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Theorems

Based on lectures by A. G. Kovalev
Notes taken by Dexter Chua

Lent 2016

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Parts of Analysis II will be found useful for this course.

Groups of rigid motions of Euclidean space. Rotation and reflection groups in two and
three dimensions. Lengths of curves. [2]

Spherical geometry: spherical lines, spherical triangles and the Gauss-Bonnet theorem.
Stereographic projection and Möbius transformations. [3]

Triangulations of the sphere and the torus, Euler number. [1]

Riemannian metrics on open subsets of the plane. The hyperbolic plane. Poincaré
models and their metrics. The isometry group. Hyperbolic triangles and the Gauss-
Bonnet theorem. The hyperboloid model. [4]

Embedded surfaces in R3. The first fundamental form. Length and area. Examples. [1]

Length and energy. Geodesics for general Riemannian metrics as stationary points of
the energy. First variation of the energy and geodesics as solutions of the corresponding
Euler-Lagrange equations. Geodesic polar coordinates (informal proof of existence).
Surfaces of revolution. [2]

The second fundamental form and Gaussian curvature. For metrics of the form

du2 + G(u, v)dv2, expression of the curvature as
√
Guu/

√
G. Abstract smooth surfaces

and isometries. Euler numbers and statement of Gauss-Bonnet theorem, examples and

applications. [3]
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1 Euclidean geometry

1.1 Isometries of the Euclidean plane

Theorem. Every isometry of f : Rn → Rn is of the form

f(x) = Ax + b.

for A orthogonal and b ∈ Rn.

1.2 Curves in Rn

Proposition. If Γ is continuously differentiable (i.e. C1), then the length of Γ
is given by

length(Γ) =

∫ b

a

‖Γ′(t)‖ dt.

4



2 Spherical geometry IB Geometry (Theorems)

2 Spherical geometry

2.1 Triangles on a sphere

Theorem (Spherical cosine rule).

sin a sin b cos γ = cos c− cos a cos b.

Corollary (Pythagoras theorem). If γ = π
2 , then

cos c = cos a cos b.

Theorem (Spherical sine rule).

sin a

sinα
=

sin b

sinβ
=

sin c

sin γ
.

Corollary (Triangle inequality). For any P,Q,R ∈ S2, we have

d(P,Q) + d(Q,R) ≥ d(P,R),

with equality if and only if Q lies is in the line segment PR of shortest length.

Proposition. Given a curve Γ on S2 ⊆ R3 from P toQ, we have ` = length(Γ) ≥
d(P,Q). Moreover, if ` = d(P,Q), then the image of Γ is a spherical line segment
PQ.

Proposition (Gauss-Bonnet theorem for S2). If ∆ is a spherical triangle with
angles α, β, γ, then

area(∆) = (α+ β + γ)− π.

2.2 Möbius geometry

Lemma. If π′ : S2 → C∞ denotes the stereographic projection from the South
Pole instead, then

π′(P ) =
1

π(P )
.

Theorem. Via the stereographic projection, every rotation of S2 induces a
Möbius map defined by a matrix in SU(2) ⊆ GL(2,C), where

SU(2) =

{(
a −b
b̄ ā

)
: |a|2 + |b|2 = 1

}
.

Theorem. The group of rotations SO(3) acting on S2 corresponds precisely
with the subgroup PSU(2) = SU(2)/± 1 of Möbius transformations acting on
C∞.
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3 Triangulations and the Euler number

Theorem. The Euler number e is independent of the choice of triangulation.

Proposition. For every geodesic triangulation of S2 (and respectively T ) has
e = 2 (respectively, e = 0).
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4 Hyperbolic geometry

4.1 Review of derivatives and chain rule

Proposition (Chain rule). Let U ⊆ Rn and V ⊆ Rp. Let f : U → Rm and
g : V → U be smooth. Then f ◦ g : V → Rm is smooth and has a derivative

d(f ◦ g)p = (df)g(p) ◦ (dg)p.

In terms of the Jacobian matrices, we get

J(f ◦ g)p = J(f)g(p)J(g)p.

4.2 Riemannian metrics

4.3 Two models for the hyperbolic plane

Proposition. The elements of PSL(2,R) are isometries of H, and this preserves
the lengths of curves.

Lemma. Given any two distinct points z1, z2 ∈ H, there exists a unique
hyperbolic line through z1 and z2.

Lemma. PSL(2,R) acts transitively on the set of hyperbolic lines in H.

Proposition. If γ : [0, 1] → H is a piecewise C1-smooth curve with γ(0) =
z1, γ(1) = z2, then length(γ) ≥ ρ(z1, z2), with equality iff γ is a monotonic
parametrisation of [z1, z2] ⊆ `, where ` is the hyperbolic line through z1 and z2.

Corollary (Triangle inequality). Given three points z1, z2, z3 ∈ H, we have

ρ(z1, z3) ≤ ρ(z1, z2) + ρ(z2, z3),

with equality if and only if z2 lies between z1 and z2.

4.4 Geometry of the hyperbolic disk

Lemma. Let G be the set of isometries of the hyperbolic disk. Then

(i) Rotations z 7→ eiθz (for θ ∈ R) are elements of G.

(ii) If a ∈ D, then g(z) = z−a
1−āz is in G.

Proposition. If 0 ≤ r < 1, then

ρ(0, reiθ) = 2 tanh−1 r.

In general, for z1, z2 ∈ D, we have

g(z1, z2) = 2 tanh−1

∣∣∣∣ z1 − z2

1− z̄1z2

∣∣∣∣ .
Proposition. For every point P and hyperbolic line `, with P 6∈ `, there is a
unique line `′ with P ∈ `′ such that `′ meets ` orthogonally, say ` ∩ `′ = Q, and
ρ(P,Q) ≤ ρ(P, Q̃) for all Q̃ ∈ `.

Lemma (Hyperbolic reflection). Suppose g is an isometry of the hyperbolic
half-plane H and g fixes every point in L+ = {iy : y ∈ R+}. Then G is either
the identity or g(z) = −z̄, i.e. it is a reflection in the vertical axis L+.
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4.5 Hyperbolic triangles

Theorem (Gauss-Bonnet theorem for hyperbolic triangles). For each hyperbolic
triangle ∆, say, ABC, with angles α, β, γ ≥ 0 (note that zero angle is possible),
we have

area(∆) = π − (α+ β + γ).

Theorem (Hyperbolic cosine rule). In a triangle with sides a, b, c and angles
α, β, γ, we have

cosh c = cosh a cosh b− sinh a sinh b cos γ.

4.6 Hyperboloid model
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5 Smooth embedded surfaces (in R3)

5.1 Smooth embedded surfaces

Proposition. Let σ : V → U and σ̃ : Ṽ → U be two C∞ parametrisations of a
surface. Then the homeomorphism

ϕ = σ−1 ◦ σ̃ : Ṽ → V

is in fact a diffeomorphism.

Corollary. The tangent plane TQS is independent of parametrization.

Proposition. If we have two parametrizations related by σ̃ = σ ◦ ϕ : Ṽ → U ,
then ϕ : Ṽ → V is an isometry of Riemannian metrics (on V and Ṽ ).

Proposition. The area of T is independent of the choice of parametrization.
So it extends to more general subsets T ⊆ S, not necessarily living in the image
of a parametrization.

5.2 Geodesics

Proposition. A smooth curve γ satisfies the geodesic ODEs if and only if γ is
a stationary point of the energy function for all proper variation, i.e. if we define
the function

E(τ) = energy(γτ ) : (−ε, ε)→ R,

then
dE

dτ

∣∣∣∣
τ=0

= 0.

Corollary. If a curve Γ minimizes the energy among all curves from P = Γ(a)
to Q = Γ(b), then Γ is a geodesic.

Lemma. Let V ⊆ R2 be an open set with a Riemannian metric, and let P,Q ∈ V .
Consider C∞ curves γ : [a, b]→ V such that γ(0) = P, γ(1) = Q. Then such a γ
will minimize the energy (and therefore is a geodesic) if and only if γ minimizes
the length and has constant speed.

Proposition. A curve Γ is a geodesic iff and only if it minimizes the energy
locally, and this happens if it minimizes the length locally and has constant
speed.

Here minimizing a quantity locally means for every t ∈ [a, b], there is some
ε > 0 such that Γ|[t−ε,t+ε] minimizes the quantity.

Proposition. In fact, the geodesic ODEs imply ‖Γ′(t)‖ is constant.

Lemma (Gauss’ lemma). The geodesic circles {r = r0} ⊆W are orthogonal to
their radii, i.e. to γθ, and the Riemannian metric (first fundamental form) on W
is

dr2 +G(r, θ) dθ2.
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5.3 Surfaces of revolution

Proposition. We assume ‖γ̇‖ = 1, i.e. u̇2 + f2(u)v̇2 = 1.

(i) Every unit speed meridians is a geodesic.

(ii) A (unit speed) parallel will be a geodesic if and only if

df

du
(u0) = 0,

i.e. u0 is a critical point for f .

5.4 Gaussian curvature

Proposition. We let

N =
σu × σv
‖σu × σv‖

be our unit normal for a surface patch. Then at each point, we have

Nu = aσu + bσv,

Nv = cσu + dσv,

where

−
(
L M
M N

)
=

(
a b
c d

)(
E F
F G

)
.

In particular,
K = ad− bc.

Theorem. Suppose for a parametrization σ : V → U ⊆ S ⊆ R3, the first
fundamental form is given by

du2 +G(u, v) dv2

for some G ∈ C∞(V ). Then the Gaussian curvature is given by

K =
−(
√
G)uu√
G

.

In particular, we do not need to compute the second fundamental form of the
surface.

Corollary (Theorema Egregium). If S1 and S2 have locally isometric charts,
then K is locally the same.
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6 Abstract smooth surfaces

Theorem (Gauss-Bonnet theorem). If the sides of a triangle ABC ⊆ S are
geodesic segments, then∫

ABC

K dA = (α+ β + γ)− π,

where α, β, γ are the angles of the triangle, and dA is the “area element” given
by

dA =
√
EG− F 2 du dv,

on each domain U ⊆ S of a chart, with E,F,G as in the respective first
fundamental form.

Moreover, if S is a compact surface, then∫
S

K dA = 2πe(S).
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