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1. Let RR be the vector space of all functions f : R → R, with addition and scalar multiplication defined
pointwise. Which of the following sets of functions form a vector subspace of RR?

(a) The set C of continuous functions.

(b) The set {f ∈ C : |f(t)| ≤ 1 for all t ∈ [0, 1]}.
(c) The set {f ∈ C : f(t)→ 0 as t→∞}.
(d) The set {f ∈ C : f(t)→ 1 as t→∞}.
(e) The set of solutions of the differential equation ẍ(t) + (t2 − 3)ẋ(t) + t4x(t) = 0.

(f) The set of solutions of ẍ(t) + (t2 − 3)ẋ(t) + t4x(t) = sin t.

(g) The set of solutions of (ẋ(t))2 − x(t) = 0.

(h) The set of solutions of (ẍ(t))4 + (x(t))2 = 0.

2. Suppose that the vectors e1, . . . , en form a basis for V . Which of the following are also bases?

(a) e1 + e2, e2 + e3, . . . , en−1 + en, en;

(b) e1 + e2, e2 + e3, . . . , en−1 + en, en + e1;

(c) e1 − en, e2 + en−1, . . . , en + (−1)ne1.

3. Let T , U and W be subspaces of V .
(i) Show that T ∪ U is a subspace of V only if either T ≤ U or U ≤ T .
(ii) Give explicit counter-examples to the following statements:

(a) T + (U ∩W ) = (T + U) ∩ (T +W ); (b) (T + U) ∩W = (T ∩W ) + (U ∩W ).

(iii) Show that each of the equalities in (ii) can be replaced by a valid inclusion of one side in the other.

4. For each of the following pairs of vector spaces (V,W ) over R, either give an isomorphism V → W or
show that no such isomorphism can exist. [Here P denotes the space of polynomial functions R → R,
and C[a, b] denotes the space of continuous functions defined on the closed interval [a, b].]
(a) V = R4, W = {x ∈ R5 : x1 + x2 + x3 + x4 + x5 = 0}.
(b) V = R5, W = {p ∈ P : deg p ≤ 5}.
(c) V = C[0, 1], W = C[−1, 1].
(d) V = C[0, 1], W = {f ∈ C[0, 1] : f(0) = 0, f continuously differentiable }.
(e) V = R2, W = {solutions of ẍ(t) + x(t) = 0}.
(f) V = R4, W = C[0, 1].
(g) (Harder:) V = P, W = RN.

5. (i) If α and β are linear maps from U to V show that α+ β is linear. Give explicit counter-examples to
the following statements:

(a) Im(α+ β) = Im(α) + Im(β); (b) Ker(α+ β) = Ker(α) ∩Ker(β).

Show that in general each of these equalities can be replaced by a valid inclusion of one side in the other.
(ii) Let α be a linear map from V to V . Show that if α2 = α then V = Ker(α)⊕ Im(α). Does your proof
still work if V is infinite dimensional? Is the result still true?

6. Let

U = {x ∈ R5 : x1 + x3 + x4 = 0, 2x1 + 2x2 + x5 = 0}, W = {x ∈ R5 : x1 + x5 = 0, x2 = x3 = x4}.

Find bases for U and W containing a basis for U ∩W as a subset. Give a basis for U + W and show
that

U +W = {x ∈ R5 : x1 + 2x2 + x5 = x3 + x4} .
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7. Let α:U → V be a linear map between two finite dimensional vector spaces and let W be a vector
subspace of U . Show that the restriction of α to W is a linear map α|W :W → V which satisfies

r(α) ≥ r(α|W ) ≥ r(α)− dim(U) + dim(W ) .

Give examples (with W 6= U) to show that either of the two inequalities can be an equality.

8. (i) Let α : V → V be an endomorphism of a finite dimensional vector space V . Show that

V ≥ Im(α) ≥ Im(α2) ≥ . . . and {0} ≤ Ker(α) ≤ Ker(α2) ≤ . . . .

If rk = r(αk), deduce that rk ≥ rk+1 and that rk−rk+1 ≥ rk+1−rk+2. Conclude that if, for some k ≥ 0,
we have rk = rk+1, then rk = rk+` for all ` ≥ 0.
(ii) Suppose that dim(V ) = 5, α3 = 0, but α2 6= 0. What possibilities are there for r(α) and r(α2)?

9. Let α : R3 → R3 be the linear map given by α :

x1
x2
x3

 7→
 2 1 0

0 2 1
0 0 2

x1
x2
x3

 . Find the matrix

representing α relative to the basis

 1
1
1

 ,

 1
1
0

 ,

 1
0
0

 for both the domain and the range.

Write down bases for the domain and range with respect to which the matrix of α is the identity.

10. Let U1, . . . , Uk be subspaces of a vector space V and let Bi be a basis for Ui. Show that the following
statements are equivalent:

(i) U =
∑

i Ui is a direct sum, i.e. every element of U can be written uniquely as
∑

i ui with ui ∈ Ui.

(ii) Uj ∩
∑

i6=j Ui = {0} for all j.

(iii) The Bi are pairwise disjoint and their union is a basis for
∑

i Ui.

Give an example where Ui ∩ Uj = {0} for all i 6= j, yet U1 + . . .+ Uk is not a direct sum.

11. Let Y and Z be subspaces of the finite dimensional vector spaces V and W , respectively. Show that
R = {α ∈ L(V,W ) : α(Y ) ≤ Z} is a subspace of the space L(V,W ) of all linear maps from V to W .
What is the dimension of R?

12. Recall that Fn has standard basis e1, . . . , en. Let U be a subspace of Fn. Show that there is a subset I
of {1, 2, . . . , n} for which the subspace W = 〈{ei : i ∈ I}〉 is a complementary subspace to U in Fn.

13. Suppose X and Y are linearly independent subsets of a vector space V ; no member of X is expressible
as a linear combination of members of Y , and no member of Y is expressible as a linear combination of
members of X. Is the set X ∪ Y necessarily linearly independent? Give a proof or counterexample.

14. Show that any two subspaces of the same dimension in a finite dimensional real vector space have a
common complementary subspace.

15. Let T,U, V,W be vector spaces over F and let α:T → U , β:V →W be fixed linear maps. Show that the
mapping Φ:L(U, V )→ L(T,W ) which sends θ to β ◦ θ ◦ α is linear. If the spaces are finite-dimensional
and α and β have rank r and s respectively, find the rank of Φ.
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1. Write down the three types of elementary matrices and find their inverses. Show that an n× n matrix
A is invertible if and only if it can be written as a product of elementary matrices. Use this method to
find the inverse of  1 −1 0

0 0 1
0 3 −1

 .

2. (Another proof of the row rank column rank equality.) Let A be an m × n matrix of (column) rank r.
Show that r is the least integer for which A factorises as A = BC with B ∈ Matm,r(F) and C ∈ Matr,n(F).
Using the fact that (BC)T = CTBT , deduce that the (column) rank of AT equals r.

3. Let V be a 4-dimensional vector space over R, and let {ξ1, ξ2, ξ3, ξ4} be the basis of V ∗ dual to the basis
{x1,x2,x3,x4} for V . Determine, in terms of the ξi, the bases dual to each of the following:
(a) {x2,x1,x4,x3} ;
(b) {x1, 2x2,

1
2x3,x4} ;

(c) {x1 + x2,x2 + x3,x3 + x4,x4} ;
(d) {x1,x2 − x1,x3 − x2 + x1,x4 − x3 + x2 − x1} .

4. Let Pn be the space of real polynomials of degree at most n. For x ∈ R define εx ∈ P ∗n by εx(p) = p(x).
Show that ε0, . . . , εn form a basis for P ∗n , and identify the basis of Pn to which it is dual.

5. (a) Show that if x 6= y are vectors in the finite dimensional vector space V , then there is a linear
functional θ ∈ V ∗ such that θ(x) 6= θ(y).
(b) Suppose that V is finite dimensional. Let A,B ≤ V . Prove that A ≤ B if and only if A◦ ≥ B◦.
Show that A = V if and only if A◦ = {0}.

6. For A ∈ Matn,m(F) and B ∈ Matm,n(F), let τA(B) denote trAB. Show that, for each fixed A,
τA: Matm,n(F) → F is linear. Show moreover that the mapping A 7→ τA defines a linear isomorphism
Matn,m(F)→ Matm,n(F)∗.

7. (a) Let V be a non-zero finite dimensional real vector space. Show that there are no endomorphisms
α, β of V with αβ − βα = idV .

(b) Let V be the space of infinitely differentiable functions R→ R. Find endomorphisms α and β of V
such that αβ − βα = idV .

8. Suppose that ψ:U × V → F is a bilinear form of rank r on finite dimensional vector spaces U and V
over F. Show that there exist bases e1, . . . , em for U and f1, . . . , fn for V such that

ψ

 m∑
i=1

xiei,

n∑
j=1

yjfj

 =

r∑
k=1

xkyk

for all x1, . . . , xm, y1, . . . , yn ∈ F. What are the dimensions of the left and right kernels of ψ?

9. Let A and B be n× n matrices over a field F . Show that the 2n× 2n matrix

C =

(
I B
−A 0

)
can be transformed into D =

(
I B
0 AB

)
by elementary row operations (which you should specify). By considering the determinants of C and D,
obtain another proof that detAB = detA detB.
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10. Let A, B be n× n matrices, where n ≥ 2. Show that, if A and B are non-singular, then

(i) adj (AB) = adj (B)adj (A) , (ii) det(adjA) = (detA)n−1 , (iii) adj (adjA) = (detA)n−2A .

What happens if A is singular? [Hint: Consider A+ λI for λ ∈ F.]

Show that the rank of the adjugate matrix is r(adjA) =

n if r(A) = n
1 if r(A) = n− 1
0 if r(A) ≤ n− 2.

11. Show that the dual of the space P of real polynomials is isomorphic to the space RN of all sequences of
real numbers, via the mapping which sends a linear form ξ : P → R to the sequence (ξ(1), ξ(t), ξ(t2), . . .).

In terms of this identification, describe the effect on a sequence (a0, a1, a2, . . .) of the linear maps dual
to each of the following linear maps P → P :
(a) The map D defined by D(p)(t) = p′(t).
(b) The map S defined by S(p)(t) = p(t2).
(c) The map E defined by E(p)(t) = p(t− 1).
(d) The composite DS.
(e) The composite SD.

Verify that (DS)∗ = S∗D∗ and (SD)∗ = D∗S∗.

12. Suppose that ψ:V ×V → F is a bilinear form on a finite dimensional vector space V . Take U a subspace
of V with U = W⊥ some subspace W of V . Suppose that ψ|U×U is non-singular. Show that ψ is also
non-singular.

13. Let V be a vector space. Suppose that f1, . . . , fn, g ∈ V ∗. Show that g is in the span of f1, . . . , fn if and
only if

⋂n
i=1 ker fi ⊂ ker g.

14. Let α : V → V be an endomorphism of a real finite dimensional vector space V with tr(α) = 0.
(i) Show that, if α 6= 0, there is a vector v with v, α(v) linearly independent. Deduce that there is a
basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0.
(ii) Show that there are endomorphisms β, γ of V with α = βγ − γβ.

The final question is based on non-examinable material

15. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Suppose that
α:V → W is a linear map such that α(Y ) ⊂ Z. Show that α induces linear maps α|Y :Y → Z via
α|Y (y) = α(y) and α:V/Y →W/Z via α(v + Y ) = α(v) + Z.

Consider a basis (v1, . . . , vn) for V containing a basis (v1, . . . , vk) for Y and a basis (w1, . . . , wm) for W
containing a basis (w1, . . . , wl) for Z. Show that the matrix representing α with respect to (v1, . . . , vn)

and (w1, . . . , wm) is a block matrix of the form

(
A C
0 B

)
. Explain how to determine the matrices

representing α|Y with respect to the bases (v1, . . . , vk) and (w1, . . . , wl) and representing α with respect
to the bases (vk+1 + Y, . . . , vn + Y ) and (wl+1 + Z, . . . , wm + Z) from this block matrix.
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1. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices: 1 1 0
0 3 −2
0 1 0

 ,

 1 1 −1
0 3 −2
0 1 0

 ,

 1 1 −1
−1 3 −1
−1 1 1

 .

The second and third matrices commute; find a basis with respect to which they are both diagonal.

2. By considering the rank of a suitable matrix, find the eigenvalues of the n × n matrix A with each
diagonal entry equal to λ and all other entries 1. Hence write down the determinant of A.

3. Let α be an endomorphism of the finite dimensional vector space V over F, with characteristic polynomial
χα(t) = tn + cn−1t

n−1 + · · ·+ c0. Show that det(α) = (−1)nc0 and tr(α) = −cn−1.

4. Let V be a vector space, let π1, π2, . . . , πk be endomorphisms of V such that idV = π1 + · · · + πk and
πiπj = 0 for any i 6= j. Show that V = U1 ⊕ · · · ⊕ Uk, where Uj = Im(πj).
Let α be an endomorphism on the vector space V , satisfying the equation α3 = α. Prove directly that
V = V0 ⊕ V1 ⊕ V−1, where Vλ is the λ-eigenspace of α.

5. Let α be an endomorphism of a finite dimensional complex vector space. Show that if λ is an eigenvalue
for α then λ2 is an eigenvalue for α2. Show further that every eigenvalue of α2 arises in this way. Are
the eigenspaces Ker(α− λι) and Ker(α2 − λ2ι) necessarily the same?

6. (Another proof of the Diagonalisability Theorem.) Let V be a vector space of finite dimension. Show
that if α1 and α2 are endomorphisms of V , then the nullity n(α1α2) satisfies n(α1α2) ≤ n(α1) + n(α2).
Deduce that if α is an endomorphism of V such that p(α) = 0 for some polynomial p(t) which is a
product of distinct linear factors, then α is diagonalisable.

7. Let A be a square complex matrix of finite order — that is, Am = I for some m > 0. Show that A can
be diagonalised.

8. Show that none of the following matrices are similar: 1 1 0
0 1 1
0 0 1

 ,

 1 1 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1

 .

Is the matrix  1 1 1
0 1 1
0 0 1


similar to any of them? If so, which?

9. Find a basis with respect to which

(
0 −1
1 2

)
is in Jordan normal form. Hence compute

(
0 −1
1 2

)n
.

10. (a) Recall that the Jordan normal form of a 3×3 complex matrix can be deduced from its characteristic
and minimal polynomials. Give an example to show that this is not so for 4× 4 complex matrices.
(b) Let A be a 5×5 complex matrix with A4 = A2 6= A. What are the possible minimal and characteristic
polynomials? If A is not diagonalisable, how many possible JNFs are there for A?

11. Let V be a vector space of dimension n and α an endomorphism of V with αn = 0 but αn−1 6= 0. Show
that there is a vector y such that (y, α(y), α2(y), . . . , αn−1(y)) is a basis for V .

Show that if β is an endomorphism of V which commutes with α, then β = p(α) for some polynomial p.
[Hint: consider β(y).] What is the form of the matrix for β with respect to the above basis?
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12. Let α be an endomorphism of the finite-dimensional vector space V , and assume that α is invertible.
Describe the eigenvalues and the characteristic and minimal polynomial of α−1 in terms of those of α.

13. Prove that that the inverse of a Jordan block Jm(λ) with λ 6= 0 has Jordan normal form a Jordan block
Jm(λ−1). For an arbitrary invertible square matrix A, describe the Jordan normal form of A−1 in terms
of that of A.

Prove that any square complex matrix is similar to its transpose.

14. Let C be an n × n matrix over C, and write C = A + iB, where A and B are real n × n matrices. By
considering det(A+ λB) as a function of λ, show that if C is invertible then there exists a real number
λ such that A + λB is invertible. Deduce that if two n × n real matrices P and Q are similar when
regarded as matrices over C, then they are similar as matrices over R.

15. Let f(x) = a0 + a1x+ . . .+ anx
n, with ai ∈ C, and let C be the circulant matrix

a0 a1 a2 . . . an
an a0 a1 . . . an−1
an−1 an a0 . . . an−2

...
. . .

...
a1 a2 a3 . . . a0

 .

Show that the determinant of C is detC =
∏n
j=0 f(ζj), where ζ = exp(2πi/(n+ 1)).

16. Let V denote the space of all infinitely differentiable functions R → R and let α be the differentiation
endomorphism f 7→ f ′.
(i) Show that every real number λ is an eigenvalue of α. Show also that ker(α− λι) has dimension 1.
(ii) Show that α− λι is surjective for every real number λ.
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1. The square matrices A and B over the field F are congruent if B = PTAP for some invertible matrix
P over F . Which of the following symmetric matrices are congruent to the identity matrix over R, and
which over C? (Which, if any, over Q?) Try to get away with the minimum calculation.(

2 0
0 3

)
,

(
0 2
2 0

)
,

(
−1 0
0 −1

)
,

(
4 4
4 5

)
.

2. Find the rank and signature of the following quadratic forms over R.

x2 + y2 + z2 − 2xz − 2yz, x2 + 2y2 − 2z2 − 4xy − 4yz, 16xy − z2, 2xy + 2yz + 2zx.

If A is the matrix of the first of these (say), find a non-singular matrix P such that PTAP is diagonal
with entries ±1.

3. (i) Show that the function ψ(A,B) = tr(ABT ) is a symmetric positive definite bilinear form on the space
Matn(R) of all n× n real matrices. Deduce that |tr(ABT )| ≤ tr(AAT )1/2tr(BBT )1/2.
(ii) Show that the map A 7→ tr(A2) is a quadratic form on Matn(R). Find its rank and signature.

4. Let ψ : V × V → C be a Hermitian form on a complex vector space V .
(i) Find the rank and signature of ψ in the case V = C3 and

ψ(x, x) = |x1 + ix2|2 + |x2 + ix3|2 + |x3 + ix1|2 − |x1 + x2 + x3|2.

(ii) Show in general that if n > 2 then ψ(u, v) = 1
n

∑n
k=1 ζ

−kψ(u+ ζkv, u+ ζkv) where ζ = e2πi/n.

5. Show that the quadratic form 2(x2+y2+z2+xy+yz+zx) is positive definite. Write down an orthonormal
basis for the corresponding inner product on R3. Compute the basis of R3 obtained by applying the
Gram-Schmidt process to the standard basis with respect to this inner product.

6. Let W ≤ V with V an inner product space. An endomorphism π of V is called an idempotent if π2 = π.
Show that the orthogonal projection onto W is a self-adjoint idempotent. Conversely show that any
self-adjoint idempotent is orthogonal projection onto its image.

7. Let S be an n× n real symmetric matrix with Sk = I for some k ≥ 1. Show that S2 = I.

8. An endomorphism α of a finite dimensional inner product space V is positive definite if it is self-adjoint
and satisfies 〈α(x),x〉 > 0 for all non-zero x ∈ V .
(i) Prove that a positive definite endomorphism has a unique positive definite square root.
(ii) Let α be an invertible endomorphism of V and α∗ its adjoint. By considering α∗α, show that α can
be factored as βγ with β unitary and γ positive definite.

9. Let V be a finite dimensional complex inner product space, and let α be an endomorphism on V . Assume
that α is normal, that is, α commutes with its adjoint: αα∗ = α∗α. Show that α and α∗ have a common
eigenvector v, and the corresponding eigenvalues are complex conjugates. Show that the subspace 〈v〉⊥
is invariant under both α and α∗. Deduce that there is an orthonormal basis of eigenvectors of α.

10. Find a linear transformation which simultaneously reduces the pair of real quadratic forms

2x2 + 3y2 + 3z2 − 2yz, x2 + 3y2 + 3z2 + 6xy + 2yz − 6zx

to the forms
X2 + Y 2 + Z2, λX2 + µY 2 + νZ2

for some λ, µ, ν ∈ R (which should turn out in this example to be integers).

Does there exist a linear transformation which reduces the pair of real quadratic forms x2 − y2, 2xy
simultaneously to diagonal forms?
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11. Show that if A is an m × n real matrix of rank n then ATA is invertible. Find a corresponding result
for complex matrices.

12. Let Pn be the (n+ 1-dimensional) space of real polynomials of degree ≤ n. Define

(f, g) =

∫ +1

−1
f(t)g(t)dt .

Show that ( , ) is an inner product on Pn and that the endomorphism α : Pn → Pn defined by

α(f)(t) = (1− t2)f ′′(t)− 2tf ′(t)

is self-adjoint. What are the eigenvalues of α?

Let sk ∈ Pn be defined by sk(t) = dk

dtk
(1− t2)k. Prove the following.

(i) For i 6= j, (si, sj) = 0.
(ii) s0, . . . , sn forms a basis for Pn.
(iii) For all 1 ≤ k ≤ n, sk spans the orthogonal complement of Pk−1 in Pk.
(iv) sk is an eigenvector of α. (Give its eigenvalue.)

What is the relation between the sk and the result of applying Gram-Schmidt to the sequence 1, x, x2,
x3 and so on? (Calculate the first few terms?)

13. Let f1, · · · , ft, ft+1, · · · , ft+u be linear functionals on the finite dimensional real vector space V . Show
that Q(x) = f1(x)2 + · · ·+ ft(x)2 − ft+1(x)2 − · · · − ft+u(x)2 is a quadratic form on V . Suppose Q has
rank p+ q and signature p− q. Show that p ≤ t and q ≤ u.

14. Let a1, a2, . . . , an be real numbers such that a1 + · · · + an = 0 and a21 + · · · + a2n = 1. What is the
maximum value of a1a2 + a2a3 + · · ·+ an−1an + ana1?

15. Suppose that α is an orthogonal endomorphism on the finite-dimensional real inner product space V .
Prove that V can be decomposed into a direct sum of mutually orthogonal α-invariant subspaces of
dimension 1 or 2. Determine the possible matrices of α with respect to orthonormal bases in the cases
where V has dimension 1 or dimension 2.
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