III Algebras Lent Term 2017

EXAMPLE SHEET 1

k is a field; A is a k-algebra.

- 1. Let G be a group. Show that $(kG)^{op} \cong kG$, and that $(M_n(k))^{op} \cong M_n(k)$.
- 2. Let A = kG. Let g_1, \ldots, g_m be conjugacy class representatives of G. Show that the $g_i + [A, A]$ form a k-vector space basis of A/[A, A].
- 3. Let char k = p. Show that when A = kG, [A, A] + J(A) consists of those elements $x \in A$ such that $x^{p^i} \in [A, A]$ for some i.
- 4. Let k be algebraically closed of characteristic 0. Show that $\dim_k Z(kG)$ is the number of conjugacy classes in G, and is the number of isomorphism classes of simple kG-modules.
- 5. Show that the following are equivalent for an A-module P:
 - (i) P is projective;
 - (ii) Every surjective map $\phi: M \to P$ splits; and
 - (iii) P is a direct summand of a free module.
- 6. Let A be an Artinian algebra. Let P_1 and P_2 be indecomposable projectives with

$$\frac{P_1}{P_1J(A)} \cong \frac{P_2}{P_2J(A)}.$$

Show that $P_1 \cong P_2$.

- 7. A finite dimensional algebra A is *Frobenius* if there is a k-linear map $\lambda: A \to k$ such that $\ker \lambda$ contains no non-zero left or right ideal. Furthermore it is *symmetric* if $\lambda(xy) = \lambda(yx)$ for all $x, y \in A$.
 - (i) Show that $M_n(k)$ is a Frobenius algebra, where λ is the trace map.
 - (ii) Show that kG, for G finite, is Frobenius, where

$$\lambda\left(\sum a_g g\right) = a_e,$$

where e is the identity element of G.

(iii) Show that if A is a Frobenius algebra then the vector space dual $({}_{A}A)^* \cong A_A$. (Note that if M is a left module, then the dual has a natural structure as a right module via

$$(fa)(m) = f(am)$$

where $f: M \to k \in M^*$.)

- (iv) Suppose P is an indecomposable projective for a symmetric Frobenius algebra A. Show that P has a unique simple submodule S with $S \cong P/PJ(A)$.
- 8. Let $k \leq K$ be a finite field extension which is Galois. Let $G = \operatorname{Gal}(K/k)$.
 - (i) Establish the condition on

$$\Psi: G \times G \to K^{\times}$$

1

that ensures the associativity of the crossed product (K, G, Ψ) .

(ii) Suppose there is an isomorphism

$$\Theta: (K, G, \Psi_1) \to (K, G, \Psi_2)$$

which preserves the G-grading, and $\Theta|_K$ is the identity map on K. What can be said about the map $\Psi_3: G \times G \to K$, where

$$\Psi_3(g,h) = \Psi_1(g,h)(\Psi_2(g,h))^{-1}$$
?

- 9. Let k be algebraically closed. Let $G = S_3$. Decompose kG into blocks and into indecomposable projectives, where
 - (i) $\operatorname{char} k = 2$; and
 - (ii) $\operatorname{char} k = 3$.
- 10. Let $G = SL_2(p)$. Show that G has exactly p conjugacy classes of elements of order not divisible by p. Let char k = p.

Let V_1 be the trivial kG-module. For $n \geq 2$, let V_n be the space of homogeneous polynomials in k[X,Y] of total degree n-1.

Show that $\dim V_n = n$.

Let kG act on V_2 by the canonical action of G on a 2-dimensional k-vector space. This induces a kG-module structure on V_n . Show that V_1, \ldots, V_p are simple non-isomorphic kG-modules.

III Algebras Lent Term 2017

EXAMPLE SHEET 2

- 1. Let B be an algebra containing a subalgebra A. Suppose A is left Noetherian and let $x \in B$.
 - (i) Suppose A + xA = A + Ax, and B is generated by A and x. Show that B is left Noetherian.
 - (ii) Suppose there exists an automorphism σ of A such that $ax = xa^{\sigma}$ for all $a \in A$. Show that if B is generated by A and x, then it is left Noetherian.
 - (iii) Suppose x is a unit of B and that $x^{-1}Ax = A$. Suppose B is generated by A, x, x^{-1} . Show that B is left Noetherian.
- 2. Show that

$$\begin{pmatrix} k[x] & k(x) \\ 0 & k(x) \end{pmatrix}$$

is right, but not left Noetherian.

- 3. An ideal P is prime if $I_1, I_2 \leq P$ implies $I_1 \leq P$ or $I_2 \leq P$ for ideals I_1 and I_2 . Let A be a Noetherian algebra. Show that any ideal I contains a product of finitely many prime ideals. Let N be the intersection of all the prime ideals of A. Show that N is nilpotent. A nil ideal is one all of whose elements are nilpotent. Show that $I \leq N$.
- 4. Show that the quantum torus has no non-zero modules that are finite-dimensional as k-vector spaces.
- 5. Show carefully that gr A is commutative when $A = A_n(k)$ and $A = \mathcal{U}(\mathcal{L})$ with the usual filtrations. Show that gr A is a polynomial algebra in both cases.
- 6. Let I be an ideal of a commutative Noetherian algebra A. Show how the powers of I yield a negative filtration of A and that gr A is Noetherian. Is the converse true, that gr A Noetherian \Rightarrow A is Noetherian?
- 7. Show that $A_n(k)$ is a simple algebra, i.e. its only ideals are 0 and $A_n(k)$.
- 8. Show that GK-dimension is independent of the choices of generating sets.
- 9. Let f be a homogeneous non-zero element (of degree t) of a graded commutative algebra S generated by degree 1 elements. What is the Samuel polynomial of S/(f)? Show that

$$d(S/(f)) = d(S) - 1.$$

- 10. What is the GK-dimension of the quantum torus $k_q[X, X^{-1}, Y, Y^{-1}]$?
- 11. Find a holonomic $A_n(k)$ -module M other than $k[X_1,\ldots,X_n]$. (ie. d(M)=n)
- 12. Let A = k[x] and k be the trivial A-module, where X acts like 0. Show that the injective hull

1

$$E(k) \cong \frac{k[X, X^{-1}]}{Xk[X]}.$$

13. Show that the injective hull of a module is unique up to isomorphism.

III Algebras Lent Term 2017

EXAMPLE SHEET 3

- 1. Show that if A is a separable k-algebra, then $\dim_k(A) < \infty$.
- 2. Show that $\sum_{i,j} E_{ij} \otimes E_{ji}$ is a separating idempotent for $M_n(k)$, where E_{ij} is the elementary matrix with 1 in the ijth entry and 0 otherwise.
- 3. Show that every separable k-algebra is semisimple.
- 4. Show that the derivations $A \to A$ form a Lie algebra and that the inner derivations form a Lie ideal.
- 5. What are the derivations of k[X] when char $k = p \neq 0$?
- 6. Define the differential operators on an algebra A inductively:

$$D^{0}(A) = \{ D \in \operatorname{End}_{k}(A) : [x, D] = 0 \ \forall x \in A \}$$
$$D^{1}(A) = \{ D \in \operatorname{End}_{k}(A) : [x, D] \in D^{0}(A) \}$$
$$D^{2}(A) = \{ D \in \operatorname{End}_{k}(A) : [x, D] \in D^{1}(A) \}$$

etc. Set

$$Diff(A) = \bigcup_{i=0}^{\infty} D^{i}(A).$$

Let char k = 0. Show that

$$A_n(k) = \text{Diff}(k[X_1, \dots, X_n]).$$

- 7. Show that if $HH^2(A, A) = 0$, then all derivations $\phi_1 : A \to A$ are integrable.
- 8. Calculate $HH^*(A, A)$ for A = k[X, Y] when char k = 0.
- 9. Calculate $HH^*(A, A)$ when A = kG, where k is algebraically closed of characteristic 2 and G cyclic group of order 2.
- 10. Calculate $HH^*(A, A)$ where $A = kS_3$ and k algebraically closed of characteristic 2.
- 11. For a co-algebra C, define a right C co-module to be a k-vector space V with a k-linear map $\rho: V \to V \otimes C$ such that

commute. Show that if (V, ρ) is a right C co-module, then V is a left C^* -module.

- 12. Show that if B is a bialgebra and I is both an ideal and a co-ideal, then B/I is a bialgebra.
- 13. What are the prime ideals of $k_q[X,Y]$ (quantum plane) when k is algebraically closed and q is not a root of unity.
- 14. What are the prime ideals of $\mathcal{O}_q(\mathrm{SL}_2(k))$ when k is algebraically and q is not a root of unity.

1

15. Calculate $HH_*(A, A)$ for A = k[X] and for A = k[X, Y] when char k = 0.