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These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what
was actually lectured, and in particular, all errors are almost surely mine.

Quantum Field Theory (QFT) provides the most profound description of Nature we
currently possess. As well as being the basic theoretical framework for describing
elementary particles and their interactions (excluding gravity), QFT also plays a major
role in areas of physics and mathematics as diverse as string theory, condensed matter
physics, topology and geometry, astrophysics and cosmology.

This course builds on the Michaelmas Quantum Field Theory course, using techniques
of path integrals and functional methods to study quantum gauge theories. Gauge
Theories are a generalisation of electrodynamics and form the backbone of the Standard
Model — our best theory encompassing all particle physics. In a gauge theory, fields
have an infinitely redundant description; we can transform the fields by a different
element of a Lie Group at every point in space-time and yet still describe the same
physics. Quantising a gauge theory requires us to eliminate this infinite redundancy.
In the path integral approach, this is done using tools such as ghost fields and BRST
symmetry. We discuss the construction of gauge theories and their most important
observables, Wilson Loops. Time permitting, we will explore the possibility that a
classical symmetry may be broken by quantum effects. Such anomalies have many
important consequences, from constraints on interactions between matter and gauge
fields, to the ability to actually render a QFT inconsistent.

A further major component of the course is to study Renormalization. Wilson’s
picture of Renormalisation is one of the deepest insights into QFT — it explains
why we can do physics at all! The essential point is that the physics we see depends
on the scale at which we look. In QFT, this dependence is governed by evolution
along the Renormalisation Group (RG) flow. The course explores renormalisation
systematically, from the use of dimensional regularisation in perturbative loop integrals,
to the difficulties inherent in trying to construct a quantum field theory of gravity. We
discuss the various possible behaviours of a QFT under RG flow, showing in particular
that the coupling constant of a non-Abelian gauge theory can effectively become small
at high energies. Known as ”asymptotic freedom”, this phenomenon revolutionised our
understanding of the strong interactions. We introduce the notion of an Effective Field
Theory that describes the low energy limit of a more fundamental theory and helps
parametrise possible departures from this low energy approximation. From a modern
perspective, the Standard Model itself appears to be but an effective field theory.
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Pre-requisites

Knowledge of the Michaelmas term Quantum Field Theory course will be assumed.
Familiarity with the course Symmetries, Fields and Particles would be very helpful.
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0 Introduction

0.1 What is quantum field theory
0.2 Building a quantum field theory
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1 QFT in zero dimensions

1.1 Free theories

Theorem (Wick’s theorem). For a monomial

2k
P(¢) = [ 4:(9),
i=1

we have
(P(g)) = h* [T M 'tow).
o€llag 1€{1,--- 2k} /o
where the {1,---,2k}/o says we sum over each pair {i,0(¢)} only once, rather

than once for (i,0(i)) and another for (o(7),?).

1.2 Interacting theories
1.3 Feynman diagrams
1.4 An effective theory

1.5 Fermions

Proposition. For an invertible n x n matrix B and 7;,7;, 6%, 6" independent
fermionic variables for i = 1,...,n, we have

Z(n,7) = /d”0 d"0 exp (0'B;;07 + 70" + 0'n;) = det Bexp (1;(B~")"7n;) .

In particular, we have
Z = 2(0,0) = det B.
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2 QFT in one dimension (i.e. QM)

2.1 Quantum mechanics

Theorem. There are no Lebesgue measures on an infinite dimensional inner
product space.

2.2 Feynman rules
2.3 Effective quantum field theory

2.4 Quantum gravity in one dimension
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3 Symmetries of the path integral

3.1 Ward identities
3.2 The Ward—Takahashi identity
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4 Wilsonian renormalization

4.1 Background setting

Proposition.

4.2 Integrating out modes

4.3 Correlation functions and anomalous dimensions
4.4 Renormalization group flow

4.5 Taking the continuum limit

4.6 Calculating RG evolution
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5 Perturbative renormalization

5.1
5.2
5.3
5.4

Cutoff regularization
Dimensional regularization
Renormalization of the ¢* coupling

Renormalization of QED
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6 Non-abelian gauge theory

6.1 Bundles, connections and curvature

Theorem. Given a principal G-bundle 7 : P — M and a representation
p: G — GL(V), there is a canonical way of producing a G-bundle E — M with
fiber V. This is called the associated bundle.

Conversely, given a G-bundle F — M with fiber V, there is a canonical way
of producing a principal G-bundle out of it, and these procedures are mutual
inverses.

Moreover, this gives a correspondence between local trivializations of P — M
and local trivializations of £ — M.

Theorem. There exists a notion of a connection on a principal G-bundle.
Locally on a trivializing neighbourhood U, the connection 1-form is an element
A, (x) € Qf(g), where g is the Lie algebra of G.

Every connection on a principal G-bundle induces a connection on any asso-
ciated vector bundle. On local trivializations, the connection on the associated
vector bundle has the “same” connection 1-form A, (x), where A, (x) is regarded
as an element of End(V') by the action of G on the vector space.

6.2 Yang—Mills theory
6.3 Quantum Yang—Mills theory

6.4 Faddeev—Popov ghosts ()
Theorem. The integral () is independent of the choice of f and C.

6.5 BRST symmetry and cohomology
Theorem. We have Q2 = 0.

Theorem. The Yang-Mills Lagrangian is BRST closed. In other words, QL = 0.

Lemma. Suppose ¢ is some operator such that & — & + §® is a symmetry.
Then for all O, we have
(00) = 0.

Corollary. Adding BRST exact terms to the Lagrangian does not affect the
expectation of BRST invariant functions.

6.6 Feynman rules for Yang—Mills
6.7 Renormalization of Yang—Mills theory
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