreasing infinite sequence.

Definition (P(X)). Let 〈X,≤X〉 be a quasi-order. We define a quasi-order ≤+
X

on P(X) by
X1 ≤+

X X2 if ∀x1∈X1
∃x2∈X2

(x1 ≤X x2).

Definition (X<ω). Let 〈X,≤X〉 be a quasi-order. We let X<ω be the set of all
finite lists (i.e. sequences) in X. We define a quasi-order on X<ω recursively by

– nil ≤ `1, where nil is the empty list.

– tail(`1) ≤ `1

– If tail(`1) ≤ tail(`2) and head(`1) ≤X head(`2), then `1 ≤ `2.

for all lists `1, `2.
Equivalently, sequences {xi}ni=1 ≤s {yi}`i=1 if there is a subsequence {yik}nk=1

of {yi} such that xk ≤ yik for all k.

Definition (Tree). Let 〈X,≤X〉 be a quasi-order. The set of all trees (in X) is
defined inductively as follows:

– If x ∈ X and L is a list of trees, then (x, L) is a tree. We call x a node of
the tree. In particular (x, nil) is a tree. We write

root(x, L) = x, children(x, L) = L.

Haskell programmers would define this by

data Tree a = Branch a [Tree a]

We write Trees(X) for the set of all trees on X.
We define an order relation≤s on Trees(X) as follows — let T1, T2 ∈ Trees(X).

Then T1 ≤ T2 if

(i) T1 ≤ T ′ for some T ′ ∈ children(T2).

(ii) root(T1) ≤ root(T2) and children(T1) ≤ children(T2) as lists.

Definition (Well-quasi-order). A well-quasi-order (WQO) is a well-founded
quasi-order 〈X,≤X〉 such that 〈P(X),≤+

X〉 is also well-founded.
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4 Well-quasi-orderings III Logic (Definitions)

Definition (Well-founded part of a relation). Let 〈X,R〉 be a set with a relation.
Then the well-founded part of a relation is the ⊆-least subset A ⊆ X satisfying
the property

– If x is such that all predecessors of x are in A, then x ∈ A.

Definition (Bad sequence). Let 〈X,≤〉 be a well-founded quasi-order. A se-
quence {xi} is bad if for all i < j, we have f(i) 6≤ f(j).

Definition (Minimal bad sequence). Let 〈X,≤〉 be a quasi-order. A minimal
bad sequence is a bad sequence {xi} such that for each k ∈ N, xk is a ≤-minimal
element in

{x : there exists a bad sequence starting with x1, x2, · · · , xk−1, x}.

Definition (ω2-good). A well-ordering 〈X,≤〉 is ω2-good if for any

f : {〈i, j〉 : i < j ∈ N} → X,

there is some i < j < k such that f(i, j) ≤ f(j, k).
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